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Introduction
The primary focus of Chapter 2 was on scalar-valued functions, although general
mappings from Rn to Rm were considered occasionally. This chapter concerns
vector-valued functions of two special types:

1. Continuous mappings of one variable (i.e., functions x: I ⊆ R → Rn , where
I is an interval, called paths in Rn).

2. Mappings from (subsets of ) Rn to itself (called vector fields).

An understanding of both concepts is required later, when we discuss line and
surface integrals.

3.1 Parametrized Curves and Kepler’s Laws
Paths in Rn

We begin with a simple definition. Let I denote any interval in R. (So I can be
of the form [a, b], (a, b), [a, b), (a, b], [a, ∞), (a, ∞), (−∞, b], (−∞, b), or
(−∞, ∞) = R.)

DEFINITION 1.1 A path in Rn is a continuous function x: I → Rn . If I =
[a, b] for some numbers a < b, then the points x(a) and x(b) are called the
endpoints of the path x. (Similar definitions apply if I = [a, b), [a, ∞), etc.)
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Figure 3.1 The path x of
Example 1.

EXAMPLE 1 Let a and b be vectors in R3 with a �= 0. Then the function
x: (−∞,∞) → R3 given by

x(t) = b + ta

defines the path along the straight line parallel to a and passing through the end-
point of the position vector of b as in Figure 3.1. (See formula (1) of §1.2.) ◆

EXAMPLE 2 The path y: [0, 2π ) → R2 given by

y(t) = (3 cos t, 3 sin t)

can be thought of as the path of a particle that travels once, counterclockwise,
around a circle of radius 3 (Figure 3.2). ◆
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Figure 3.2 The path y of
Example 2.
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Figure 3.3 The path z of
Example 3.

EXAMPLE 3 The map z: R → R3 defined by

z(t) = (a cos t, a sin t, bt), a, b constants (a > 0)

is called a circular helix, so named because its projection in the xy-plane is a
circle of radius a. The helix itself lies in the right circular cylinder x2 + y2 = a2

(Figure 3.3). The value of b determines how tightly the helix twists. ◆

We distinguish between a path x and its range or image set x(I ), the latter
being a curve in Rn . By definition, a path is a function, a dynamic object (at least
when we imagine the independent variable t to represent time), whereas a curve
is a static figure in space. With such a point of view, it is natural for us to consider
the derivative Dx(t), which we also write as x�(t) or v(t), to be the velocity vector
of the path. We can readily justify such terminology. Since

x(t) = (x1(t), x2(t), . . . , xn(t))

is a function of just one variable,

v(t) = x�(t) = lim
�t→0

x(t + �t) − x(t)

�t
.

Thus, v(t) is the instantaneous rate of change of position x(t) with respect to t
(time), so it can appropriately be called velocity. Figure 3.4 provides an indication
as to why we draw v(t) as a vector tangent to the path at x(t). Continuing in this
vein, we introduce the following terminology:

z
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v(t)

x(t + Δt) − x(t)

Figure 3.4 The path x and its
velocity vector v.

DEFINITION 1.2 Let x: I → Rn be a differentiable path. Then the velocity
v(t) = x�(t) exists, and we define the speed of x to be the magnitude of
velocity; that is,

Speed = �v(t)�.
If v is itself differentiable, then we call v�(t) = x��(t) the acceleration of x
and denote it by a(t).

EXAMPLE 4 The helix x(t) = (a cos t, a sin t, bt) has

v(t) = −a sin t i + a cos t j + b k and a(t) = −a cos t i − a sin t j.
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Thus, the acceleration vector is parallel to the xy-plane (i.e., is horizontal). The
speed of this helical path is

�v(t)� =
�

(−a sin t)2 + (a cos t)2 + b2 =
�

a2 + b2,

which is constant. ◆

The velocity vector v is important for another reason, namely, for finding equations
of tangent lines to paths. The tangent line to a differentiable path x, at the point
x0 = x(t0), is the line through x0 that is parallel to any (nonzero) tangent vector
to x at x0. Since v(t), when nonzero, is always tangent to x(t), we may use equa-
tion (1) of §1.2 to obtain the following vector parametric equation for the tangent
line:

l(s) = x0 + sv0. (1)

Here v0 = v(t0) and s may be any real number.
In equation (1), we have l(0) = x0. To relate the new parameter s to the

original parameter t for the path, we set s = t − t0 and establish the following
result:

PROPOSITION 1.3 Let x be a differentiable path and assume that v0 =
v(t0) �= 0. Then a vector parametric equation for the line tangent to x at x0 = x(t0)
is either

l(s) = x0 + sv0 (2)

or
l(t) = x0 + (t − t0)v0. (3)

(See Figure 3.5.)
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Figure 3.5 The path of the line
tangent to x(t) at the point x0.

EXAMPLE 5 If x(t) = (3t + 2, t2 − 7, t − t2), we find parametric equations
for the line tangent to x at (5,−6, 0) = x(1).

For this path, v(t) = x�(t) = 3i + 2tj + (1 − 2t)k, so that

v0 = v(1) = 3i + 2j − k.

Thus, by formula (3),

l(t) = (5i − 6j) + (t − 1)(3i + 2j − k).

Taking components, we read off the parametric equations for the coordinates
of the tangent line as

⎧
⎨
⎩

x = 3t + 2
y = 2t − 8
z = 1 − t

.

◆

The physical significance of the tangent line is this: Suppose a particle of
mass m travels along a path x. If, suddenly, at t = t0, all forces cease to act on the
particle (so that, by Newton’s second law of motion F = ma, we have a(t) ≡ 0
for t ≥ t0), then the particle will follow the tangent line path of equation (3).
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EXAMPLE 6 If Roger Ramjet is fired from a cannon, then we can use vectors
to describe his trajectory. (See Figure 3.6.)

y

Roger’s path

x

Figure 3.6 Roger Ramjet’s path.

We’ll assume that Roger is given an initial velocity vector v0 by virtue of the
firing of the cannon and that thereafter the only force acting on Roger is due to
gravity (so, in particular, we neglect any air resistance). Let us choose coordinates
so that Roger is initially at the origin, and throughout our calculations we’ll neglect
the height of the cannon. Let x(t) = (x(t), y(t)) denote Roger’s path. Then the
information we have is

a(t) = x��(t) = −g j

(i.e., the acceleration due to gravity is constant and points downward); hence,

v(0) = x�(0) = v0

and

x(0) = 0.

Since a(t) = v�(t), we simply integrate the expression for acceleration compo-
nentwise to find the velocity:

v(t) =
�

a(t) dt =
�

−gj dt = −gt j + c.

Here c is an arbitrary constant vector (the “constant of integration”). Since v(0) =
v0, we must have c = v0, so that

v(t) = −gt j + v0.

Integrating again to find the path,

x(t) =
�

v(t) dt =
�

(−gt j + v0) dt = −1

2
gt2 j + t v0 + d,

where d is another arbitrary constant vector. From the remaining fact that x(0) = 0,
we conclude that

x(t) = −1

2
gt2j + tv0 (4)

describes Roger’s path.
To understand equation (4) better, we write v0 in terms of its components:

v0 = v0 cos θ i + v0 sin θ j.

Here v0 = �v0� is the initial speed. (We’re really doing nothing more than
expressing the rectangular components of v0 in terms of polar coordinates.
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See Figure 3.7.) Thus,

x(t) = − 1
2 gt2j + t(v0 cos θ i + v0 sin θ j)

= (v0 cos θ )t i +
�

(v0 sin θ )t − 1

2
gt2

�
j.

From this, we may read off the parametric equations:
⎧
⎨
⎩

x = (v0 cos θ )t

y = (v0 sin θ )t − 1

2
gt2

,

from which it is not difficult to check that Roger’s path traces a parabola. ◆

v0

θ

0

Figure 3.7 Roger’s initial
velocity.

Here are two practical questions concerning the set-up of Example 6: First, for
a given initial velocity, how far does Roger travel horizontally? Second, for a given
initial speed, how should the cannon be aimed so that Roger travels (horizontally)
as far as possible? To find the range of the cannon shot and thereby answer the
first question, we need to know when y = 0 (i.e., when Roger hits the ground).
Thus, we solve

(v0 sin θ )t − 1
2 gt2 = t(v0 sin θ − 1

2 gt) = 0

for t . Hence, y = 0 when t = 0 (which is when Roger blasts off) and when
t = (2v0 sin θ )/g. At this later time,

x = (v0 cos θ ) ·
�

2v0 sin θ

g

�
= v2

0 sin 2θ

g
. (5)

Formula (5) is Roger’s horizontal range for a given initial velocity. To maximize
the range for a given initial speed v0, we must choose θ so that (v2

0 sin 2θ )/g is
as large as possible. Clearly, this happens when sin 2θ = 1 (i.e., when θ = π/4).

Sun Epicycle

Planet

Figure 3.8 An epicycle.

Kepler’s Laws of Planetary Motion (optional)
Since classical antiquity, individuals have sought to understand the motions of
the planets and stars. The majority of the ancient astronomers, using a combina-
tion of crude observation and faith, believed all heavenly bodies revolved around
the earth. Fortunately, the heliocentric (or “sun-centered”) theory of Nicholas
Copernicus (1473–1543) did eventually gain favor as observational techniques
improved. However, it was still believed that the planets traveled in circular or-
bits around the sun. This circular orbit theory did not correctly predict planetary
positions, so astronomers postulated the existence of epicycles, smaller circular
orbits traveling along the major circular arc, an example of which is shown in
Figure 3.8. Although positional calculations with epicycles yielded results closer
to the observed data, they still were not correct. Attempts at further improvements
were made using second- and third-order epicycles, but any gains in predictive
power were made at a cost of considerable calculational complexity. A new idea
was needed. Such inspiration came from Johannes Kepler (1571–1630), son of a
saloonkeeper and assistant to the Danish astronomer Tycho Brahe. The classical
astronomers were “stuck on circles” for they believed the circle to be a perfect
form and that God would use only such perfect figures for planetary motion.
Kepler, however, considered the other conic sections to be as elegant as the cir-
cle and so hypothesized the simple theory that planetary orbits are elliptical.
Empirical evidence bore out this theory.
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Kepler’s three laws of planetary motion are

1. The orbit of a planet is elliptical, with the sun at a focus of the ellipse.
2. During equal periods of time, a planet sweeps through equal areas with respect

to the sun. (See Figure 3.9.)
3. The square of the period of one elliptical orbit is proportional to the cube of

the length of the semimajor axis of the ellipse.

t3

t2

t1t4

A2

A1

Sun

Figure 3.9 Kepler’s second law
of planetary motion: If
t2 − t1 = t4 − t3, then A1 = A2,
where A1 and A2 are the areas of
the shaded regions.

Kepler’s laws changed the face of astronomy. We emphasize, however, that
they were discovered empirically, not analytically derived from general physical
laws. The first analytic derivation is frequently credited to Newton, who claimed
to have established Kepler’s laws (at least the first and third laws) in Book I of
his Philosophiae Naturalis Principia Mathematica (1687). However, a number of
scientists and historians of science now consider Newton’s proof of Kepler’s first
law to be flawed and that Johann Bernoulli (1667–1748) offered the first rigorous
derivation in 1710.1 In the discussion that follows, Newton’s law of universal
gravitation is used to prove all three of Kepler’s laws.

In our work below, we assume that the only physical effects are those be-
tween the sun and a single planet—the so-called two-body problem. (The n-body
problem, where n ≥ 3 is, by contrast, an important area of current mathematical
research.) To set the stage for our calculations, we take the sun to be fixed at the
origin O in R3 and the planet to be at the moving position P . We also need the
following two “vector product rules,” whose proofs we leave to you:

PROPOSITION 1.4

1. If x and y are differentiable paths in Rn , then
d

dt
(x · y) = y · dx

dt
+ x · dy

dt
.

2. If x and y are differentiable paths in R3, then
d

dt
(x × y) = dx

dt
× y + x × dy

dt
.

First, we establish the following preliminary result:

PROPOSITION 1.5 The motion of the planet is planar, and the sun lies in the
planet’s plane of motion.

PROOF Let r = −→
O P . Then r is a vector whose representative arrow has its tail

fixed at O. (Note that r = r(t); that is, r is a function of time.) If v = r�(t), we
will show that r × v is a constant vector c. This result, in turn, implies that r must
always be perpendicular to c and, hence, that r always lies in a plane with c as
normal vector.

To show that r × v is constant, we show that its derivative is zero. By part 2
of Proposition 1.4,

d

dt
(r × v) = dr

dt
× v + r × dv

dt
= v × v + r × a,

1 For an indication of the more recent controversy surrounding Newton’s mathematical accomplishments,
see R. Weinstock, “Isaac Newton: Credit where credit won’t do,” The College Mathematics Journal, 25
(1994), no. 3, 179–192, and C. Wilson, “Newton’s orbit problem: A historian’s response,” Ibid., 193–200,
and related papers.
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by the definitions of velocity and acceleration. We know that v × v = 0 (why?), so

d

dt
(r × v) = r × a. (6)

Now we use Newton’s laws. Newton’s law of gravitation tells us that the planet
is attracted to the sun with a force

F = −G Mm

r2
u, (7)

where G is Newton’s gravitational constant (= 6.6720 × 10−11 Nm2/kg2), M
is the mass of the sun, m is the mass of the planet (in kilograms), r = �r�, and
u = r/�r� (distances in meters). On the other hand, Newton’s second law of
motion states that, for the planet,

F = ma.

Thus,

ma = −G Mm

r2
u,

or

a = −G M

r3
r. (8)

Therefore, a is just a scalar multiple of r and hence is always parallel to r. In
view of equations (6) and (8), we conclude that

d

dt
(r × v) = r × a = 0

(i.e., that r × v is constant). ■

THEOREM 1.6 (KEPLER’S FIRST LAW) In a two-body system consisting of one
sun and one planet, the planet’s orbit is an ellipse and the sun lies at one focus of
that ellipse.

PROOF We will eventually find a polar equation for the planet’s orbit and see
that this equation defines an ellipse as described. We retain the notation from
the proof of Proposition 1.5 and take coordinates for R3 so that the sun is at the
origin, and the path of the planet lies in the xy-plane. Then the constant vector
c = r × v used in the proof of Proposition 1.5 may be written as ck, where c is
some nonzero real number. This set-up is shown in Figure 3.10.

r

c = r × v

v

y

x Orbit

u (unit length)

z

Sun

Figure 3.10 Establishing Kepler’s laws.
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Step 1. We find another expression for c. By definition of u in formula (7),
r = ru, so that, by the product rule,

v = d

dt
(ru) = r

du

dt
+ dr

dt
u.

Hence,

c = r × v = (ru) ×
�

r
du

dt
+ dr

dt
u

�
= r2

�
u × du

dt

�
+ r

dr

dt
(u × u).

Since u × u must be zero, we conclude that

c = r2

�
u × du

dt

�
. (9)

Step 2. We derive the polar equation for the orbit. Before doing so, however,
note the following result, whose proof is left to you as an exercise:

PROPOSITION 1.7 If x(t) has constant length (i.e., �x(t)� is constant for
all t), then x is perpendicular to its derivative dx/dt .

Continuing now with the main argument, note that the vector r(t) is defined
so that its magnitude is precisely the polar coordinate r of the planet’s position.
Using equations (8) and (9), we find that

a × c =
�

−G M

r2
u

�
× r2

�
u × du

dt

�

= −G M

	
u ×

�
u × du

dt

�


= G M

	�
u × du

dt

�
× u




= G M

	
(u · u)

du

dt
−

�
u · du

dt

�
u



(see Exercise 27 of §1.4)

= G M

	
1

du

dt
− 0u



(by Proposition 1.7)

= d

dt
(G Mu),

since G and M are constant. On the other hand, we can “reverse” the product rule
to find that

a × c = dv

dt
× c

= dv

dt
× c + v × dc

dt
(since c is constant)

= d

dt
(v × c).
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Thus,

a × c = d

dt
(G Mu) = d

dt
(v × c),

and, hence,

v × c = G Mu + d, (10)

where d is an arbitrary constant vector. Because both v × c and u lie in the xy-
plane, so must d.

Let us adjust coordinates, if necessary, so that d points in the i-direction (i.e.,
so that d = di for some d ∈ R). This can be accomplished by rotating the whole
set-up about the z-axis, which does not lift anything lying in the xy-plane out of
that plane. Then the angle between r (and hence u) and d is the polar angle θ as
shown in Figure 3.11.

θ

y

r
d

x

z

Figure 3.11 The angle θ is
the angle between r and d.

By Theorem 3.3 of Chapter 1,

u · d = �u� �d� cos θ = d cos θ . (11)

Since c = �c�,

c2 = c · c

= (r × v) · c

= r · (v × c) (Why? See formula (4) of §1.4.)

= ru · (G Mu + d) by equation (10).

Hence,

c2 = G Mr + rd cos θ

by equation (11). We can readily solve this equation for r to obtain

r = c2

G M + d cos θ
, (12)

the polar equation for the planet’s orbit.

Step 3. We now check that equation (12) really does define an ellipse by
converting to Cartesian coordinates. First, we’ll rewrite the equation as

r = c2

G M + d cos θ
= (c2/G M)

1 + (d/G M) cos θ
,

and then let p = c2/G M , e = d/G M for convenience. (Note that p > 0.) Hence,
equation (12) becomes

r = p

1 + e cos θ
. (13)

A little algebra provides the equivalent equation,

r = p − er cos θ . (14)

Now r cos θ = x (x being the usual Cartesian coordinate), so that equation (14)
is equivalent to

r = p − ex .

To complete the conversion, we square both sides and find, by virtue of the fact
that r2 = x2 + y2,

x2 + y2 = p2 − 2pex + e2x2.
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A little more algebra reveals that

(1 − e2) x2 + 2pex + y2 = p2. (15)

Therefore, the curve described by the preceding equation is an ellipse if 0 <

|e| < 1, a parabola if e = ±1, and a hyperbola if |e| > 1. Analytically, there is no
way to eliminate the last two possibilities. Indeed, “uncaptured” objects such as
comets or expendable deep space probes can have hyperbolic or parabolic orbits.
However, to have a closed orbit (so that the planet repeats its transit across the
sky), we are forced to conclude that the orbit must be elliptical.

More can be said about the elliptical orbit. Dividing equation (15) by 1 − e2

and completing the square in x , we have

�
x + pe

1 − e2

�2

+ y2

1 − e2
= p2

(1 − e2)2
.

This is equivalent to the rather awkward-looking equation

�
x + pe/(1 − e2)

�2

p2/(1 − e2)2
+ y2

p2/(1 − e2)
= 1. (16)

From equation (16), we see that the ellipse is centered at the point (−pe/(1 − e2),
0), that its semimajor axis has length a = p/(1 − e2), and that its semiminor axis
has length b = p/

√
1 − e2. The foci of the ellipse are at a distance

�
a2 − b2 =



p2

(1 − e2)2
− p2

1 − e2
= p|e|

1 − e2

from the center. (See Figure 3.12.) Hence, we see that one focus must be at the
origin, the location of the sun. Our proof is, therefore, complete. ■

Fortunately, all the toil involved in proving the first law will pay off in proofs
of the second and third laws, which are considerably shorter. Again, we retain all
the notation we already introduced.

THEOREM 1.8 (KEPLER’S SECOND LAW) During equal intervals of time, a planet
sweeps through equal areas with respect to the sun.

y

x
FocusFocus

Semimajor axis

Semiminor
axis

(−pe/(1−e2), 0)

Figure 3.12 The ellipse of equation (16).
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A( )θ

P0(r0,   0)θ

P(r,   )θ

Figure 3.13 The shaded area A(θ ) is
given by

� θ

θ0

1
2r2 dϕ.

PROOF Fix one point P0 on the planet’s orbit. Then the area A swept between
P0 and a second (moving) point P on the orbit is given by the polar area integral

A(θ ) =
� θ

θ0

1

2
r2 dϕ.

(See Figure 3.13.) Thus, we may reformulate Kepler’s law to say that d A/dt is
constant. We establish this reformulation by relating d A/dt to a known constant,
namely, the vector c = r × v.

By the chain rule (in one variable),

d A

dt
= d A

dθ

dθ

dt
.

By the fundamental theorem of calculus,

d A

dθ
= d

dθ

� θ

θ0

1

2
r2 dϕ = 1

2
[r (θ )]2.

Hence,

d A

dt
= 1

2
r2 dθ

dt
. (17)

Now, we relate c to dθ/dt by means of equation (9). Therefore, we compute

u × du/dt in terms of θ . Recall that u = 1

r
r and r = r cos θ i + r sin θ j. Thus,

u = cos θ i + sin θ j

du

dt
= − sin θ

dθ

dt
i + cos θ

dθ

dt
j.

Hence, it follows by direct calculation of the cross product that

c = r2

�
u × du

dt

�
= r2 dθ

dt
k,

so c = �c� = r2dθ/dt , and equation (17) implies that

d A

dt
= 1

2
c, (18)

a constant. ■

THEOREM 1.9 (KEPLER’S THIRD LAW) If T is the length of time for one plane-
tary orbit, and a is the length of the semimajor axis of this orbit, then T 2 = K a3

for some constant K .
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PROOF We focus on the total area enclosed by the elliptical orbit. The area of an
ellipse whose semimajor and semiminor axes have lengths a and b, respectively,
is πab. This area must also be that swept by the planet in the time interval [0, T ].
Thus, we have

πab =
� T

0

d A

dt
dt

=
� T

0

1

2
c dt by equation (18)

= 1

2
cT .

Hence,

T = 2πab

c
, so T 2 = 4π2a2b2

c2
. (19)

Now, b and c are related to a, so these quantities must be replaced before we are
done. In particular, from equation (16), b2 = p2/(1 − e2), so

b2 = pa.

Also
p = c2

G M
.

(See equations (12) and (13).) With these substitutions, the result in (19) becomes

T 2 = 4π2a2(pa)

pG M
=

�
4π2

G M

�
a3.

This last equation shows that T 2 is proportional to a3, but it says even more:
The constant of proportionality 4π2/G M depends entirely on the mass of the
sun—the constant is the same for any planet that might revolve around the sun.

■

3.1 Exercises

In Exercises 1–6, sketch the images of the following paths, us-
ing arrows to indicate the direction in which the parameter
increases:

1.
�

x = 2t − 1
y = 3 − t

, −1 ≤ t ≤ 1

2. x(t) = et i + e−t j

3.
�

x = t cos t
y = t sin t

, −6π ≤ t ≤ 6π

4.
�

x = 3 cos t
y = 2 sin 2t

, 0 ≤ t ≤ 2π

5. x(t) = (t, 3t2 + 1, 0)

6. x(t) = (t, t2, t3)

Calculate the velocity, speed, and acceleration of the paths
given in Exercises 7–10.

7. x(t) = (3t − 5)i + (2t + 7)j

8. x(t) = 5 cos t i + 3 sin t j

9. x(t) = (t sin t, t cos t, t2)

10. x(t) = (et , e2t , 2et )

In Exercises 11–14, (a) use a computer to give a plot of the
given path x over the indicated interval for t; identify the di-
rection in which t increases. (b) Show that the path lies on the
given surface S.

◆T 11. x(t) = (3 cos π t, 4 sin π t, 2t), −4 ≤ t ≤ 4; S is ellip-

tical cylinder
x2

9
+ y2

16
= 1.

◆T 12. x(t) = (t cos t, t sin t, t), −20 ≤ t ≤ 20; S is cone

z2 = x2 + y2.

◆T 13. x(t) = (t sin 2t, t cos 2t, t2), −6 ≤ t ≤ 6; S is para-
boloid z = x2 + y2.
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◆T 14. x(t) = (2 cos t, 2 sin t, 3 sin 8t), 0 ≤ t ≤ 2π ; S is cy-
linder x2 + y2 = 4.

In Exercises 15–18, find an equation for the line tangent to the
given path at the indicated value for the parameter.

15. x(t) = te−t i + e3t j, t = 0

16. x(t) = 4 cos t i − 3 sin t j + 5t k, t = π/3

17. x(t) = (t2, t3, t5), t = 2

18. x(t) = (cos(et ), 3 − t2, t), t = 1

19. (a) Sketch the path x(t) = (t, t3 − 2t + 1).

(b) Calculate the line tangent to x when t = 2.

(c) Describe the image of x by an equation of the form
y = f (x) by eliminating t .

(d) Verify your answer in part (b) by recalculating the
tangent line, using your result in part (c).

Exercises 20–23 concern Roger Ramjet and his trajectory when
he is shot from a cannon as in Example 6 of this section.

20. Verify that Roger Ramjet’s path in Example 6 is indeed
a parabola.

21. Suppose that Roger is fired from the cannon with an
angle of inclination θ of 60◦ and an initial speed v0 of
100 ft/sec. What is the maximum height Roger attains?

22. Suppose that Roger is fired from the cannon with an an-
gle of inclination θ of 60◦ and that he hits the ground
1/2 mile from the cannon. What, then, was Roger’s
initial speed?

23. If Roger is fired from the cannon with an initial speed of
250 ft/sec, what angle of inclination θ should be used
so that Roger hits the ground 1500 ft from the cannon?

24. Gertrude is aiming a Super Drencher water pistol at
Egbert, who is 1.6 m tall and is standing 5 m away.
Gertrude holds the water gun 1 m above ground at an
angle α of elevation. (See Figure 3.14.)

(a) If the water pistol fires with an initial speed of
7 m/sec and an elevation angle of 45◦, does Egbert
get wet?

1 m

5 m

1.6 m

α

Figure 3.14 Figure for Exercise 24.

◆T (b) If the water pistol fires with an initial speed of
8 m/sec, what possible angles of elevation will
cause Egbert to get wet? (Note: You will want to
use a computer algebra system or a graphics cal-
culator for this part.)

25. A malfunctioning rocket is traveling according to the
path x(t) =

�
e2t , 3t3 − 2t, t − 1

t

�
in the hope of reach-

ing a repair station at the point (7e4, 35, 5). (Here
t represents time in minutes and spatial coordinates
are measured in miles.) At t = 2, the rocket’s engines
suddenly cease. Will the rocket coast into the repair
station?

26. Two billiard balls are moving on a (coordina-
tized) pool table according to the respective paths

x(t) =
�

t2 − 2, t2

2 − 1
�

and y(t) = (t, 5 − t2), where

t represents time measured in seconds.

(a) When and where do the balls collide?

(b) What is the angle formed by the paths of the balls
at the collision point?

27. Establish part 1 of Proposition 1.4 in this section: If x
and y are differentiable paths in Rn , show that

d

dt
(x ·y) = y · dx

dt
+ x · dy

dt
.

28. Establish part 2 of Proposition 1.4 in this section: If x
and y are differentiable paths in R3, show that

d

dt
(x × y) = dx

dt
× y + x × dy

dt
.

29. Prove Proposition 1.7.

30. (a) Show that the path x(t) = (cos t, cos t sin t, sin2 t)
lies on a unit sphere.

(b) Verify that x(t) is always perpendicular to the ve-
locity vector v(t).

(c) Use Proposition 1.7 to show that if a differentiable
path lies on a sphere centered at the origin, then
its position vector is always perpendicular to its
velocity vector.
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31. Consider the path

⎧
⎨
⎩

x = (a + b cos ωt) cos t
y = (a + b cos ωt) sin t
z = b sin ωt

,

where a, b, and ω are positive constants and a > b.

◆T (a) Use a computer to plot this path when

i. a = 3, b = 1, and ω = 15.

ii. a = 5, b = 1, and ω = 15.

iii. a = 5, b = 1, and ω = 25.

Comment on how the values of a, b, and ω affect
the shapes of the image curves.

(b) Show that the image curve lies on the torus

(
�

x2 + y2 − a)2 + z2 = b2.

(A torus is the surface of a doughnut.)

32. For the path x(t) = (et cos t, et sin t), show that the an-
gle between x(t) and x�(t) remains constant. What is
the angle?

33. Consider the path x: R → R2, x(t) = (t2, t3 − t).
(a) Show that this path intersects itself, that is, that

there are numbers t1 and t2 such that x(t1) = x(t2).

(b) At the point where the path intersects itself, it
makes sense to say that the image curve has two
tangent lines. What is the angle between these tan-
gent lines?

34. Although the path x : [0, 2π ] → R2, x(t) =
(cos t, sin t) may be the most familiar way to give a
parametric description of a unit circle, in this problem
you will develop a different set of parametric equations
that gives the x- and y-coordinates of a point on the
circle in terms of rational functions of the parameter.
(This particular parametrization turns out to be useful
in the branch of mathematics known as number theory.)

To set things up, begin with the unit circle x2 +
y2 = 1 and consider all lines through the point (−1, 0).
(See Figure 3.15.) Note that every line other than the

vertical line x = −1 intersects the circle at a point
(x, y) other than (−1, 0). Let the parameter t be the
slope of the line joining (−1, 0) and a point (x, y) on
the circle.

(–1, 0 )

(x, y)

y

x

Slope t

Figure 3.15 Figure for Exercise 34.

(a) Give an equation for the line of slope t joining
(−1, 0) and (x, y). (Your answer should involve
x, y, and t .)

(b) Use your answer in part (a) to write y in terms of
x and t . Then substitute this expression for y into
the equation for the unit circle. Solve the resulting
equations for x in terms of t . Your answer(s) for x
will give the points of intersection of the line and
the circle.

(c) Use your result in part (b) to give a set of paramet-
ric equations for points (x, y) on the unit circle.

(d) Does your parametrization in part (c) cover the
entire circle? Which, if any, points are missed?

35. Let x(t) be a path of class C1 that does not pass through
the origin in R3. If x(t0) is the point on the image of x
closest to the origin and x�(t0) �= 0, show that the po-
sition vector x(t0) is orthogonal to the velocity vector
x�(t0).

3.2 Arclength and Differential Geometry
In this section, we continue our general study of parametrized curves in R3,
considering how to measure such geometric properties as length and curvature.
This can be done by defining three mutually perpendicular unit vectors that form
the so-called moving frame specially adapted to a path x. Our study takes us
briefly into the branch of mathematics called differential geometry, an area where
calculus and analysis are used to understand the geometry of curves, surfaces,
and certain higher-dimensional objects (called manifolds).
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Length of a Path
For now, let x: [a, b] → R3 be a C1 path in R3. Then we can approximate the
length L of x as follows: First, partition the interval [a, b] into n subintervals.
That is, choose numbers t0, t1, . . . , tn such that a = t0 < t1 < · · · < tn = b. If,
for i = 1, . . . , n, we let �si denote the distance between the points x(ti−1) and
x(ti ) on the path, then

L ≈
n�

i=1

�si . (1)

x(ti)

x(ti − 1)

x(a)

x(b)

   siΔ

Figure 3.16 Approximating the
length of a C1 path.

(See Figure 3.16.) We have x(t) = (x(t), y(t), z(t)), so that the distance formula
(i.e., the Pythagorean theorem) implies

�si =
�

�x2
i + �y2

i + �z2
i ,

where �xi = x(ti ) − x(ti−1), �yi = y(ti ) − y(ti−1), and �zi = z(ti ) − z(ti−1). It
is entirely reasonable to hope that the approximation in (1) improves as the �ti ’s
become closer to zero. Hence, we define the length L of x to be

L = lim
max �ti →0

n�

i=1

�
�xi

2 + �yi
2 + �zi

2. (2)

Now, we find a way to rewrite equation (2) as an integral. On each subinterval
[ti−1, ti ], apply the mean value theorem (three times) to conclude the following:

1. There must be some number t∗
i in [ti−1, ti ] such that

x(ti ) − x(ti−1) = x �(t∗
i )(ti − ti−1);

that is, �xi = x �(t∗
i )�ti .

2. There must be another number t∗∗
i in [ti−1, ti ] such that

�yi = y�(t∗∗
i )�ti .

3. There must be a third number t∗∗∗
i in [ti−1, ti ] such that

�zi = z�(t∗∗∗
i )�ti .

Therefore, with a little algebra, equation (2) becomes

L = lim
max �ti →0

n�

i=1

�
x �(t∗

i )2 + y�(t∗∗
i )2 + z�(t∗∗∗

i )2 �ti . (3)

When the limit appearing in equation (3) is finite, it gives the value of the definite
integral

� b

a

�
x �(t)2 + y�(t)2 + z�(t)2 dt.

Note that the integrand is precisely �x�(t)�, the speed of the path. (This makes
perfect sense, of course. Speed measures the rate of distance traveled per unit
time, so integrating the speed over the elapsed time interval should give the total
distance traveled.) Moreover, it’s not hard to see how we should go about defining
the length of a path in Rn for arbitrary n.



204 Chapter 3 Vector-Valued Functions

DEFINITION 2.1 The length L(x) of a C1 path x: [a, b] → Rn is found by
integrating its speed:

L(x) =
� b

a
�x�(t)� dt.

EXAMPLE 1 To check our definition in a well-known situation, we compute
the length of the path

x: [0, 2π ] → R2, x(t) = (a cos t, a sin t), a > 0.

We have

x�(t) = −a sin t i + a cos t j,

so

�x�(t)� =
�

a2 sin2 t + a2 cos2 t = a.

Thus, Definition 2.1 gives

L(x) =
� 2π

0
a dt = 2πa.

Since the path traces a circle of radius a once, the length integral works out to be
the circumference of the circle, as it should. ◆

EXAMPLE 2 For the helix x(t) = (a cos t, a sin t, bt), 0 ≤ t ≤ 2π , we have

x�(t) = −a sin t i + a cos t j + b k,

so that �x�(t)� =
√

a2 + b2, and

L(x) =
� 2π

0

�
a2 + b2 dt = 2π

�
a2 + b2.

When b = 0, the helix reverts to a circle and the length integral agrees with the
previous example. ◆

Although we have defined the length integral only for C1 (or “smooth-
looking”) paths, there is no problem with extending our definition to the piecewise
C1 case. By definition, a C1 path is one with a continuously varying velocity vec-
tor, and so it typically looks like the path in Figure 3.17. A piecewise C1 path is one
that may not be C1 but instead consists of finitely many C1 chunks. A continuous,
piecewise C1 path that is not C1 typically looks like the path in Figure 3.18. Each
of the three portions of the path defined for (i) a ≤ t ≤ t1, (ii) t1 ≤ t ≤ t2, and
(iii) t2 ≤ t ≤ b is of class C1, but the velocity, if nonzero, would be discontinuous
at t = t1 and t = t2. To define the length of a piecewise C1 path, all we need do is
break up the path into its C1 pieces, calculate the length of each piece, and add to
get the total length. For the piecewise C1 path shown in Figure 3.18, this means we
would take

� t1

a

��x�(t)
�� dt +

� t2

t1

��x�(t)
�� dt +

� b

t2

��x�(t)
�� dt

to be the length.

x

v

Figure 3.17 A C1 path.

x(t1) x(t2)

x(a)
x(b)

Figure 3.18 A piecewise C1 path
x: [a, b] → R3.
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WARNING Even if a path is continuous, the definite integral in Definition 2.1
may fail to exist. An example of such an unfortunate situation is furnished by the
path x: [0, 1] → R2,

x(t) = (t, y(t)), where y(t) =

⎧
⎨
⎩

t sin
1

t
if t �= 0

0 if t = 0

.

Such a path is called nonrectifiable. It is a fact that any C1 path with endpoints
is rectifiable, which is why we made such a condition part of Definition 2.1.

The Arclength Parameter
The calculation of the length of a path is not only useful (and moderately inter-
esting) in itself, but it also provides a way for us to reparametrize the path with
a parameter that depends solely on the geometry of the curve traced by the path,
not on the way in which the curve is traced.

P0 = x(a) s(t)

P = x(t)

Figure 3.19 The arclength
reparametrization.

Let x be any C1 path and assume that the velocity x� is never zero. Fix a point
P0 on the path and let a be such that x(a) = P0. We define a one-variable function
s of the given parameter t that measures the length of the path from P0 to any
other (moving) point P by

s(t) =
� t

a
�x�(τ )� dτ. (4)

(See Figure 3.19. The Greek letter tau, τ , is used purely as a dummy variable—
the standard convention is never to have the same variable appearing in both the
integrand and either of the limits of integration.) If t happens to be less than a,
then the value of s in formula (4) will be negative. This is nothing more than a
consequence of how the “base point” P0 is chosen.

Here’s how to get the new parameter: From formula (4) and from the funda-
mental theorem of calculus,

ds

dt
= d

dt

� t

a
�x�(τ )� dτ = �x�(t)� = speed. (5)

Since we have assumed that x�(t) �= 0, it follows that ds/dt is nonzero. Hence,
ds/dt is always positive, so s is a strictly increasing function of t . Thus, s is,
in fact, an invertible function; that is, it is at least theoretically possible to solve
the equation s = s(t) for t in terms of s. If we imagine doing this, then we can
reparametrize the path x, using the arclength parameter s as independent variable.

EXAMPLE 3 For the helix x(t) = (a cos t, a sin t, bt), if we choose the “base
point” P0 to be x(0) = (a, 0, 0), then we have

s(t) =
� t

0
�x�(τ )� dτ =

� t

0

�
a2 + b2 dτ =

�
a2 + b2 t,

so that

s =
�

a2 + b2 t,
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or

t = s√
a2 + b2

.

(What the preceding tells us is that this reparametrization just rescales the time
variable.) Hence, we can rewrite the helical path as

x(s) =
�

a cos

�
s√

a2 + b2

�
, a sin

�
s√

a2 + b2

�
,

bs√
a2 + b2

�
. ◆

EXAMPLE 4 The explicit determination of the arclength parameter for a given
parametrized path is a delicate matter. Consider the path

x(t) =
�

t,

√
2

2
t2,

1

3
t3

�
.

Then x�(t) = (1,
√

2t, t2) and, if we take the base point to be x(0) = (0, 0, 0), then

s(t) =
� t

0

�
1 + 2τ 2 + τ 4 dτ

=
� t

0

�
(1 + τ 2)2 dτ =

� t

0
(1 + τ 2) dτ = t + t3

3
.

On the other hand, the path y(t) = (t, t2, t3) is quite similar to x, yet it has
no readily calculable arclength parameter. In this case, y�(t) = (1, 2t, 3t2) and the
resulting integral for s(t) is

s(t) =
� t

0

�
1 + 4τ 2 + 9τ 4 dτ.

It can be shown that this integral has no “closed form” formula (i.e., a formula
that involves only finitely many algebraic and transcendental functions). ◆

The significance of the arclength parameter s is that it is an intrinsic param-
eter; it depends only on how the curve itself bends, not on how fast (or slowly)
the curve is traced. To see more precisely what this means, we resort to the chain
rule. Consider s as an intermediate variable and t as a final variable. Then we
have

x�(t) = x�(s)
ds

dt
by the chain rule,

= x�(s)�x�(t)� by (5).

Since x�(t) �= 0, we can solve for x�(s) to find

x�(s) = x�(t)

�x�(t)� . (6)

Therefore, x�(s) is precisely the normalization of the original velocity vector, and
so it is a unit vector. Hence, the reparametrized path x(s) has unit speed, regardless
of the speed of the original path x(t). (This result makes good geometric sense,
too. If arclength, rather than time, is the parameter, then speed is measured in
units of “length per length,” which necessarily must be one.)

The only unfortunate note to our story is that the integral in formula (4) is
usually impossible to compute exactly, thus making it impossible to compute s
as a simple function of t . (The case of the helix is a convenient and rather special
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exception.) One generally prefers to work indirectly, letting the chain rule come
to the rescue. We shall see this indirect approach next.

The Unit Tangent Vector and Curvature
Let x: I ⊆ R → R3 be a C3 path and assume that x� is never zero.

DEFINITION 2.2 The unit tangent vector T of the path x is the normal-
ization of the velocity vector; that is,

T = v

�v� = x�(t)

�x�(t)� .

1T

Figure 3.20 A unit tangent
vector.

We see from Definition 2.2 that the unit tangent vector is undefined when the
speed of the path is zero. Also note that, from equation (6), T is dx/ds, where s
is the arclength parameter. Geometrically, T is the tangent vector of unit length
that points in the direction of increasing arclength, as suggested by Figure 3.20.

EXAMPLE 5 For the helix x(t) = (a cos t, a sin t, bt), we have

T(t) = x�(t)

�x�(t)� = −a sin t i + a cos t j + b k√
a2 + b2

.

On the other hand, if we parametrize the helix using arclength so that

x(s) =
�

a cos

�
s√

a2 + b2

�
, a sin

�
s√

a2 + b2

�
,

bs√
a2 + b2

�
,

then

T(s) = x�(s) = −a√
a2 + b2

sin

�
s√

a2 + b2

�
i + a√

a2 + b2
cos

�
s√

a2 + b2

�
j

+ b√
a2 + b2

k.

This agrees (as it should) with the first expression for T, since s =
√

a2 + b2 t ,
as shown in Example 3. ◆

Using the unit tangent vector, we can define a quantity that measures how
much a path bends as we travel along it. To do so, note the following key facts:

PROPOSITION 2.3 Assume that the path x always has nonzero speed. Then

1. dT/dt is perpendicular to T for all t in I (the domain of the path x).

2. �dT/dt� |t=t0 equals the angular rate of change (as t increases) of the direc-
tion of T when t = t0.

PROOF (You can omit reading this proof for the moment if you are interested in
the main flow of ideas.) To prove part 1, we have

T(t) · T(t) = 1,
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since T is a unit vector. Hence,

d

dt
(T · T) = 0,

because the derivative of a constant is zero. Also we have

d

dt
(T · T) = T · dT

dt
+ dT

dt
· T,

by the product rule (Proposition 1.4). Thus,

2T · dT

dt
= 0.

Therefore, T is always perpendicular to dT/dt . (See Proposition 1.7.)

T(t0 +    t)

θ

T(t0)

Δ

ΔT

Δ

Figure 3.21 The vector triangle
used in the proof of
Proposition 2.3.

Now we prove part 2. Because T is a unit vector for all t , only its direction
can change as t increases. This angular rate of change of T is precisely

lim
�t→0+

�θ

�t
,

where �θ comes from the vector triangle shown in Figure 3.21. To make the
argument technically simpler, we shall assume that �T �= 0. We claim that

lim
�t→0+

�θ

��T� = 1. (7)

Then, from equation (7),

lim
�t→0+

�θ

�t
= lim

�t→0+

�θ

��T�
��T�
�t

= lim
�t→0+

�θ

��T� lim
�t→0+

��T�
�t

= 1 · lim
�t→0+

��T�
�t

.

Since �t is assumed to be positive in the limit, we may conclude that

lim
�t→0+

�θ

�t
= lim

�t→0+

����
�T

�t

���� =
����

dT

dt

����,

as desired.
To establish equation (7), the law of cosines applied to the vector triangle in

Figure 3.21 implies

��T�2 = �T(t + �t)�2 + �T(t)�2 − 2�T(t + �t)� �T(t)� cos �θ

= 2 − 2 cos �θ,

because T is always a unit vector. Thus,

lim
�t→0+

�θ

��T� = lim
�t→0+

�θ√
2 − 2 cos �θ

= lim
�t→0+

�θ�
2 · 2(sin2(�θ/2))

from the half-angle formula, and so

lim
�t→0+

�θ

��T� = lim
�t→0+

�θ/2

sin(�θ/2)
= 1,

from the well-known trigonometric limit (or from L’Hôpital’s rule). ■
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Part 2 of Proposition 2.3 provides a precise way of measuring the bending of
a path.

DEFINITION 2.4 The curvature κ of a path x in R3 is the angular rate of
change of the direction of T per unit change in distance along the path.

The reason for taking the rate of change of T per unit change in distance in the
definition of κ is so that the curvature is an intrinsic quantity (which we certainly
want it to be). Figure 3.22 should help you develop some intuition about κ.

T

T

T

T

T

T

Figure 3.22 In the left figure, κ is not large, since the
path’s unit tangent vector turns only a small amount per
unit change in distance along the path. In the right
figure, κ is much larger, because T turns a great deal
relative to distance traveled.

Because �dT/dt� measures the angular rate of change of the direction of T
per unit change in parameter (by part 2 of Proposition 2.3) and ds/dt is the rate
of change of distance per unit change in parameter, we see that

κ(t) = �dT/dt�
ds/dt

=
����

dT

ds

����, (8)

where the last equality holds by the chain rule. It is formula (8) that we will use
when making calculations.

EXAMPLE 6 For the circle x(t) = (a cos t, a sin t), 0 ≤ t < 2π ,

x�(t) = −a sin t i + a cos t j, �x�(t)� = ds

dt
= a,

so that

T(t) = x�(t)

�x�(t)� = − sin t i + cos t j.

Hence,

κ = �dT/dt�
ds/dt

= 1

a
� − cos t i − sin t j� = 1

a
.

Thus, we see that the curvature of a circle is always constant with value equal
to the reciprocal of the radius. Therefore, the smaller the circle, the greater the
curvature. (Draw a sketch to convince yourself.) ◆
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EXAMPLE 7 If a and b are constant vectors in R3 and a �= 0, the path

x(t) = a t + b

traces a line. We have

x�(t) = a,

so
ds

dt
= �a�.

Hence,

T(t) = a

�a� ,

which is a constant vector. Thus, T�(t) ≡ 0 and formula (8) implies immedi-
ately that κ is zero, which agrees with the intuitive fact that a line doesn’t
curve. ◆

EXAMPLE 8 Returning to our friend the helix

x(t) = (a cos t, a sin t, bt),

we have already seen that

ds

dt
=

�
a2 + b2 and T(t) = −a sin t i + a cos t j + b k√

a2 + b2
.

Thus, formula (8) gives

κ = 1√
a2 + b2

����
−a cos t i − a sin t j√

a2 + b2

���� = a

a2 + b2
.

We see that the curvature of the helix is constant, just like the circle. In fact, as b
approaches zero, the helix degenerates to a circle, and the resulting curvature is
consistent with that of Example 6.

We can also compute the curvature from the parametrization given by arc-
length. The same helix is also described by

x(s) =
�

a cos

�
s√

a2 + b2

�
, a sin

�
s√

a2 + b2

�
,

bs√
a2 + b2

�
,

and we have

T(s) = dx

ds
= − a√

a2 + b2
sin

�
s√

a2 + b2

�
i + a√

a2 + b2
cos

�
s√

a2 + b2

�
j

+ b√
a2 + b2

k.

We can, therefore, compute

dT

ds
= − a

a2 + b2
cos

�
s√

a2 + b2

�
i − a

a2 + b2
sin

�
s√

a2 + b2

�
j,

and hence, from formula (8), that

κ =
����

dT

ds

���� = a

a2 + b2
,

which checks. ◆
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The Moving Frame and Torsion
We now introduce a triple of mutually orthogonal unit vectors that “travel” with a
given path x: I → R3, known as the moving frame of the path. (Note: In general,
the term “frame” means an ordered collection of mutually orthogonal unit vectors
in Rn .) These vectors should be thought of as a set of special vector “coordinate
axes” that move from point to point along the path.

To begin, assume that (i) x�(t) �= 0 and (ii) x�(t) × x��(t) �= 0 for all t in I .
(The first condition assures us that x never has zero speed and the second that x
is not a straight-line path.) Then the first vector of the moving frame is just the
unit tangent vector:

T = dx

ds
= x�(t)

�x�(t)� .

(Now you see why condition (i) is needed.) For a second vector orthogonal to T,
recall that part 1 of Proposition 2.3 says that dT/dt must be perpendicular to T.
Hence, we define

N = dT/dt

�dT/dt� . (9)

(That dT/dt is not zero follows from assumptions (i) and (ii).) The vector N is
called the principal normal vector of x. By the chain rule, N is also given by

N = dT/ds

�dT/ds� . (10)

Since κ = �dT/ds� by formula (8), we also see that

dT

ds
= κN. (11)

At a given point P along the path, the vectors T and N (and also the vectors
x� and x��) determine what is called the osculating plane of the path at P . (See
Figure 3.23.) This is the plane that “instantaneously” contains the path at P . (More

x

T

Osculating plane

N

P2
P

P1

Figure 3.23 The osculating plane of the path x at the
point P .
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precisely, it is the plane obtained by taking points P1 and P2 on the path near P
and finding the limiting position of the plane through P , P1, and P2 as P1 and
P2 approach P along x. The word “osculating” derives from the Latin osculare,
meaning “to kiss.”)

Now that we have defined two orthogonal unit vectors T and N, we can
produce a third unit vector perpendicular to both:

B = T × N. (12)

The vector B, called the binormal vector, is defined so that the ordered triple
(T, N, B) is a right-handed system. Thus, B is a unit vector since

�B� = �T� �N� sin
π

2
= 1 · 1 · 1 = 1.

EXAMPLE 9 For the helix x(t) = (a cos t, a sin t, bt), the moving frame vec-
tors are

T(t) = −a sin t i + a cos t j + b k√
a2 + b2

(as we have already seen),

N(t) = T�(t)

�T�(t)� = (−a cos t i − a sin t j)/
√

a2 + b2

a/
√

a2 + b2
= − cos t i − sin t j,

and

B(t) = T × N =

��������

i j k

−a sin t/
√

a2 + b2 a cos t/
√

a2 + b2 b/
√

a2 + b2

− cos t − sin t 0

��������

=
�

b√
a2 + b2

sin t

�
i −

�
b√

a2 + b2
cos t

�
j +

�
a√

a2 + b2

�
k. ◆

Equation (11) says that the derivative of T (with respect to arclength) is a
scalar function (namely, the curvature) multiple of the principal normal N. This
is not surprising, since N is defined to be parallel to the derivative of T. A more
remarkable result (see the addendum at the end of this section) is that the derivative
of the binormal vector is also always parallel to the principal normal; that is,

dB

ds
= (scalar function) N.

The standard convention is to write this scalar function with a negative sign, so
we have

dB

ds
= −τN. (13)

The scalar function τ thus defined is called the torsion of the path x. Roughly
speaking, the torsion measures how much the path twists out of the plane, how
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“three-dimensional” x is. Note that, according to our conventions, the curvature
κ is always nonnegative (why?), while τ can be positive, negative, or zero.

EXAMPLE 10 Consider again the case of circular motion. Thus, let x(t) =
(a cos t, a sin t). Then, as shown in Example 6,

T(t) = x�(t)

�x�(t)� = − sin t i + cos t j, and κ =
����

dT

ds

���� = 1

a
.

Now we calculate

N = T�(t)

�T�(t)� = − cos t i − sin t j,

B = T × N = k, a constant vector.

Hence, dB/ds ≡ 0, so there is no torsion. This makes sense, since a circle does
not twist out of the plane. ◆

EXAMPLE 11 Let x(t) = (et cos t, et sin t, et ). We calculate T, N, and B and
identify the curvature and torsion of x.

To begin, we have

T(t) = x�(t)��x�(t)
�� = et (cos t − sin t) i + et (cos t + sin t) j + et k√

3 et

= 1√
3

((cos t − sin t) i + (cos t + sin t) j + k) .

From this, we may compute

dT

ds
= dT/dt

ds/dt
=

1√
3
(−(sin t + cos t) i + (cos t − sin t) j)

√
3 et

= e−t

3
(−(sin t + cos t) i + (cos t − sin t)j),

so that the curvature is

κ =
����

dT

ds

���� =
√

2 e−t

3
.

Now we determine the remainder of the moving frame:

N = T�(t)��T�(t)
�� = 1√

2
(−(sin t + cos t) i + (cos t − sin t) j),

B = T × N = 1√
6

((sin t − cos t) i − (sin t + cos t) j + 2k).

Finally, to find the torsion, we calculate

dB

ds
= dB/dt

ds/dt
=

1√
6
((cos t + sin t) i + (sin t − cos t) j)

√
3 et

= e−t

3
√

2
((cos t + sin t) i + (sin t − cos t) j)

= −e−t

3
N,

so
τ = e−t

3
. ◆
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EXAMPLE 12 If a and b are vectors in R3, then the straight-line path x(t) =
a t + b has, as we saw in Example 7, T = a/�a�. Thus, both dT/dt and dT/ds are
identically zero. Hence, κ ≡ 0 (as shown in Example 7) and N cannot be defined
using formula (9). From geometric considerations, any unit vector perpendicular
to T can, in principle, be used for N. (See Figure 3.24.) If we choose one such
vector, then B can be calculated from formula (12). Since T, N, and B are all
constant, τ must be zero. This is an example of a moving frame that is not
uniquely determined by the path x and serves to illustrate why the assumption
x� × x�� �= 0 was made. ◆

T

Figure 3.24 Any vector in the
plane perpendicular to T can be
used for N.

It is important to realize that the moving frame, curvature, and torsion are
quantities that are intrinsic to the curve traced by the path. That is, any parame-
trized path that traces the same curve (in the same direction) must necessarily
have the same T, N, B vector functions and the same curvature and torsion. This
is because all of these quantities can be defined entirely in terms of the intrinsic
arclength parameter s. (See Definition 2.2 and formulas (6), (8), (10), (11), (12),
and (13).)

Another important fact is that the curvature function κ and the torsion function
τ together determine all the geometric information regarding the shape of the
curve, except for the curve’s particular position in space. To be more precise, we
have the following theorem, whose proof we omit:

THEOREM 2.5 Let s be the arclength parameter and suppose C1 and C2 are
two curves of class C3 in R3. Assume that the corresponding curvature functions
κ1 and κ2 are strictly positive. Then if κ1(s) ≡ κ2(s) and τ1(s) ≡ τ2(s), the two
curves must be congruent (in the sense of high school geometry). In fact, given
any two continuous functions κ and τ , where κ(s) > 0 for all s in the closed
interval [0, L], there is a unique curve parametrized by arclength on [0, L] (up to
position in space) whose curvature and torsion are κ and τ , respectively.

Tangential and Normal Components of Velocity and Accel-
eration; Other Curvature Formulas
As we have seen, the moving frame provides us with an intrinsic set of vectors,
like coordinate axes, that are special to the particular curve traced by a path. In
contrast, the velocity and acceleration vectors of a path are definitely not intrinsic
quantities but depend on the particular parametrization chosen as well as on the
shape of the path. (The speed of a path is entirely independent of the geometry
of the curve traced.) We can get some feeling for the relationship between the
intrinsic notion of the moving frame and the extrinsic quantities of velocity and
acceleration by expressing the latter two vector functions in terms of the moving
frame vectors.

Thus, we begin with a C2 path x: I → R3 having x� �= 0 and x� × x�� �= 0.
For notational convenience, let ṡ denote ds/dt and s̈ denote d2s/dt2. From
Definition 2.2, we know that T = v/�v� and so, since the speed ṡ = ds/dt = �v�,
we have

v(t) = ṡT. (14)
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This formula says that the velocity is always parallel to the unit tangent vector,
something we know well. To obtain a similar result for acceleration, we can
differentiate (14) and apply the product rule:

a(t) = v�(t) = d

dt
(ṡT) = s̈T + ṡ

dT

dt
. (15)

Next, we express dT/dt in terms of the T, N, B frame. Formula (11) gives
the derivative of dT/ds in terms of N. The chain rule says that dT/ds =
(dT/dt)/(ds/dt). Thus, from formula (11), we have

dT

dt
= ṡ

dT

ds
= ṡκN.

Hence, we may rewrite equation (15) as

a(t) = s̈T + κ ṡ2N. (16)

WARNING s̈ = d2s/dt2 is the derivative of the speed, which is a scalar function.
The acceleration a is the derivative of velocity and so is a vector function.

as̈T
T

x
N

s 2Nκ

Figure 3.25 Decomposition of
acceleration a into tangential and
normal components.

Note that formula (16) shows that the acceleration has no component in the
direction of the binormal vector B. Therefore, both velocity and acceleration are
vectors that lie in the osculating plane of the path. (See Figure 3.25.)

At first glance, it may not appear to be especially easy to use formula (16)
to resolve acceleration into its tangential and normal components because of the
curvature term. However,

�a�2 = a · a = (s̈T + κ ṡ2N) · (s̈T + κ ṡ2N) = s̈2 + (κ ṡ2)2,

since T and N are perpendicular vectors. Consequently, we may calculate the
components as follows:

Tangential component of acceleration = atang = s̈.

Normal component of acceleration = anorm = κ ṡ2 =
�

�a�2 − a2
tang.

EXAMPLE 13 Let x(t) = (t, 2t, t2). Then v(t) = i + 2j + 2tk and a(t) = 2k.
We have ṡ = �v(t)� =

√
5 + 4t2. Therefore,

atang = s̈ = 4t√
5 + 4t2

.

Since �a� = 2, we see that

anorm =
�

�a�2 − a2
tang =



4 − 16t2

5 + 4t2
= 2

√
5√

5 + 4t2
. ◆

Formulas (14) and (16) enable us to find an alternative equation for the
curvature of the path. We simply calculate that

v × a = (ṡT) × (s̈T + κ ṡ2N) = ṡ s̈(T × T) + κ ṡ3(T × N) = κ ṡ3B.
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Recalling that ṡ = �v�, we have, by taking magnitudes,

�v × a� = κ�v�3 �B� = κ�v�3,

since B is a unit vector. Thus,

κ = �v × a�
�v�3

. (17)

This relatively simple formula expresses the curvature (an intrinsic quantity)
in terms of the nonintrinsic quantities of velocity and acceleration.

EXAMPLE 14 For the path x(t) = (2t3 + 1, t4, t5), we have

v(t) = 6t2i + 4t3j + 5t4k

and

a(t) = 12t i + 12t2j + 20t3k.

You can check that

�v� = t2
�

25t4 + 16t2 + 36

and

�v × a� =
��4t4(5t2i − 15tj + 6k)

�� = 4t4
�

25t4 + 225t2 + 36.

Therefore, formula (17) yields

κ = �v × a�
�v�3 = 4(25t4 + 225t2 + 36)1/2

t2(25t4 + 16t2 + 36)3/2
,

which is certainly a more convenient way to determine curvature in this case. ◆

Summary
You have seen many formulas in this section, and, at first, it may seem difficult
to sort out the primary statements from the secondary results. We list the more
fundamental facts here:

For a path x: I → R3:

Nonintrinsic quantities:

Velocity v(t) = x�(t).

Speed
ds

dt
= �v(t)�.

Acceleration a(t) = x��(t).
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Arclength function: (See Figure 3.26.)

s(t) =
� t

a
�x�(τ )� dτ (basepoint is P0 = x(a))

P = x(t)

P0 = x(a) s(t)

Figure 3.26 The arclength
function.

Intrinsic quantities:
The moving frame:

Unit tangent vector T = dx

ds
= x�(t)

�x�(t)� .

Principal normal vector N = dT/ds

�dT/ds� = dT/dt

�dT/dt� .

Binormal vector B = T × N.

Curvature κ =
����

dT

ds

���� = �dT/dt�
ds/dt

.

Torsion τ is defined so that
dB

ds
= −τN.

Additional formulas:

v(t) = ṡ T (ṡ is speed).

a(t) = s̈ T + κ ṡ2 N (s̈ is derivative of speed).

κ = �v × a�
�v�3

.

Addendum: More About Torsion and the
Frenet–Serret Formulas
We now derive formula (13), the basis for the definition of the torsion of a curve.
That is, we show that the derivative of the binormal vector B (with respect to
arclength) is always parallel to the principal normal N (i.e., that dB/ds is a
scalar function times N). The two main ingredients in our derivation are part 1 of
Proposition 2.3 and the product rule.

c(s)

a(s)
x

w

B

N

T

b(s)

Figure 3.27 w(s) = aT +
bN + cB.

We begin by noting that, since the ordered triple of vectors (T, N, B) forms a
frame for R3, any moving vector, including dB/ds, can be expressed as a linear
combination of these vectors; that is, we must have

dB

ds
= a(s)T + b(s)N + c(s)B, (18)

where a, b, and c are appropriate scalar-valued functions. (Because T, N, and
B are mutually perpendicular unit vectors, any (moving) vector w in R3 can be
decomposed into its components with respect to T, N, and B in much the same
way that it can be decomposed into i, j, and k components—see Figure 3.27.) To
find the particular values of the component functions a, b, and c, it turns out that
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we can solve for each function by applying appropriate dot products to equation
(18). Specifically,

dB

ds
· T = a(s)T · T + b(s)N · T + c(s)B · T

= a(s) · 1 + b(s) · 0 + c(s) · 0

= a(s),
and, similarly,

dB

ds
· N = b(s),

dB

ds
· B = c(s).

From Proposition 1.7, dB/ds is perpendicular to B and, hence, c must be zero.
To find a, we use an ingenious trick with the product rule: Because T · B = 0, it
follows that d/ds(T · B) = 0. Now, by the product rule,

d

ds
(T · B) = T · dB

ds
+ dT

ds
· B.

Consequently, (dB/ds) · T = −(dT/ds) · B. Thus,

a(s) = dB

ds
· T = −dT

ds
· B

= −κN · B by formula (11),

= 0,

and equation (18) reduces to

dB

ds
= b(s)N.

No further reductions are possible, and we have proved that the derivative of B is
parallel to N. The torsion τ can, therefore, be defined by τ (s) = −b(s).

Formulas (11) and (13) gave us intrinsic expressions for dT/ds and dB/ds,
respectively. We can complete the set by finding an expression for dN/ds. The
method is the same as the one just used. Begin by writing

dN

ds
= a(s)T + b(s)N + c(s)B, (19)

where a, b, and c are suitable scalar functions. Taking the dot product of equation
(19) with, in turn, T, N, and B, yields the following:

a(s) = dN

ds
· T, b(s) = dN

ds
· N, c(s) = dN

ds
· B.

The “product rule trick” used here then reveals that

a(s) = dN

ds
· T = −N · dT

ds

= −N · κN by formula (11)

= −κ,

and

c(s) = dN

ds
· B = −N · dB

ds

= −N · (−τN) by formula (13)

= τ.
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Moreover, we may differentiate the equation N · N = 1 to find

b(s) = dN

ds
· N = −N · dN

ds
,

which implies that b(s) is zero. Hence, equation (19) becomes

dN

ds
= −κT + τB.

The formulas for dT/ds, dN/ds, and dB/ds are usually taken together as
⎧
⎪⎨
⎪⎩

T�(s) = κN

N�(s) = −κT + τB

B�(s) = −τN

and are known as the Frenet–Serret formulas for a curve in space. They are so
named for Frédéric-Jean Frenet and Joseph Alfred Serret, who published them
separately in 1852 and 1851, respectively. The Frenet–Serret formulas give a
system of differential equations for a curve and are key to proving a result like
Theorem 2.5. They are often written in matrix form, in which case, they have an
especially appealing appearance, namely,

⎡
⎢⎣

T�

N�

B�

⎤
⎥⎦ =

⎡
⎢⎣

0 κ 0

−κ 0 τ

0 −τ 0

⎤
⎥⎦

⎡
⎢⎣

T

N

B

⎤
⎥⎦.

3.2 Exercises

Calculate the length of each of the paths given in Exercises
1–6.

1. x(t) = (2t + 1, 7 − 3t), −1 ≤ t ≤ 2

2. x(t) = t2 i + 2
3 (2t + 1)3/2 j, 0 ≤ t ≤ 4

3. x(t) = (cos 3t, sin 3t, 2t3/2), 0 ≤ t ≤ 2

4. x(t) = 7i + t j + t2k, 1 ≤ t ≤ 3

5. x(t) = (t3, 3t2, 6t), −1 ≤ t ≤ 2

6. x(t) = (ln (cos t), cos t, sin t), π
6 ≤ t ≤ π

3

7. x(t) = (ln t, t2/2,
√

2t), 1 ≤ t ≤ 4

8. x(t) = (2t cos t, 2t sin t, 2
√

2t2), 0 ≤ t ≤ 3

9. The path x(t) = (a cos3 t, a sin3 t), where a is a posi-
tive constant, traces a curve known as an astroid or a
hypocycloid of four cusps. Sketch this curve and find
its total length. (Be careful when you do this.)

10. If f is a continuously differentiable function, show
how Definition 2.1 may be used to establish the
formula

L =
� b

a

�
1 + ( f �(x))2 dx

for the length of the curve y = f (x) between (a, f (a))
and (b, f (b)).

11. Use Exercise 10 or Definition 2.1 (or both) to calculate
the length of the line segment y = mx + b between
(x0, y0) and (x1, y1). Explain your result with an ap-
propriate sketch.

12. (a) Calculate the length of the line segment deter-
mined by the path

x(t) = (a1t + b1, a2t + b2)

as t varies from t0 to t1.

(b) Compare your result with that of Exercise 11.

(c) Now calculate the length of the line segment deter-
mined by the path x(t) = a t + b as t varies from
t0 to t1.

13. This problem concerns the path x = |t − 1| i + |t | j,
−2 ≤ t ≤ 2.

(a) Sketch this path.

(b) The path fails to be of class C1 but is piecewise
C1. Explain.

(c) Calculate the length of the path.

14. Consider the path x(t) = (e−t cos t, e−t sin t).
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(a) Argue that the path spirals toward the origin as
t → +∞.

(b) Show that, for any a, the improper integral
� ∞

a
||x�(t)|| dt

converges.

(c) Interpret what the result in part (b) says about the
path x.

15. Suppose that a curve is given in polar coordinates by
an equation of the form r = f (θ ), where f is of class
C1. Use Definition 2.1 to derive the formula

L =
� β

α

�
f �(θ )2 + f (θ )2 dθ

for the length of the curve between the points ( f (α), α)
and ( f (β), β) (given in polar coordinates).

16. (a) Find the arclength parameter s = s(t) for the path

x(t) = eat cos bt i + eat sin bt j + eat k.

(b) Express the original parameter t in terms of s and,
thereby, reparametrize x in terms of s.

Determine the moving frame {T, N, B}, and compute the cur-
vature and torsion for the paths given in Exercises 17–20.

17. x(t) = 5 cos 3t i + 6t j + 5 sin 3t k

18. x(t) = (sin t − t cos t) i + (cos t + t sin t) j + 2k,
t ≥ 0

19. x(t) =
�
t, 1

3 (t + 1)3/2, 1
3 (1 − t)3/2

�
, −1 < t < 1

20. x(t) = (e2t sin t, e2t cos t, 1)

21. (a) Use formula (17) in this section to establish the
following well-known formula for the curvature
of a plane curve y = f (x):

κ = | f ��(x)|
[1 + ( f �(x))2]3/2

.

(Assume that f is of class C2.)

(b) Use your result in (a) to find the curvature of
y = ln (sin x).

22. (a) Let x(s) = (x(s), y(s)) be a plane curve para-
metrized by arclength. Show that the curvature is
given by the formula

κ = |x �y�� − x ��y�|.

(b) Show that x(s) =
�

1
2 (1 − s2), 1

2 (cos−1 s − s
√

1 − s2 )
�

is parametrized by arclength, and compute its
curvature.

In Exercises 23–26, (a) use a computer algebra system to cal-
culate the curvature κ of the indicated path x and (b) plot the

path x and, separately, plot the curvature κ as a function of t
over the indicated interval for t and value(s) of the constants.

◆T 23. x(t) = (a cos t, b sin t), 0 ≤ t ≤ 2π ; a = 2, b = 1

◆T 24. x(t) = (2a(1 + cos t) cos t, 2a(1 + cos t) sin t), 0 ≤
t ≤ 2π ; a = 1

◆T 25. x(t) = (2a cos t(1 + cos t) − a, 2a sin t(1 + cos t)),
0 ≤ t ≤ 2π ; a = 1

◆T 26. x(t) = (a sin nt, b sin mt), 0 ≤ t ≤ 2π ; a = 3,

b = 2, n = 4, m = 3

Find the tangential and normal components of acceleration for
the paths given in Exercises 27–32.

27. x(t) = t2 i + t j

28. x(t) = (2t, e2t )

29. x(t) = (et cos 2t, et sin 2t)

30. x(t) = (4 cos 5t, 5 sin 4t, 3t)

31. x(t) = (t, t, t2)

32. x(t) = 3
5 (1 − cos t) i + sin t j + 4

5 cos t k

33. (a) Show that the tangential and normal compo-
nents of acceleration atang and anorm satisfy the
equations

atang = x� ·x��
��x��� , anorm =

��x� × x����
��x��� .

(b) Use these formulas to find the tangential and
normal components of acceleration for the path
x(t) = (t + 2) i + t2 j + 3t k.

34. Use Exercise 33 to show that, for the plane curve
y = f (x),

atang = f �(x) f ��(x)�
1 + ( f �(x))2

,

anorm =
�� f ��(x)

��
�

1 + ( f �(x))2
.

35. Establish the following formula for the torsion:

τ = (v × a) ·a�

�v × a�2
.

36. Show that κτ = −T� ·B�, where differentiation is with
respect to the arclength parameter s.

37. Show that if x is a path parametrized by arclength and
x� × x�� �= 0, then

κ2τ = (x� × x��) ·x���.

38. Suppose x: I → R3 is a path with x�(t) × x��(t) �= 0 for
all t ∈ I . The osculating plane to the path at t = t0 is
the plane containing x(t0) and determined by (i.e., par-
allel to) the tangent and normal vectors T(t0) and N(t0).


