Esame di Meccanica Quantistica 11/09/2025

Esercizio 1. Una particella di spin 1/2 libera di muoversi in una dimensione è soggetta ad una Hamiltoniana

$$H = H_0 + a(|+1/2\rangle\langle-1/2|-|-1/2\rangle\langle+1/2|),$$

dove a è una costante complessa tale che $\operatorname{Im}(a) < 0$; H_0 dipende solo dalle coordinate spaziali e, in assenza di spin, ha spettro non degenere; $|\pm \frac{1}{2}\rangle$ sono gli autovettori della componente z dello spin. Si supponga di conoscere lo spettro di H_0 , ossia le energie E_n , $n = 0, 1, 2, \ldots$, $(E_0 < E_1 < E_2 \ldots)$ e le corrispondenti autofunzioni normalizzate $\langle x|n\rangle = \psi_n(x)$.

- a) Sapendo che il primo stato eccitato di H ha degenerazione 2, si determini la costante a, l'energia dello stato fondamentale e del primo stato eccitato. Nel seguito si fissi a al valore trovato.
- b) Si discuta l'energia e la degenerazione del secondo stato eccitato al variare di E_0 , E_1 ed E_2 .
- c) Si consideri l'operatore che opera unicamente sulla parte spaziale

$$A = b(|0\rangle\langle 1| + |1\rangle\langle 0|) + b\sum_{n=0}^{\infty} n|n\rangle\langle n|,$$

dove b è una costante positiva. Si determini lo stato $|\psi\rangle$ che appartiene al primo livello eccitato di H e che minimizza $\langle\psi|A|\psi\rangle$.

d) Per lo stato trovato al punto c) si calcolino i valori ottenibili da una misura di S_y e le rispettive probabilità.

Esercizio 2. Si considerino due particelle di spin 1/2 e 1 e stessa massa m le cui variabili canoniche associate sono rispettivamente $(\mathbf{r}_1, \mathbf{p}_1)$ e $(\mathbf{r}_2, \mathbf{p}_2)$.

La Hamiltoniana del sistema è data da

$$\hat{H} = \frac{\hat{\mathbf{p}}_1^2}{2m} + \frac{\hat{\mathbf{p}}_2^2}{2m} + \gamma (\hat{\mathbf{r}}_1 - \hat{\mathbf{r}}_2)^2 \qquad \gamma > 0.$$
 (1)

Si svolga l'esercizio nel sistema di riferimento del centro di massa.

- a) Si determinino i livelli energetici di \hat{H} , la loro degenerazione e si fornisca un base di autoket.
- b) Il sistema si trova in uno $|\psi\rangle$ tale che:
- (i) le misure di \hat{J}^2 (momento angolare totale al quadrato) e di \hat{J}_z (proiezione lungo l'asse z) forniscono con certezza i valori $\frac{35}{4}\hbar^2$ e $-\frac{3}{2}\hbar$ rispettivamente;
- (ii) $|\psi\rangle$ è autostato di \hat{H} con autovalore più piccolo possibile compatibile con la condizione (i).
- Quali sono i possibili risultati, e le rispettive probabilità, di una misura di \hat{S}^2 (spin totale al quadrato)?

Quali sono i possibili risultati, e le rispettive probabilità, di una misura della proiezione dello spin lungo z della particella con spin 1?

- c) La Hamiltoniana viene ora perturbata dall'operatore $\hat{V} = \epsilon \gamma \hat{z}^2$, dove con \hat{z} si è indicata la componente lungo l'asse z della coordinata relativa e $0 < \epsilon \ll 1$. Si calcoli la correzione al primo ordine in ϵ dell'energia del livello fondamentale e si discuta l'eventuale rimozione della degenerazione.
- d) Si determini in maniera esatta il valore dell'energia del livello fondamentale di $\hat{H} + \hat{V}$ per $\epsilon > 0$ arbitrario. Si confronti con il risultato ottenuto perturbativamente al punto precedente.