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Statistical Mechanics and Thermodynamics

Let us go back to our original problem.

Example: A gas . Consider a gas (fluid) of N molecules in a
box of volume V . The configurations of the gas are specified by
the set of positions r1,r2, . . . (each vector defines a position
inside the box) and of momenta p1,p2, . . . The configuration
space is the phase space available to the system.

For instance, we wish to compute the average energy at
constant volume defined by

E =
1
Z

∫
[d p][dr]He−βH ,

where the integral is over the whole configuration space (all
values of the momenta and all positions inside the box),
β = 1/(kBT ) and Z is the partition function.

The integral over momenta is simple (H is quadratic in the
momenta).
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Thus, we need only to compute the configurational energy

Econf =
1
Q

∫
[dr]Ue−βU ,

where U is the potential energy and Q is the configurational
partition function.
In principle, one could imagine of using the following MC
algorithm to compute Econf:

1. If the box is cubic, of size L, let r1 = (LU1,LU2,LU3), where
Ui are random numbers uniformly distributed in [0,1].
Repeat the same for all N particles;

2. Compute ni =Ue−βU and di = e−βU

3. Repeat steps 1 and 2 niter times. An estimate of Econf is
∑i ni/∑i di.
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This algorithm is correct, but, for any reasonable niter, the error
on the estimate is enormous.

The method does NOT work for the very same reason why
thermodynamics works .

Consider a system of N particles at fixed temperature T .
The energy distribution is peaked around the mean energy
Econf.
The width of the distribution is of order 1/

√
N.

It implies that the only configurations that contribute to the
integral are those for which Econf −w/

√
N <U < Econf +w/

√
N.

But, our algorithm generates configurations with any value of U :
most of them will be outside the relevant interval (which shrinks
as N increases) and thus they will not be relevant for the
computation of Econf. The result will depend on the very few
configurations that belong to the relevant interval and thus the
error will be large.
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WAY OUT: use importance sampling . Configurations are not
generated randomly, but according to the Gibbs measure.

Unfortunately, it is very difficult to do it directly, except in a very
few systems: dilute polymers (growth algorithms, dimerization),
Gaussian models, percolation...

We need a new method: the dynamic Monte Carlo method ,
which mathematically is nothing but a Markov process .
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Markov chains

A Markov chain is specified by a state space S and by a
transition matrix Pxy, x,y ∈ S such that

Pxy ≥ 0, ∑
y∈S

Pxy = 1

Two basic features:
1) the probability to be in y at time t +1 depends only on the
position at time t;
2) the probabilities are time independent.

Another example : Let us consider two Ising spins s1, s2 which
can assume the values ±1. The dynamics consists in choosing
randomly one spin and flipping it with probability p.

State space : the space of all possible spin configurations.
Since each spin assumes two values, there are four
possibilities: (s1,s2) = (1,1),(1,−1),(−1,1),(−1,−1).
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Transition matrix Ps1s2,s′1s′2
.

1) Since at each step only one spin is changed, Ps1s2,s′1s′2
= 0 if

s1 6= s′1 and s2 6= s′2.

2) Suppose now that s1 = s′1 and let us compute the probability
that s2 6= s′2. This occurs when s2 is chosen (it occurs with
probability 1/2) and then flipped (probability p). Hence
Ps1s2,s1s′2

= p/2 for s2 6= s′2.

3) Analogously Ps1s2,s′1s2
= p/2 for s1 6= s′1.

4) Finally, Ps1s2,s1s2 can be computed from ∑y∈S Pxy = 1:
Ps1s2,s1s2 = 1− p.
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The relevant family of Markov chains

Among all Markov chains we will consider processes which
satisfy two conditions:

1) Ergodicity (in the mathematical literature it is called
irreducibility). We can go from any state to any state:
For any x,y, there is n > 0 such that Pn

xy > 0

2) Aperiodicity (technical, not very interesting condition): the
greatest common divisor of the set of integers n such that
Pn

xx > 0 is 1.
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Exercise

1) Write the transition matrix for the spin system:











1− p p/2 p/2 0

p/2 1− p 0 p/2

p/2 0 1− p p/2

0 p/2 p/2 1− p











2) Using the stationarity condition, show that, for any p > 0, the equilibrium distribution
is π = (1/4,1/4,1/4,1/4).
3) Show that the Markov chain is ergodic for any p > 0.
4) Show that the Markov chain is aperiodic for p < 1, periodic (of period 2) for p = 1.
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The fundamental theorem

If P is irreducible and aperiodic:

a)
lim
n→∞

Pn
xy = πy

with πy nonnegative.

b) If πx is not identically zero, it satisfies

∑
x

πx = 1.

Hence πx is a probability distribution on the state space.

c) If πx is not identically zero, it satisfies the stationarity
condition

∑
x

πxPxy = πy.

Hence πx is the equilibrium distribution .
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The fundamental theorem

d) (Uniqueness ) πx is the unique probability distribution
satisfying the stationarity condition.

e) (Ergodic theorem ) Consider the process
X0 → X1 → X2 . . .→ XN generated by P. Then

lim
N→∞

1
N

N

∑
n=1

f (Xn) = ∑
x

f (x)πx

for any function f (x) defined on the state space,
irrespective of X0.
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Dynamic Monte Carlo as a Markov process

In Markov-chain theory the emphasis is on P which determines
the equilibrium distribution π.
In our Monte Carlo applications we work in the opposite way.

The equilibrium distribution π is known: π should be identified
with the (normalized) Gibbs measure.

Then, we devise a transition matrix P such that π satisfies the
stationarity condition for P.

The uniqueness theorem guarantees that π is the equilibrium
distribution of the process.

Averages over the Gibbs measure can be computed by using
averages over the Markov process (ergodic theorem).
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IMPORTANT: The Gibbs measure is defined by exp(−βH). In
order to identify it with π, we should multiply it by a
normalization constant, the partition function:

π =
1
Z

e−βH , Z = ∑
x∈S

e−βH(x)

The determination of the quantity Z requires complex
techniques. However, Z is NOT needed to devise the transition
matrix P.
The stationarity condition can be written as

∑
x

πxPxy = πy ⇒ ∑
x

e−βH(x)

Z
Pxy =

e−βH(y)

Z
⇒ ∑

x
e−βH(x)Pxy = e−βH(y).

The partition function Z drops out!
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Detailed balance

There is an infinite number of matrices P that satisfy the
stationarity condition. It is often easier to look for a matrix P
which satisfies the stronger condition

πxPxy = πyPyx

for any x,y. This condition is called reversibility condition or
detailed-balance condition .

Let us prove that if P is reversible, then it satisfies the
stationarity condition. Summing over x the detailed-balance
condition and using the fact that ∑x Pyx = 1 we have

∑
x

πxPxy = ∑
x

πyPyx ⇒ ∑
x

πxPxy = πy.
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Static MC algorithms

The Monte Carlo algorithms we have considered before are static algorithms.

They can also be put in the present framework.
At each iteration a point in the sample space is chosen with probability πx.
Hence, in these algorithms Pxy = πy, independently of x.
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Initial conditions

As we discussed, the ergodic theorem states that

time averages = sample averages

One can prove that:

1) For any starting condition the time average

1
N +1

N

∑
n=0

f (Xn)

is a biased estimate of the sample average ∑x πx f (x). The bias
is of order 1/N.

2) The bias vanishes if one starts in equilibrium.
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Initial conditions: the proof

We wish to compute for n → ∞ the average

IN =

〈

1
N +1

N

∑
n=0

f (Xn)−∑
x

πx f (x)

〉

0

where 〈·〉0 indicates the average over all processes that start in X0.

The probability of being in point y at t = n is Pn
0y, so that

〈 f (Xn)〉0 = ∑
y

f (y)Pn
0y

Therefore

IN =
1

N +1

N

∑
n=0

∑
y

[

Pn
0y f (y)−πy f (y)

]

=
1

N +1 ∑
y

f (y)
N

∑
n=0

[

Pn
0y −πy

]
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Initial conditions: the proof. 2

Now, introduce the projector Πxy = πy. It has the properties:

(ΠP)xy = ∑
z

ΠxzPzy = ∑
z

πzPzy = πy = Πxy

(PΠ)xy = ∑
z

PxzΠzy = ∑
z

Pxzπy = πy = Πxy

(ΠΠ)xy = ∑
z

ΠxzΠzy = ∑
z

πzπy = πy = Πxy

Then, for k 6= 0, since P and Π commute, we can write

(P−Π)k =
k

∑
n=0

(

k
n

)

(−1)k−nPnΠk−n = Pk +Π
k−1

∑
n=0

(

k
n

)

(−1)k−n = Pk −Π

Therefore

IN =
1

N +1 ∑
y

f (y)

[

I −Π+
N

∑
n=1

(P−Π)n
0y

]

Now, a general theorem states that the eigenvalues λi of an irreducible aperiodic
transition matrix satisfy the conditions:
1) |λi| ≤ 1;
2) there is only one eigenvalue on the unit circle: it has λi = 1, the left eigenvector is πx,
the right eigenvector is (1, . . . ,1).
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Initial conditions: the proof. 3

Now, Π is the projector onto the eigenvector of eigenvalue 1, so that all eigenvectors of
P−Π lie strictly inside the unit circle.
Consequences:
1) (P−Π)n

0y behaves as |λ2|n as n → ∞, where λ2 is the second-largest (in absolute
value) eigenvalue. Since |λ2|< 1, the matrix element vanishes exponentially for n → ∞.
2) The matrix I − (P−Π) has an inverse (there are some caveats for
infinite-dimensional systems, which have however little practical interest).
Therefore, discarding exponentially small terms we can write

IN ≈ 1
N +1 ∑

y
f (y)

[

I −Π+
∞

∑
n=1

[(P−Π)n
0y

]

=
1

N +1 ∑
y

f (y)
[

(I −P+Π)−1 −Π
]

0y

Therefore, IN is a biased estimate of the sample average. The bias is of order 1/N.
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Initial conditions: the proof. 4

Let us now suppose that we pick X0 with probability πx. Then

In = ∑
z∈S

πz

{

1
N +1 ∑

y∈S

f (y)
N

∑
n=0

[

Pn
zy −πy

]

}

In =
1

N +1 ∑
y∈S

f (y)
N

∑
n=0

[

∑
z∈S

(πzP
n
zy −πzπy)

]

= 0

because of the stationarity condition and of ∑z∈S πz = 1.

There is no bias if we start in equilibrium.
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Initialization: practical considerations

Initial-condition effects vanish as 1/N.

Statistical fluctuations vanish as 1/
√

N.

Initial conditions introduce a bias in the estimates which is
particularly important for short runs and which become
irrelevant as the number of iterations increases.

Contrary to what one might think, in high-precision Monte Carlo
studies (of non disordered systems!!!) there is no need to be
very careful about thermalization.
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To avoid the bias one looks
at the data and discard all
data that do not appear in
equilibrium. For instance, in
the case of the figure, one
can discard 2000 iterations.
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Useful check: repeat the simulation starting from two very
different configurations and check when the two runs provide
results that roughly agree.

For a spin system, one can perform a simulation that start from
a disordered configuration (at t = 0 the spins have random
direction) and a second one starting from an ordered
configuration (at t = 0 all spins are parallel).
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Initialization: an example

To clarify the role of the initial conditions let consider a simple
example. We consider the Gaussian probability e−x2

/
√

π on the
real line.

A simple dynamic Monte Carlo algorithm for this distribution is the following (as we
shall see this is the Metropolis algorithm):

1. If Xn is the value of x at the n-th iterations, propose Y = Xn + p(U −1/2), where p
is a constant and U a random number uniformly distributed in [0,1].

2. If |Y | ≤ |Xn| then Xn+1 =Y . If |Y |> |Xn| we draw a random number V uniformly
distributed in [0,1]. If U ≤ exp(X2

n −Y 2), then Xn+1 = Y ; otherwise Xn+1 = Xn.

The algorithm is correct for any p > 0. In the following we shall use the value p = 0.2.
Moreover, we will start very far from equilibrium taking X0 = 10.

Exercise: p can be optimized by finding the value that provides the smallest error.

23



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000

X
2

n

We report here the quantity
X2. Its average should con-
verge to 1/2. Equilibrium
is reached after 1000 itera-
tions. There is no bias if we
discard the first 1000 itera-
tions.

Now we report the average

X2
ave(n) =

1
n+1

n

∑
i=0

X2
n

in which we keep all data.
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Now we report the average

X2
ave(n) =

1
n+1

n

∑
i=0

X2
n

in which we keep all data.
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The estimate X2
ave(n) converges to 1/2 with 1/n corrections as

expected (this behavior sets in after 1000 iterations).
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Error estimates

As in the case of the numerical distributions we are interested
in computing the error on the mean, i.e.

∆2 =

〈(

1
N +1

N

∑
n=0

f (Xn)−∑
x

πx f (x)

)2〉

0

where, as before, the average is taken over all possible
histories that start at X0.

THEOREM: The limit
lim

N→∞
N∆2

is finite and independent of the initial configuration.

Thus, also in the case of dynamic Monte Carlo fluctuations
(errors) decrease as 1/

√
N.
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We wish now to estimate ∆2 from the data. If

F = ∑
x

πx f (x)

we have

∆2 =
1

(N +1)2

N

∑
n=0

N

∑
m=0

〈( f (Xn)−F)( f (Xm)−F)〉0

Now we define the autocorrelation function C f (n,m) :

C f (n,m;X0) = 〈( f (Xn)−F)( f (Xm)−F)〉0

so that

∆2 =
1

(N +1)2

N

∑
n=0

N

∑
m=0

C f (n,m;X0)

The autocorrelation function depends on X0, while the large-N
limit of ∆ does not.
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We now assume we start in equilibrium .

The equilibrium autocorrelation function is time-translation
invariant, hence depends only on |n−m|:
C f (n,m; eq) =C f (|n−m|).

∆2 =
1

(N +1)2

N

∑
k=−N

(N+1−k)C f (|k|)=
1

N +1

N

∑
k=−N

(

1− k
N +1

)

C f (|k|)

The function C f (|k|) decays exponentially. Hence for N → ∞ we
obtain

∆2 =
1

N +1

[

C f (0)+2
∞

∑
k=1

C f (k)

]

.
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Observations:
1) C f (0) is the variance, the only term present in the static
algorithms we considered before.
2) We define an integrated autocorrelation time τint, f as

τint, f =
1
2
+

∞

∑
k=1

C f (k)

C f (0)
.

The error becomes

∆2 =
C f (0)
N +1

2τint, f .
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3) The definition of τint, f can be understood by considering the
simple case in which C f (k) =C f (0)exp(−k/τ):

τint, f =−1
2
+

1

1− e−1/τ ≈ τ

where the last equility holds for τ ≫ 1.

The determination of τint, f is a tricky business, which is
crucial in dynamic studies of the critical behavior.
However, in order to compute the error bars, we can avoid
it .
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Some math on C f (n,m)

We wish now to show how C f (n,m) can be related to the transition matrix P.

In terms of the transition matrix we can write (for n < m)

C f (n,m) = 〈( f (Xn)−F)( f (Xm)−F)〉0 = ∑
xy
( f (x)−F)( f (y)−F)Pn

0xPm−n
xy .

If we start in equilibrium

C f ,eq(n,m) = ∑
z

πz ∑
xy
( f (x)−F)( f (y)−F)Pn

zxPm−n
xy = ∑

xy
πx( f (x)−F)( f (y)−F)Pm−n

xy ,

so that the autocorrelation function depends only on the difference m−n. Using the
stationarity condition we can rewrite it as

∑
xy

πx f (x)( f (y)−F)Pm−n
xy −F ∑

xy
πxPm−n

xy ( f (y)−F)

= ∑
xy

πx f (x)( f (y)−F)Pm−n
xy −F ∑

y
πy( f (y)−F)

= ∑
xy

πx f (x)( f (y)−F)Pm−n
xy

= ∑
xy

πx f (x) f (y)Pm−n
xy −F ∑

x
πx f (x)∑

y
Pm−n

xy = ∑
xy

πx f (x) f (y)Pm−n
xy −F2
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Defining the projector Πxy = πy we have

∑
xy

πx f (x) f (y)Pm−n
xy −F2 = ∑

xy
πx f (x) f (y)Pm−n

xy −∑
xy

πxπy f (x) f (y) =

= ∑
xy

πx f (x) f (y)[Pm−n
xy −Πxy]

= ∑
xy

πx f (x) f (y)[P−Π]m−n
xy

As we already discussed all eigenvalues of P−Π lie in the unit circle (this is correct for
a finite system; for an infinite one some caveats are needed). Hence, the
autocorrelation function decays exponentially as |λ2|m−n as m−n → ∞, where λ2 is the
second largest (in absolute value) eigenvalue of P.
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Estimating the error

The correct estimation of the statistical error is difficult.
Here I will assume that we have a very large statistical sample.
In this case, there is a very simple method.

To illustrate we present an EXAMPLE .
Suppose X0 → X1 → X2 → . . . is the set of configurations
generated in the Monte Carlo.
The measures are fn = f (Xn).

Assume for the example that the autocorrelation function C f (n)
is simply

C f (n) = exp(−n/τ) τ = 10

The error is

∆2 =
1
N

[

C f (0)+2∑
k

C f (k)

]

= 20.0/N

while the variance is C f (0) = 1. As expected ∆2/C f (0) = 20 = 2τ.
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Then, we introduce some new variables:

Y (0)
n = fn

Y (1)
n =

1
2
(Y (0)

2n +Y (0)
2n+1) =

1
2
( f2n + f2n+1)

Y (2)
n =

1
2
(Y (1)

2n +Y (1)
2n+1)

. . . . . .

For instance

Y (1)
0 =

1
2
( f0 + f1), Y (1)

1 =
1
2
( f2 + f3), Y (1)

2 =
1
2
( f4 + f5), . . .

Y (2)
0 =

1
2
(Y (1)

0 +Y (1)
1 ) =

1
4
( f0 + f1 + f2 + f3),

Y (2)
1 =

1
2
(Y (1)

2 +Y (1)
3 ) =

1
4
( f4 + f5 + f6 + f7),
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The average of each set Y (n)
k gives the same result:

∑
x

πx f (x)≈ 1
N ∑ fn =

1
N/2 ∑Y (1)

n =
1

N/4 ∑Y (2)
n =

1
N/8 ∑Y (3)

n = . . .

But the autocorrelation functions decays faster.
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which is the normalized
autocorrelation function of
Y (k)

n . The decay is clearly
faster.

We expect that for k ≫ τ there is essentially no autocorrelation
so that we can estimate the error by simply taking the variance.
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The error formula for Y (k)
n is

∆2 =
2k

N
[C(k,0)+2∑

n
C(k,n)]

Therefore, a practical method consists in increasing k until
2kC(k,0)≈ 2k+1C(k+1,0) (the autocorrelation function is
negligible). Then

∆2 = 2kC(k,0)/N.
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Let us see how it works in our specific example.

k 2kC(k,0) 2k[C(k,0)+2C(k,1)]

1 1.90 5.19
2 3.55 8.98
3 6.26 13.84
4 10.05 18.00
5 14.03 19.77
6 16.90 20.01
7 18.46 20.02
8 19.23 20.02

The quantity 2kC(k,0) converges towards 20.0, and thus it provides the correct error.

NOTE: CONVERGENCE IS SLOW!

For k = 6, i.e. 2k = 64 ≈ 6τ, the error is underestimated by 17%. Moreover, 2kC(k,0) is
not yet k independent even for k = 8 (i.e. when we average data on time intervals of
28 = 256 ≈ 25τ)

A SUGGESTION: Use ∆2 = 2k[C(k,0)+2C(k,1)]: convergence is significantly faster.

Even with this trick, we need k such that 2k ≈ 10τ. Since we need at least 100 Y (k)
n in

order to estimate the variance and the one-step autocorrelation function with
reasonable accuracy, the method requires more than 100×10τ, i.e. 1000 independent
configurations.
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If we have some idea of the autocorrelations we can just
measure every ∼ τ iterations.

EXAMPLE : again the case C(k) = exp(−k/τ), τ = 10.
If we measure every n iterations, the rescaled variance N∆2 (N
is the total number of iterations, not measures) is given by

n = 1 ∆2 = 20.0/N

n = 10 ∆2 = 21.6/N

n = 20 ∆2 = 26.3/N

n = 30 ∆2 = 33.1/N

n = 40 ∆2 = 41.5/N

Even measuring every 20 = 2τ iterations we only loose a factor
of
√

26/20 = 1.14 on the errors. But, n = 40 is clearly too much:
half of the statistics is lost.
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The Metropolis algorithm

The Metropolis algorithm is a general purpose algorithm, which
can be applied to essentially any problem.

Let us recall our problem: given a probability distribution π on a
state space S, we wish to determine a transition matrix P which
has π as equilibrium distribution.

In practice, we require P to satisfy the detailed-balance
condition πxPxy = πyPyx.

The Metropolis transition matrix is the product of the proposal
transition matrix P(0) and of the acceptance matrix A. Explicitly

Pxy = P(0)
xy Axy x 6= y

Pxx = 1− ∑
y6=x

Pxy = P(0)
xx + ∑

y6=x

P(0)
xy (1−Axy).
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The matrix A satisfies:
1) since Pxy ≥ 0, we must have Axy ≥ 0;
2) we require Axy ≤ 1, to guarantee Pxx ≥ 0.

Moreover, necessary (but not sufficient) condition for P to be
ergodic is that P(0) is ergodic.

The detailed-balance condition requires that

Axy

Ayx
=

πyP(0)
yx

πxP(0)
xy

for all pairs x 6= y.
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The Metropolis choice consists in taking

Axy = F(R), R =
πyP(0)

yx

πxP(0)
xy

where F(x) is a function in [0,1] such that

F(x)
F(1/x)

= x, F(x) = xF(1/x).

The fastest dynamics is obtained by taking the largest possible
Pxy for x 6= y, hence the largest Axy.
To obtain the maximal F(x) note that, since F(1/x)≤ 1 we have
F(x)≤ x, and therefore F(x)≤ min(x,1).
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The choice
F(x) = min(x,1)

is the Metropolis choice, which is therefore the optimal choice.

Algorithm : one Metropolis iteration works as follows.

1. At iteration n the system is in the state point xn.

2. We generate a new state point y using the proposal matrix
P(0).

3. We compute the ratio R = πyP(0)
yx /(πxP(0)

xy ).

4. If R ≥ 1 we accept the proposal and set xn+1 = y.
Otherwise, we generate a number U uniformly distributed
in [0,1]. If U ≤ R, the proposal is accepted and xn+1 = y; in
the opposite case a null transition is performed and
xn+1 = xn.
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In many applications P(0) is symmetric and therefore R = πy/πx.

In statistical mechanics πx = e−βEx/Z. In this case, for a
symmetric proposal, the last two steps of the algorithm can be
rewritten as follows:

3. Compute ∆E = Ey −Ex;

4. If ∆E ≤ 0 accept the proposal and set xn+1 = y. Otherwise,
generate a number U uniformly distributed in [0,1]. If
U ≤ exp(−∆E), the proposal is accepted and xn+1 = y; in
the opposite case a null transition is performed and
xn+1 = xn.

Exercise: Verify that F(x) = x/(1+ x) can also be used to define the acceptance matrix.
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Exercise: Metropolis for the Ising model

The ferromagnetic Ising model Hamiltonian is

H =−∑
〈i j〉

sis j

where si =±1 are defined on the sites of a lattice (for instance a cubic lattice) and the
sum is over all nearest-neighbor pairs 〈i j〉.

One iteration of the algorithm works as follows:

1. choose randomly a site i;

2. compute R = ∑ j s j, where the sum runs over all nearest neighbors j of site i,
and ∆ = 2siR.

3. If ∆ ≤ 0, flip the spin at site i: the new configuration {s′j} is given by s′j = s j for
j 6= i, s′i =−si. If ∆ > 0, generate a number U uniformly distributed in [0,1]. If
U < e−β∆, flip the spin as explained before; otherwise perform a null transition

Show this is a correct algorithm.

44


	ed �ootnotesize Statistical Mechanics and Thermodynamics
	�ootnotesize ed Markov chains
	�ootnotesize ed 
	�ootnotesize ed The relevant family of Markov chains
	�ootnotesize ed Exercise
	�ootnotesize ed The fundamental theorem
	�ootnotesize ed The fundamental theorem
	�ootnotesize ed Dynamic Monte Carlo as a Markov process
	�ootnotesize ed 
	�ootnotesize ed Detailed balance
	�ootnotesize Static MC algorithms
	�ootnotesize ed Initial conditions
	�ootnotesize ed Initial conditions: the proof
	�ootnotesize ed Initial conditions: the proof. 2
	�ootnotesize ed Initial conditions: the proof. 3
	�ootnotesize ed Initial conditions: the proof. 4
	�ootnotesize ed Initialization: practical considerations
	�ootnotesize ed 
	�ootnotesize ed Initialization: an example
	�ootnotesize ed 
	�ootnotesize ed 
	�ootnotesize ed Error estimates
	�ootnotesize ed Some math on $C_f(n,m)$
	�ootnotesize ed Estimating the error
	�ootnotesize ed 
	�ootnotesize ed 
	�ootnotesize ed 
	�ootnotesize ed 
	ed �ootnotesize The Metropolis algorithm
	ed �ootnotesize Exercise: Metropolis for the Ising model

