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AVVERTENZE:
La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti
svolti e dalla chiarezza dell’esposizione, come anche dalla correttezza dei
passaggi matematici e del risultato finale.

ex.1
ex.2
ex.3
ex.4
tot.

ESERCIZIO 1 (punti: 2+2+2+2). Data la funzione g : �2 −→� definita come segue
g(x1, x2) = x2

1 − x2
2 + x1 − x2

i. si spieghi perché tale funzione è differenziabile in tutto il suo dominio,
ii. si scriva l’equazione del piano tangente al grafico della funzione nel punto (p,g(p)),
iii. si trovi un vettore normale, nel punto (p,g(p)), al grafico di g,
iv. si verifichi che la funzione g è armonica in A.

ESERCIZIO 2 (punti: 2+3+3). Data la funzione f : K −→� dove
f(x) = 2x2

1 + x2
2 e K =

{
x2

1 + x2
2 + x2

3 − 2x1 − 2x3 ≤ 16
}
⊆�

3

i. si spieghi perché K è compatto,
ii. si trovino e si classifichino tutti i punti critici di f interni a K,
iii. si trovino massimo e minimo assoluto della funzione.

ESERCIZIO 3 (punti: 3+3+2). Dato il solido E =
{
0 ≤ x3 ≤ x1, 1 ≤ 4

(
x2

1 + x2
2 − 2x1

)
≤ 4

}
⊆�

3

i. si spieghi perché è limitato e misurabile secondo Lebesgue,
ii. si calcoli il volume di E,
iii. si calcolino le coordinate del baricentro di E.

ESERCIZIO 4 (punti: 3+3+2). Sia S ⊆�
3 la superficie, immagine della parametrizzazione

x(u) = x(u1,u2) = (u1,u2,u1u2) con (u1,u2) ∈ D = B(O,á) ⊆�
2

i. si verifichi che S è una superficie regolare ed orientabile,
ii. si calcoli il rotore del campo vettoriale F(x) =

(
−x3

2,2x3
1 , x3

3
)
,

iii. orientata S concorde con e3, si calcoli la circuitazione di F lungo la curva �S+.
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ESERCIZIO 1 (punti: 2+2+2+2). Data la funzione g : �2 −→� definita come segue

g(x1, x2) = x2
1 − x2

2 + x1 − x2

i. si spieghi perché tale funzione è differenziabile in tutto il suo dominio,
ii. si scriva l’equazione del piano tangente al grafico della funzione nel punto (p,g(p)),
iii. si trovi un vettore normale, nel punto (p,g(p)), al grafico di g,
iv. si verifichi che la funzione g è armonica in A.

SVOLGIMENTO. i. La funzione g è un polinomio, quindi una funzione di classe C∞(�2), in partico-
lare possiamo osservare che anche le sue derivate parziali sono funzioni infinitamente derivabili e
continue, in quanto polinomi

∇g(x) = (
�1g(x1, x2),�2g(x1, x2)) = (2x1 + 1,−2x2 − 1)

questo fatto, ricordando il teorema del differenziale totale, ci permette di concludere che la funzione
è differenziabile in tutto il piano.
ii. Rammentando la teoria studiata a lezione abbiamo che l’equazione del piano tangente al grafico
della funzione nel punto (p,g(p)) ∈�3 è la seguente espressione

x3 = g(p) +∇g(p) · (x−p) = p2
1 −p2

2 + p1 −p2 + (2p1 + 1,−2p2 − 1) · (x1 −p1, x2 −p2
)

= (2p1 + 1)x1 − (2p2 + 1)x2 −p2
1 + p2

2 = á(x1, x2)

iii. Ricordiamo che il concetto di vettore normale al grafico di una funzione è legato all’esistenza del
piano tangente: infatti un vettore ortogonale al grafico di g è da pensare come ortogonale al piano
tangente calcolato poco sopra, per cui abbiamo che

n(p) = (
−∇á(p), 1) = (

−(2p1 + 1), (2p2 + 1), 1)
pensando il piano come un superficie di livello di una funzione definita in �

3 e il suo radiente come
vettore ortogonale (nel senso prima specificato) a tale insieme.
iv. L’ultima domanda del testo è abbastanza veloce, infatti vale

Ég(x1, x2) = �11g(x1, x2) +�22g(x1, x2) = 2− 2 = 0
l’unica difficoltà è ricordare la definizione di operatore di Laplace... □

ESERCIZIO 2 (punti: 2+3+3). Data la funzione f : K −→� dove

f(x) = 2x2
1 + x2

2 e K =
{
x2

1 + x2
2 + x2

3 − 2x1 − 2x3 ≤ 16
}
⊆�

3

i. si spieghi perché K è compatto,
ii. si trovino e si classifichino tutti i punti critici di f interni a K,
iii. si trovino massimo e minimo assoluto della funzione.

SVOLGIMENTO. i. Provare che K è compatto è equivalente a mostrare che K è chiuso e limitato.
Osserviamo subito che K è chiuso perché controimmagine dell’insieme chiuso (−∞,0] ⊆ (�,d2) ri-
spetto alla funzione h(x) = x2

1 +x2
2 +x2

3−2x1−2x3− 16 di classe C∞(�3) ⊆ C0(�3). Invece la limitatezza
dell’insieme segue dal seguente ragionamento: se x = (x1, x2, x3) ∈ K allora vale

x2
1 − 2x1 + x2

2 + x2
3 − 2x3 ≤ 16 cioè (x1 − 1)2 + x2

2 + (x3 − 1)2 ≤ 18 da cui x ∈ B
(
(1,0, 1),3

√
2
)

ii. La funzione f è un polinomio, quindi i suoi punti critici interni sono individuabili cercando le soluzioni
del sistema

∇f(x) = O cioè


�1f(x) = 4x1 = 0
�2f(x) = 2x2 = 0
�3f(x) = 0 = 0

le cui soluzioni sono Ps = (0,0,s) ∈ int(K)
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quindi abbiamo un intero segmento di punti critici Ps per s ∈ (1−3
√

2, 1+3
√

2). Tali punti critici sono tutti
punti di minimo assoluto, visto che f(Ps) = 0 e f(x) ≥ 0 per ogni x, essendo una somma di quadrati.
iii. Per completare la discussione sui punti estremali della funzione possiamo ricorrere al metodo dei
moltiplicatori di Lagrange, quindi consideriamo la funzione di Lagrange

L(x,c) = f(x) + ch(x) = 2x2
1 + x2

2 + c
(
x2

1 + x2
2 + x2

3 − 2x1 − 2x3 − 16
)

e cerchiamo i suoi punti critici liberi, cioè le soluzioni del sistema
�1L(x,c) = 2(2 + c)x1 − 2c = 0
�2L(x,c) = 2(1 + c)x2 = 0
�3L(x,c) = 2c(x3 − 1) = 0
�4L(x,c) = x2

1 + x2
2 + x2

3 − 2x1 − 2x3 − 16 = 0

La terza equazione ci permette di iniziare ad analizzare l’insieme delle soluzioni prendendo in esame
la seguente alternativa: o c = 0 oppure x3 = 1.
Nel primo caso troviamo che la seconda equazione implica x2 = 0, la prima fornisce x1 = 0 e l’equa-
zione del vincolo ci permette di ottenere che x3 = 1±

√
17.

Nel secondo caso abbiamo x3 = 1 e, dalla seconda equazione, possiamo considerare una nuova al-
ternativa. Se x2 = 0, sostituendo nell’equazione del vincolo, otteniamo x1 = 1 ± 3

√
2. Invece se c = −1

ricaviamo dalla prima equazione che x1 = −1 e sostituendo nella quarta equazione ricaviamo x2
2 = 14,

x2 = ±
√

14. Riassumendo abbiamo trovato i seguenti punti critici

A,B = (0,0, 1±
√

17) C,D = (1± 3
√

2,0, 1) E,F = (−1,±
√

14, 1)
che producono i seguenti output

f(A) = f(B) = 0 f(C) = 2(19 + 6
√

2) f(D) = 2(19−6
√

2) f(E) = f(F) = 16
permettendoci di concludere che

max
K

(f) = f(C) = 2(19 + 6
√

2) e min
K

(f) = f(Ps) = 0 per ogni s ∈
[
1− 3
√

2, 1 + 3
√

2
]

□

ESERCIZIO 3 (punti: 3+3+2). Dato il solido E =
{
0 ≤ x3 ≤ x1, 1 ≤ 4

(
x2

1 + x2
2 − 2x1

)
≤ 4

}
⊆�

3

i. si spieghi perché è limitato e misurabile secondo Lebesgue,
ii. si calcoli il volume di E,
iii. si calcolino le coordinate del baricentro di E.

SVOLGIMENTO. i. Riscriviamo il dominio E cercando di ottenere una descrizione più utile ai nostri
scopi

E =
{

0 ≤ x3 ≤ x1,
1
4 ≤

(
x2

1 + x2
2 − 2x1

)
≤ 1

}
=
{

0 ≤ x3 ≤ x1,
5
4 ≤ (x1 − 1)2 + x2

2 ≤ 2
}

Le ultime relazioni rendono evidente il fatto che le variabili (x1, x2) appartengono ad una corona cir-
colare, mentre la variabile x3 deve essere non negativa e minore di x1. Dalla precedente osservazione
possiamo ricavare che

x2
2 ≤ (x1 − 1)2 + x2

2 ≤ 2 da cui −
√

2 ≤ x2 ≤
√

2

(x1 − 1)2 ≤ (x1 − 1)2 + x2
2 ≤ 2 da cui 1−

√
2 ≤ x1 ≤ 1 +

√
2

0 ≤ x3 ≤ x1 da cui 0 ≤ x3 ≤ 1 +
√

2

le precedenti disuguaglianze implicano la limitatezza dell’insieme visto che risulta

E ⊆ [−
√

2,
√

2]× [1−
√

2, 1 +
√

2]× [0, 1 +
√

2]
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Per concludere la prima parte dell’esercizio osserviamo che

E = {x3 ≥ 0} ∩ {x3 − x1 ≤ 0} ∩
{

x2
1 + x2

2 − 2x1 ≥
1
4

}
∩

{
x2

1 + x2
2 − 2x1 ≤ 1

}
quindi il solido può essere descritto come l’intersezione di quattro insiemi chiusi (infatti ogni singo-
lo insieme è controimmagine di un chiuso, tramite una funzione continua), quindi E è chiuso cioè
misurabile secondo Lebesgue.
ii. Nel punto i, tra le altre cose, abbiamo mostrato che il solido E è ottenuto da un cilindro (con asse
di simmetria la retta {x1 = 1,x2 = 0} avente sezione una corona circolare, delimitato dai due iperpiani
{x3 = 0} e {x3 = x1}, questa discussione ci suggerisce che il calcolo dell’integrale di volume possa essere
più semplice utilizzando delle opportune coordinate cilindriche

x1 = 1 + âcos(Ú) x2 = âsin(Ú) x3 = t

da cui otteniamo

m3(E) =
∫

E
dx =

∫
E∩{x3=0}

[∫ x1

0
dx3

]
dx1dx2 =

∫ √2
√

5/2

∫ 2á

0

∫ 1+âcos(Ú)

0
âdt

dÚ
dâ

=
∫ √2
√

5/2
â

∫ 2á

0

[1 + âcos(Ú)]dÚ
dâ = 2á

∫ √2
√

5/2
âdâ = á

[
â2]√2√

5/2 = 3
4á

iii. Per definizione il baricentro di E ⊆ �
3, assumendo densità di massa costante pari ad 1, in modo

che massa e volume coincidano come valori (ovviamente non come unità di misura), è

xE,j = 1
m3(E)

∫
E

xjdx per j = 1,2,3

quindi procediamo utilizzando le coordinate cilindriche introdotte prima

xE,1 =
∫

E
x1dx =

∫ √2
√

5/2
â

∫ 2á

0

(1 + âcos(Ú))2 dÚ
dâ =

∫ √2
√

5/2

[
2áâ +áâ3]dâ = 87

64á

xE,2 =
∫

E
x2dx =

∫ √2
√

5/2
â

∫ 2á

0
(1 + âcos(Ú))(1 + âsin(Ú))dÚ

dâ = 2á
∫ √2
√

5/2
âdâ = 3

4á

xE,3 =
∫

E
x3dx =

∫ √2
√

5/2
â

∫ 2á

0

1
2
(1 + âcos(Ú))2 dÚ

dâ =
∫ √2
√

5/2

[
áâ + 1

2áâ
3
]

dâ = 87
128á

e abbiamo le coordinate del baricentro di E

xE =
(

87
48, 1, 87

96

)
□

ESERCIZIO 4 (punti: 3+3+2). Sia S ⊆�
3 la superficie, immagine della parametrizzazione

x(u) = x(u1,u2) = (u1,u2,u1u2) con (u1,u2) ∈ D = B(O,á) ⊆�
2

i. si verifichi che S è una superficie regolare ed orientabile,
ii. si calcoli il rotore del campo vettoriale F(x) =

(
−x3

2,2x3
1 , x3

3
)
,

iii. orientata S concorde con e3, si calcoli la circuitazione di F lungo la curva �S+.

SVOLGIMENTO. i.Per definizione S è una parte del grafico della funzione differenziabile f(x1, x2) =
x1x2, questa osservazione, alla luce di quanto studiato a lezione, è sufficiente a provare che S è una
superficie regolare ed orientabile, in ogni caso procediamo ad una verifica più meticolosa.
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Osserviamo subito che D = B(O,á) = {u2
1 + u2

2 ≤ á2} è chiusura di un aperto limitato e connesso con
frontiera regolare, le componenti della mappa x sono polinomiali, quindi analitiche, e le prime due
componenti sono l’identità (quindi x è un’applicazione iniettiva). Infine possiamo scrivere che

�1x(u) = (1,0,u2) �2x(u) = (0, 1,u1) (�1x∧�2x)(u) = (−u2,−u1, 1) ,O
ottenendo che S è una superficie regolare. L’orientabilità segue dal fatto che si tratta di una porzione
del grafico di una funzione.
ii. Il rotore del campo vettoriale è un calcolo, tutto sommato, relativamente semplice a patto di ricor-
dare la definzione

rot(F)(x) = ∇∧ F(x) = ∇∧
(
−x3

2,2x3
1 , x3

3
)

=
(
0,0,6x2

1 + 3x2
2
)

iii. Poiché (�1x∧ �2x)(u) · e3 = 1 > 0 per ogni u ∈ D, possiamo dire che la superficie è orientata come
richiesto dal testo, quindi dobbiamo calcolare la circuitazione del campo lungo la curva che descrive
il bordo della superficie S, cioè

È�S+(F) =
∫
�S+

[F(x) · T]ds =
∫ 2á

0

[
F(x(u(t)) · u′(t)

]
dt

=
∫ 2á

0

(
−á3 sin3(t),2á3 cos3(t),á6 sin3(t)cos3(t)

)
·
(
−ásin(t),ácos(t),á2 cos(2t)

)
dt

=
∫ 2á

0

[
á4 sin2(t) + 2á4 cos2(t)− 3

4á4 sin2(2t) + 1
8á8 sin3(2t)cos(2t)

]
dt = 9

4á5

dove abbiamo parametrizzato il bordo di D nel seguente modo: u(t) = á(cos(t), sin(t) per t ∈ [0,2á].
Ricordando il teorema del rotore di Stokes è possibile anche procedere nel seguente modo

È�S+(F) =
∫
�S+

[F(x) · T]ds =
∫

S

[rot(F)(x) ·n]dã

=
∫

D

[rot(F)(x(u)) · (�1x∧�2x)(u)]du =
∫

D

[(
0,0,6u2

1 + 3u2
2
)
· (−u2,−u1, 1)

]
du

=
∫

D
(6u2

1 + 3u2
2)du1du2 =

∫ á

0

∫ 2á

0
(6r2 cos2(Ú) + 3r2 sin2(Ú))rdrdÚ

= 9á
∫ á

0
r3dr = 9

4á5

naturalmente abbiamo ottenuto lo stesso risultato con entrambi i procedimenti, come è giusto... □


