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L’ellisse è una conica limitata, rimandiamo alla pagina web https://it.wikipedia.org/wiki/Ellisse per definizione e
principali proprietà della curva. Dal nostro punto di vista possiamo parlare di una curva regolare piana una cui
possibile parametrizzazione è

x(t) = (acos(t),bsin(t),0) con t ∈ [0,2á], a,b > 0

dove i parametri a e b rappresentano le lunghezze dei semiassi, a meno di movimenti rigidi del piano {x3 = 0}
possiamo assumere che a > b.
La parametrizzazione ha componenti di classe C∞, proviamo subito la regolarità dell’applicazione scrivendo il
vettore velocità e il suo modulo

x′(t) = (
−asin(t),bcos(t),0) e ∥x′(t)∥2 =

(
a2 sin2(t) + b2 cos2(t)

)1/2
= a

(
1− e2 cos2(t)

)1/2

dove abbiamo introdotto il parametro eccentricità, definito come segue

e2 =
1− b2

a2

 ∈ (0, 1)

tale parametro quantifica la differenza tra i due semiassi della curva, infatti l’eccentricità e è nulla se e solo se
l’ellisse ha i semiassi uguali, cioè se è una circonferenza. Inseriamo un’illustrazione che suggerisce l’aspetto della
conica.

PostoE = Im(x), ricordiamo che, dai risultati enunciati a lezione, possiamo provare a calcolare la lunghezza della
curva nel seguente modo:

L(E) =
∫ 2á

0
∥x′(t)∥2dt = 4a

∫ á/2

0

(
1− e2 cos2(t)

)1/2
dt

tale integrale (detto ellittico in letteratura) non è risolubile per via elementare (nel senso che non esiste una
primitiva in termini di funzioni elementari), possiamo impostare i seguenti conti cercando di stimare l’integrale
precedente. Partiamo dal seguente sviluppo
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ricordando che, per k ≥ 1, vale
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Da questo segue che
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effettuando uno scambio (non ben motivato) tra serie e integrale.
Se tronchiamo lo sviluppo arrestando k ad 1 otteniamo la seguente approssimazione (di scarso valore...)

L(E) ≃ 4a
∫ á/2
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è, però, possibile aggiungere termini allo sviluppo cercando di migliorare la qualità del nostro calcolo, per
esempio considerando qualche termine in più nello sviluppo si ottiene
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tutto al costo di un aumento del lavoro computazionale da svolgere.
I calcoli presentati si ispirano, grosso modo, alla prima parte del lavoro An Overlooked Series for the Elliptic
Perimeter di C.E. Linderholm e A.C. Segal (link https://doi.org/10.1080/0025570X.1995.11996318).


