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Statistical Mechanics and Thermodynamics

Thermodynamics is a macroscopic theory of thermal
phenomena, like the melting of a solid, the freezing of a liquid,
the heating of water, . . ., and it is relevant for a wide range of
phenomena in physics, chemistry, biology, . . ..
Statistical mechanics provides the microscopic foundations for
thermodynamics. The basic ingredient is the Gibbs measure.

Example: A gas . Consider a gas (fluid) of N molecules in a
box of volume V . The configurations of the gas are specified by
the set of positions r1,r2, . . . (each vector defines a position
inside the box) and of momenta p1,p2, . . . The configuration
space is the phase space available to the system. On this
space we define the Gibbs measure

exp

[

− 1
kBT

H({ri},{pi})
]

∏
i
[dridpi]

where H is the Hamiltonian, T the absolute temperature, and kB

the Boltzmann constant. 2



For the ideal gas we have simply

H = ∑
i

p2
i

2mi
.

For a real gas we should also consider a pair potential (for
instance a Lennard-Jones potential).

When considering a gas, a fluid, . . ., we are not interested in the
detailed behavior of each single molecule, but rather on
average properties of the system, which, as long as the system
is macroscopic, are time-independent (the system is in
equilibrium) and independent of the microscopic chaotic motion
of the molecules.
These average quantities can be computed as averages over
the Gibbs probability distribution.
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For instance the average energy at constant volume can be
computed as

E =
1
Z

∫
[d p][dr]He−βH ,

where the integral is over the whole configuration space (all
values of the momenta and all positions inside the box),
β = 1/(kBT ) and Z is the partition function.

From E one can compute the constant-volume specific heat
and reobtain from statistical mechanics all thermodynamic
quantities.

The integrals over the Gibbs measure are integrals over a large
number of variables (of the order of the number of molecules,
atoms, spins present in the system, which is of the order of the
Avogadro number for a macroscopic system). Except in a very
few cases, they cannot be performed analytically.
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Thus, in order to predict the thermodynamic behavior of
nontrivial systems, we need to use numerical techniques.
There are essentially two methods:

MONTE CARLO METHOD . It is very general, easy to
implement, in several instances quite fast. Uses a nonphysical
dynamics to compute the average values over the Gibbs
distribution.

MOLECULAR DYNAMICS . It is appropriate for molecular
systems. It is not competitive with the Monte Carlo method for
the understanding of the static behavior (but in some instances,
it may be useful to combine molecular dynamics and Monte
Carlo simulations). It is however the only available method to
study time-dependent (dynamic) phenomena, like relaxation,
equilibration, . . ., since the classical dynamics correctly
describes the physical time behavior of molecular systems (as
long as electrons are not involved).

5



Numerical distributions

The Monte Carlo method is essentially a technique to compute
high-dimensional integrals via the generation of elements of a
given configuration space with a given probability distribution.

We begin by considering the simplest possible case:

The configuration space is the interval [a,b] of the real line;
The Gibbs distribution is a positive, normalized function f (x).

The algorithmic problem :

We wish to generate numbers Xn ∈ [a,b], with probability
density f (x):

Prob(x ≤ Xn ≤ x+dx) =

{

f (x)dx if x ∈ [a,b]
0 otherwise

Let us assume that we know how to generate independent
data Xn. Can we use them to compute averages with respect to
f (x)? 6



From numerical distributions to integrals

The basic result.
If {Xn}, n : 1, . . .N, are distributed with probability density f (x),
then the sample mean

g(X) =
1
N ∑

n
g(Xn)

converges, as N → ∞, to

〈g(x)〉 f =

∫
g(x) f (x)dx ≡ G
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Rate of convergence.
Let us compute the average of the square deviations

∆2 =

〈

[

G−g(X)
]2
〉

f
.

Expanding the square we obtain

∆2 =

〈

G2−2Gg(X)+
1

N2 ∑
nm

g(Xn)g(Xm)

〉

f

.

Now, if n 6= m we have

〈g(Xn)g(Xm)〉 f = 〈g(Xn)〉 f 〈g(Xm)〉 f = G2

since Xn and Xm are independent variables. If n = m

〈

g(Xn)
2〉

f =

∫
g(x)2 f (x)dx =

〈

g2〉

f
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Collecting everythig together we have

∆2 = G2−2G×G+
1

N2

[

N(N −1)G2+N
〈

g2〉

f

]

∆2 = G2−2G2+G2−G2/N +
〈

g2〉

f /N =
1
N

Var(g)

where the variance of g is

Var(g) =
〈

g2〉

f −G2 =

∫
(g(x)−G)2 f (x)dx.

Thus, deviations scale as 1/
√

N. This is the basic feature of
any Monte Carlo calculation .

9



A simple integration method

Suppose we wish to compute

I =
∫ b

a
g(x)dx,

where g(x) is an arbitrary function.

A simple algorithm :
1) Repeat N times the basic iteration step: generate Xn

uniformly distributed in [a,b] and compute gn = g(Xn).
2) An estimate of I is simply

I ≈ (b−a)
N

N

∑
n=1

gn.

The result follows immediately from the previous results, if we
take f (x) = 1/(b−a), i.e. the uniform distribution in [a,b].
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This Monte Carlo algorithm is terrible, since corrections vanish
as 1/

√
N. Deterministic algorithms have much faster

convergence rates. For instance, compute the integral as

I ≈ h
2
[g(a)+g(b)]+h

N−1

∑
n=1

g(xn)

where xn are equally spaced points such that x0 = a, xN = b, and
h = xn − xn−1. The convergence rate is 1/N2 (Simpson’s rule
gives 1/N4 convergence).

Example:

I =
∫ 1

0
x2dx

N = 100 Itrap= 0.33335 IMC = 0.261

N = 1000 Itrap= 0.3333335 IMC = 0.327

N = 10000 Itrap= 0.333333335 IMC = 0.335
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The main problem of deterministic algorithms

They become inefficient in large dimensions D. Since they use
essentially a regular grid, to obtain reliable results one needs at
least 10 points in each direction, hence at least 10D points. But,
if D & 10, the number of points is far too large. Moreover, the
convergence rate is slower.

An example : suppose we wish to compute

I = 35
∫ 1

0
x2y2z2t2u2 dxdydzdtdu = 1
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We use the trivial multidimensional generalization of the
trapezoidal rule (trap) and Monte Carlo.

n.points Itrap IMC ∆MC

35 1.802 1.174 0.257

45 1.310 1.001 0.125

55 1.166 1.091 0.072

65 1.104 0.956 0.045

75 1.071 0.942 0.031

105 1.031 1.004 0.013

Here ∆MC is the expected standard deviation on the MC result.

Rate of convergence : if the number of points is p5, the
deterministic algorithm converges as 1/p2. Monte Carlo
converges as 1/

√

p5 = 1/p2.5. The Monte Carlo converges
faster.
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Importance sampling

The convergence rate of the Monte Carlo calculation is

∆ =
1√
N

[∫ b

a
[(b−a)g(x)− I]2

dx
b−a

]1/2

We wish ∆ to be as small as possible (of course it vanishes for
g(x) = I/(b−a)).
It is large if g(x) varies significantly in the interval [a,b].

Importance sampling provides a way out.

We have computed the integral I by using the flat distribution.
But we could use any probability distribution f (x).

I =
∫ b

a
g(x)dx =

∫ b

a

g(x)
f (x)

f (x)dx = 〈g/ f 〉 f .
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Importance sampling. 2

Hence,if {Xn}, n : 1, . . .N are distributed with probability density
f (x), we have

1
N

N

∑
n=1

g(Xn)

f (Xn)
→ I

for N → ∞.

Convergence rate:

∆ =
1√
N

[∫ b

a

(

g(x)
f (x)

− I

)2

f (x)dx

]2

We can improve the convergence rate by choosing f (x) in such
a way that g(x)/ f (x) is flatter than g(x).
NOTE: f (x) is a probability density, hence positive. Thus, the
method can work only if g(x) is (almost) always positive or
negative. If it changes sign, importance sampling does not
work (the so-called sign problem ).
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Exercise:

Suppose g(x) = e−x2
. We wish to compute

I =
∫ 2

0
g(x)dx

Verify the following results:
a) If f (x) = 1/2, the convergence rate is 0.69/

√
N;

b) If f (x) = (3−x)/4 (write the algorithm for such a distribution), the convergence rate is
0.45/

√
N;

c) If f (x) = Ke−x the convergence rate is 0.27/
√

N;
d) If f (x) = Ke−3x/2 the convergence rate is 0.19/

√
N.

The last method is 13 times faster than the first, but it is more CPU time-consuming to
generate numbers with such an f (x). Compare the convergence in CPU time!
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Estimating the variance

In MC calculations the convergence rate is controlled by the
variance of g(x).
If

G = 〈g〉 f =

∫ b

a
g(x) f (x)dx

the sample mean

g(X) =
1
N ∑

n
g(Xn)

is an estimator of G.
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We wish to find an estimator of

Var(g) =
〈

(g−G)2〉

f =
〈

g2〉

f −G2 =
∫
(g(x)−G)2 f (x)dx.

It is natural to consider the following quantity

V =
1
N ∑

n
g(Xn)

2−
[

g(X)
]2

Of course, on average
〈

1
N ∑

n
g(Xn)

2
〉

f

=
1
N ∑

n

〈

g(Xn)
2〉

f = 〈g2〉 f .

However, for finite N it is not true that
〈

[

g(X)
]2
〉

f
= G2
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Let’s compute it explicitly. Using the definition of sample mean
we obtain

〈

[

g(X)
]2
〉

f
=

1
N2 ∑

nm
〈g(Xn)g(Xm)〉 f

Now we should distinguish two cases: if n = m we have
〈g(Xn)g(Xm)〉 f = 〈g2〉 f (this occurs N times); if n 6= m (it occurs
N2−N times) we have 〈g(Xn)g(Xm)〉 f = G2. Hence we obtain

1
N2

[

(N2−N)G2+N〈g2〉 f
]

=
N −1

N
G2+

1
N
〈g2〉 f .

Therefore

V = 〈g2〉 f −
N −1

N
G2− 1

N
〈g2〉 f =

N −1
N

(〈g2〉 f −G2)
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1) V is a biased estimator of the variance: it corresponds to the
variance only for N → ∞.
2) The unbiased estimator of the variance is

N
N −1

V =
N

N −1

(

1
N ∑

n
g(Xn)

2−
[

g(X)
]2
)

.

The correction factor is irrelevant if N is large.
3) The error on the sample mean can thus be estimated as

σg =

√

1
N −1

(

1
N ∑

n
g(Xn)2−

[

g(X)
]2
)
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Exercise

Compute M =

〈

(

g(X)−G
)3
〉

f
.

1) Prove first that

〈

(

g(X)
)3
〉

f
= G3+

3G
N

Varg+
1

N2 〈(g−G)3〉 f

2) It follows

M =
1

N2 〈(g−G)3〉 f .
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A general formula can be obtained by considering

M(α) =
〈

exp
[

α
(

g(X)−G
)]〉

f
.

Prove that this quantity can be written as

M(α) =
[∫ b

a
f (x)dxeα(g(x)−G)/N

]N

Expanding in powers of α and comparing the coefficients of αn we obtain all previous
relations.
Use this expression to show that:

1)
〈

(

g(X)−G
)4
〉

f
is of order 1/N2.

2)
〈

(

g(X)−G
)5
〉

f
and

〈

(

g(X)−G
)6
〉

f
are of order 1/N3.
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Some generalizations

Let us consider again a function g(x), its average G = 〈g〉 f over
a distribution f . We are interested in computing

K = H(G)

where H(x) is some function.

A MC determination of K would estimate it as

Kest= H
(

g(X)
)

We wish to show that Kest is a biased estimator of K.

Let us compute

〈Kest〉 f =
〈

H
(

g(X)
)〉

f
.

We assume that N is large so that the sample mean is close to
the correct value.
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Some generalizations

Write
g(X) = G+∆G, ∆G = g(X)−G

and assume that ∆G is small, so that we can Taylor expand all
quantities. Hence

〈Kest〉= H(G)+H ′(G)〈∆G〉 f +
1
2

H ′′(G)
〈

(∆G)2〉

f + . . .

Now, we have 〈∆G〉 f = 0 and
〈

(∆G)2
〉

f = (Varg)/N. Therefore,

〈Kest〉= H(G)+
1

2N
H ′′(G)(Varg)+ . . .

For finite N 〈Kest〉 differs from H(G): the corrections, of order
1/N, are called the bias .
For instance: if H ′′(G)> 0, the previous formula indicates that it
is more probable to obtain an estimate Kest that is larger than
H(G) than an estimate that is smaller than H(G).
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An example

Let f (x) = 1 in [0,1], g(x) = 2x−1, H(x) = x2,

G = 〈g〉 f =
∫ 1

0
g(x)dx

Of course G = 0, H(G) = 0.
We now fix N = 100and perform several MC determination of
Kest. The distribution of the results is reported in the figure

 0

 1000
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 7000

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003

N=100, H(x) = x2

The distribution has support
on x ≥ 0, is peaked at x = 0,
and has a very long tail. The
mean of x over this distribu-
tion is 0.00333

The mean is exactly the bias.
Indeed: 1/(2N)H ′′(G)Varg = 1/300, since H ′′(G) = 2,
Varg =

∫
dx (2x−1)2 = 1/3.
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WARNING: the bias decreases as 1/N if H(x) is analytic at
x = G. Otherwise, the bias can decrease slower.

 0
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 0  0.1  0.2  0.3  0.4  0.5

H(x) = sqrt|x|

N=100
N=500

N=1000

Here H(x) =
√

|x|.
The bias decreases
as N−1/4.
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COMMENT: In MC calculations, biased estimates are usually
obtained when considering functions of several different
averages. For instance, one often wishes to estimate

〈g〉 f

〈h〉 f

The estimator
g(X)

h(X)

is biased.
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Bias corrections

Relevance of the bias:
The bias is relevant in short simulations. In this case the bias
(of order 1/N) may be comparable with the statistical error (of
order 1/

√
N). It is then crucial to take it into account [this is the

case of quenched random systems]: a bias correction must be
performed.
If N is large, the bias can be neglected: statistical fluctuations
are much more important.
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Error estimates

The error on the results can be computed analogously. We
consider the average (square) deviation:

∆2 =
〈

(Kest−H(G))2〉

f .

Expanding at first order in ∆G we obtain

∆2 =
〈

(H ′(G)∆G)2〉

f =
[H ′(G)]2

N
Varg

This is nothing but the standard error propagation formula .
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Exercise

Let f (x) = 1 in [0,1], g(x) = x4, H(x) = 1/x4.
1) Suppose we estimate K as 1/(g(X))4. Show that the relative bias (bias/G) decreases
as 17.8/N, while the relative error decreases as 5.3/

√
N. The bias is larger than the

error for N . 12.
2) Show that a better estimator for short simulations is

1

(g(X))4
− 10

N −1

(g(X)2)−
(

g(X)
)2

(

g(X)
)6

Prove it has no bias to order 1/N.
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Exercise

Consider the case H(x) = x2. Show that an unbiased estimator is (this is a particular
case of the jackknife estimator)

4
N2

[

N/2

∑
n=1

g(Xn)

][

N

∑
n=N/2+1

g(Xn)

]

Compute the error on this estimator and compare it with that on the naive estimator
[Ans.: no difference].
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N=100

Distribution of the MC results for the
choice (as before): f (x) = 1 in [0,1],
g(x) = 2x−1, N = 100. the distribution
is clearly symmetric (no bias).
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A practical comment

A common error.

In order to estimate K, suppose you perform a run of N
iterations. The sample mean of g(x) gives an estimate G1 of G,
and Kest,1 = H(G1).
To improve the results, a second run (again of N iterations) is
performed. The sample mean of g(x) gives an estimate G2 of G,
and Kest,2 = H(G2).

What is the final estimate of K?

Because of the bias, it is wrong to quote K = (Kest,1+Kest,2)/2.
Instead, compute G = (G1+G2)/2. The final estimate of K is
H(G).
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Correlations

Consider a probability distribution f (x) in [a,b] and two
functions g(x), h(x). We define

G= 〈g〉 f =

∫ b

a
g(x) f (x)dx H = 〈h〉 f =

∫ b

a
h(x) f (x)dx

and

K =
G
H

The quantity K can be estimated by considering

Kest=
g(X)

h(X)
.

This is a biased estimator of K.
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How do we compute the error on Kest?

We already discussed the error on the sample mean. Hence
the error on g(X) and h(X) is simply given by

σg =
1
N

Varg σh =
1
N

Varh

To obtain the final error, we might use expressions that use only
σg and σh.

If K = K(〈g〉 f ,〈h〉 f ) two commonly used expressions are the
following. Define

K1(x,y) =
∂K(x,y)

∂x
, K2(x,y) =

∂K(x,y)
∂y

,

34



1) Worst-error formula :

σK = |K1(g,h)|σg + |K2(g,h)|σh

2) Independent-error formula :

σK =
√

|K1(g,h)|2σ2
g + |K2(g,h)|2σ2

h

Comments :
Formula 1 always overestimates the error. It is a (usually very)
conservative expression.
Formula 2 is unreliable: it may overestimate as well as
underestimate the true error.
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Let us now compute the correct error. The squared deviation is
given by

∆2 =

〈(

g(X)

h(X)
− G

H

)2〉

f

=

〈

(

G+∆G
H +∆H

− G
H

)2
〉

f

Expanding in ∆G and ∆H to first order, we obtain
〈

(

∆G
H

− G∆H
H2

)2
〉

f

=

(

G
H

)2
[〈

∆G2
〉

f

G2 +

〈

∆H2
〉

f

H2 −
2〈∆G∆H〉 f

GH

]

The first two terms in brackets are σ2
g/G2 and σ2

h
/H2
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Let us investigate the third term

〈∆G∆H〉 f =−GH +
1

N2 ∑
nm

〈g(Xn)h(Xm)〉 f =

−GH +
1

N2 [(N
2−N)GH +N 〈g(X)h(X)〉 f ] =

1
N

Cov(g,h)

where the Covariance of g and h is defined as

Cov(g,h) = 〈g(X)h(X)〉 f −GH =
∫ b

a
(g(x)−G)(h(x)−H) f (x)dx

=
∫ b

a
(g(x)h(x)−GH) f (x)dx
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The different expressions for the variance:
1) correct

∆2 =
1
N

(

G
H

)2(Varg
G2 +

Varh
H2 − 2Cov(g,h)

GH

)

2) independent-error formula

∆2 =
1
N

(

G
H

)2(Varg
G2 +

Varh
H2

)

3) worst-error formula

∆2 =
1
N

(

G
H

)2
(

√

Varg
G

+

√
Varh
H

)2

The independent-error formula amounts to neglecting the covariance. If h and g are
strongly correlated [Cov(g,h)> 0] the formula overestimates the error. If they are
anticorrelated, it underestimates the error.
The worst-error formula provides an upper bound on the correct error. 38



Upper bound on the error

Define
δg(x) = g(x)−G, δh(x) = h(x)−H.

Obviously we have

[δg(x)δh(y)−δg(y)δh(x)]2 ≥ 0⇒ δg(x)2δh(y)2+δh(x)2δg(y)2 ≥ 2δg(x)δg(y)δh(x)δh(y)

Multiply by f (x) f (y) and integrate over x and y:

2VargVarh ≥ 2Cov(g,h)2

Hence (this relation is known as triangular inequality )

|Cov(g,h)| ≤
√

VargVarh

Using this relation it is immediate to prove that the worst-error formula provides an
upper bound on the error.

39



An estimator for the error

Exercise: Prove that an unbiased estimator of the covariance is

N
N −1

(

1
N ∑

n
g(Xn)h(Xn)−g(X) h(X)

)

This formula is the analogous of that obtained for the variance.

For the computation of the error it is however much more
convenient to rewrite the error formula as

∆2 =
1
N

(

G
H

)2

Var

(

g
G
− h

H

)

.
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Exercise

Take f (x) = 1 in [0,1], g(x) = x4, h(x) = x3, K = G/H.
Show that the correct error on the estimate of K scales as 0.45/

√
N. The

independent-error formula would give an error which scales as 1.2/
√

N (it
overestimates the error by a factor of 2.7) while the worst-error formula would give an
error which scales as 2.0/

√
N (error overestimated by more than 4).

Take f (x) = 1 in [0,1], g(x) = x4, h(x) = (1− x)4, K = G/H.
Show that the correct error on the estimate of K scales as 1.53/

√
N. The

independent-error formula would give an error which scales as 1.37/
√

N (now it slightly
underestimates the error) while the worst-error formula would give an error which
scales as 2.7/

√
N.
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The jackknife method

The jackknife method is very powerful.
It enjoys three very good properties:

1. It takes care of the bias: the jackknife estimate has a bias
of order 1/N2.

2. Provides a correct estimate of the errors: correlations are
taken into account.

3. It is numerically stable and accurate for small values of N
(for instante, it takes into account the nonlinearities of the
function H(G)).
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The basic ingredient in the jackknife method is the partial
jackknife average.

In our setting, suppose we generate N numbers Xn with
probability distribution f (x). Let g(x) and h(x) be two functions
and gn = g(Xn), hn = h(Xn).

In order to apply the jackknife method, we first choose a
number n which exactly divides N.
n should not be too small, neither too large (for practical
reasons): in practice n ≈ 100 is a good choice.
If N is small, we can take n = N.
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If M = N/n, we define

ĝ1 =
1
M
(g1+ . . .gM)

ĝ2 =
1
M
(gM+1+ . . .g2M)

· · · · · ·
ĝn =

1
M
(gN−M+1+ . . .gN)

and the partial jackknife averages:

ĝJ
1 =

1
n−1

(ĝ2+ ĝ3+ . . . ĝn) =
1

n−1 ∑
i6=1

ĝi

ĝJ
2 =

1
n−1

(ĝ1+ ĝ3+ . . . ĝn) =
1

n−1 ∑
i6=2

ĝi

· · · · · ·
ĝJ

n =
1

n−1
(ĝ1+ ĝ2+ . . . ĝn−1) =

1
n−1 ∑

i6=n

ĝi
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Analogously, we can define ĥJ
i . Of course

〈ĝJ
i 〉 f = G 〈ĥJ

i 〉 f = H

Using the partial jackknife averages we can compute the
jackknife estimators of any quantity we are interested in. For
instance, suppose we wish to compute

K1 = H(G), K2 =
G
H

The jackknife partial estimators are the following:

KJ
1,i = H(ĝJ

i ), KJ
2,i =

ĝJ
i

ĥJ
i

Let moreover be K1,est and K2,est the standard estimates
obtained by using all data.
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The jackknife estimate is

KJK = nKest−
n−1

n

n

∑
i=1

KJ
i

The bias on this estimator is of order 1/N2 (same formula for
both K1 and K2, or any other interesting observable).

An estimate of the error σK on KJK is

σ2
K = (n−1)

[

1
n ∑

i

(KJ
i −KJK)2

]

This error takes into account correlations.
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Computation of the bias on KJK

As we discussed earlier, given a sample of m numbers, we have

〈H(g)〉 f = H(G)+a/m+b/m2+ . . .

where a/m+b/m2+ . . . is the bias.
For all i, KJ

i corresponds to an estimate obtained by using a sample of N −M numbers,
while Kest is obtained using the complete sample of N numbers.
We have (we use N −M = N(1−1/n) = N(n−1)/n)

〈KJK〉 f = n

(

H(G)+
a
N

+
b

N2 + . . .

)

− n−1
n

n

(

H(G)+
a

N −M
+

b
(N −M)2 + . . .

)

= H(G)+a

(

n
N

− (n−1)
n

N(n−1)

)

+ . . .

= H(G)− n
n−1

b
N2 + . . .

NOTE: The unbiased estimator we discussed before for H(G) = G2 is the jackknife
estimator with n = 2. Prove it.
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Check of the error formula for KJK

Assume K = H(G). Derive the following relations:

〈

[KJ
i −H(G)][KJ

j −H(G)]
〉

f
=

a2

M
n−2

(n−1)2 Varg i 6= j

〈

[KJ
i −H(G)]2

〉

f =
a2

M
1

(n−1)
Varg

〈

[KJ
i −H(G)][Kest−H(G)]

〉

f =
a2

M
1
n

Varg

〈

[Kest−H(G)]2
〉

f =
a2

M
1
n

Varg

where a = H ′(G).
Using these expressions prove that

∆2 =
〈

[KJK −H(G)]2
〉

f =
a2

M
1
n

Varg =
a2

N
Varg.

〈

1
n ∑

i
(KJ

i −KJK)2

〉

f

=
a2

M
1

n(n−1)
Varg =

∆2

n−1
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To understand the origin of the factor (n−1) that appears in the error formula, it is
useful to consider the simple case H(G) = G, n = N.
Show that:

1
n ∑

i
(KJ

i )
2 =

n(n−2)
(n−1)2

(

1
n ∑

i
ĝi

)2

+
1

n(n−1)2 ∑
i

ĝ2
i KJK =

1
n ∑

i
KJ

i =
1
n ∑

i
ĝi.

It follows

1
n ∑

i
(KJ

i −KJK)2 =
1

(n−1)2





1
n ∑

i
ĝ2

i −
(

1
n ∑

i
ĝi

)2




The variance is smaller by a factor (n−1)2. Hence the prefactor 1/(n−1) which usually
appears in the error formula is replaced by (n−1)2×1/(n−1) = (n−1).
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