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AVVERTENZE:
La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti
svolti e dalla chiarezza dell’esposizione, come anche dalla correttezza dei
passaggi matematici e del risultato finale.

ex.1
ex.2
ex.3
ex.4
tot.

ESERCIZIO 1 (punti: 2+3+3). Data la funzione f : A −→� definita come segue

f(x1, x2) = 1
2 ln

(
x2

1 + x2
2
)

A =
{
x ∈�2 : x ,O

}
i. si spieghi perché tale funzione è differenziabile in tutto il suo dominio,
ii. si scriva l’equazione del piano tangente al grafico della funzione in (p, f(p)) ∈ A×�,
iii. si verifichi che la funzione f è armonica in A.

ESERCIZIO 2 (punti: 3+4). Si consideri la funzione f : C −→� dove
f(x) = 2x2

1 + x2
2 − x2

3 e C =
{
4x2

1 + x2
2 + x2

3 ≤ 16
}
⊆�

3

i. si spieghi perché C è compatto,
ii. si trovino e si classifichino tutti i punti critici della funzione.

ESERCIZIO 3 (punti: 1+2+2+3). Dato il solido E =
{
0 ≤ x3 ≤ x2

1 + x2
2 ≤ 1

}
⊆�

3

i. si spieghi perché è limitato e misurabile secondo Lebesgue,
ii. si provi a disegnare il solido E,
iii. si calcoli la massa, di densità d(x) = e−cx3 (con c > 0), contenuta in E,
iv. si calcoli l’area della superficie totale �E.

ESERCIZIO 4 (punti: 3+3+2). Sia Õ la curva di parametrizzazione

x(s) =
(
as + 1,bs,cs2) con s ∈ [0, 1] a,b,c ≥ 0 e (a,b,c) ,O

i. si verifichi che Õ è una curva regolare,
ii. si calcoli il lavoro compito lungo Õ dalla forma differenziale

é = x1
x2

1 + x2
2

dx1 + x2
x2

1 + x2
2

dx2 + x3dx3

iii. si dica se é è chiusa e/o esatta.
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ESERCIZIO 5 (punti: 2+3+3). Data la funzione f : A −→� definita come segue

f(x1, x2) = 1
2 ln

(
x2

1 + x2
2
)

A =
{
x ∈�2 : x ,O

}
i. si spieghi perché tale funzione è differenziabile in tutto il suo dominio,
ii. si scriva l’equazione del piano tangente al grafico della funzione in (p, f(p)) ∈ A×�,
iii. si verifichi che la funzione f è armonica in A.

SVOLGIMENTO. i. La funzione f è composizione di un polinomio con una funzione di classe C∞,
quindi (dove esiste) la funzione è continua e derivabile, utilizzando le ben note regole di derivazione
abbiamo che

�1f(x1, x2) = x1(
x2

1 + x2
2
) = x1
∥x∥22

e �2f(x1, x2) = x2(
x2

1 + x2
2
) = x2
∥x∥22

con (x1, x2) ∈ A

Poiché le derivate parziale sono delle funzioni razionali (rapporto di polinomi) ben definite in A, pos-
siamo affermare che si tratta di funzioni continue (in realtà C∞) in tutto A, dal teorema del differen-
ziale totale segue la differenziabilità di f in tutto A.
ii. La differenziabilità di f è equivalente all’esistenza del piano tangente al grafico della funzione, la sua
equazione è legata alla migliore approssimazione affine della funzione, cioè allo sviluppo di Taylor del
primo ordine, quindi vale

x3 = f(p) +∇f(p) · (x−p) = 1
2 ln

(
∥p∥22

)
+ p
∥p∥22

· (x−p) = ln(∥p∥2) + p · x
∥p∥22

− p ·p
∥p∥22

= ln
([

p2
1 + p2

2
]1/2)
− 1 +

p1x1 + p2x2
p2

1 + p2
2

iii. Ricordiamo che una funzione si dice armonica se il suo laplaciano è nullo, e infatti vale
Éf(x) = �11f(x) +�22f(x) = 0 per ogni x ∈ A

visto che

�11f(x) = �1

 x1
∥x∥22

 =
x2

1 + x2
2 − 2x2

1(
x2

1 + x2
2
)2 =

x2
2 − x2

1
∥x∥42

e �22f(x) =
x2

1 − x2
2

∥x∥42

ESERCIZIO 6 (punti: 3+4). Si consideri la funzione f : C −→� dove

f(x) = 2x2
1 + x2

2 − x2
3 e C =

{
4x2

1 + x2
2 + x2

3 ≤ 16
}
⊆�

3

i. si spieghi perché C è compatto,
ii. si trovino e si classifichino tutti i punti critici della funzione.

SVOLGIMENTO. i. Sappiamo che, in �
n, un insieme è compatto se e solo se è chiuso e limitato.

Osserviamo subito che C è limitato, infatti per ogni x = (x1, x2, x3) ∈ C vale

0 ≤ 4x2
1 , x2

2, x2
3 ≤ 4x2

1 + x2
2 + x2

3 ≤ 16 da cui |x1| ≤ 2 e |x2|, |x3| ≤ 4
il che implica C ⊆ [−2,2]× [−4,4]× [−4,4] ⊆ B(O,R), per ogni R > 6. Vale anche

C =
{
4x2

1 + x2
2 + x2

3 − 16 ≤ 0
}

= {H(x) ≤ 0} = H−1((−∞,0])

siccome H(x) = 4x2
1 +x2

2 +x2
3−16 è una funzione continua (essendo un polinomio), C è controimmagine

(attraverso una funzione continua) di un intervallo chiuso, per cui possiamo concludere che C è chiuso,
quindi compatto.
ii. I punti critici della funzione possono appartenere all’aperto int(C) o al suo bordo �C. nel primo caso,
essendo la funzione f ∈ C∞(C), tali punti saranno individuati dal sistema ∇f(x) = O, cioè(

�1f(x),�2f(x),�3f(x)) = (4x1,2x2,−2x3) = (0,0,0) che ha soluzione x = O
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Poiché vale

Hf(x1, x2, x3) =

 4 0 0
0 2 0
0 0 −2

 per ogni x = (x1, x2, x3) ∈ int(C)

possiamo dedurre che la matrice hessiana nel punto critico non è definita, per cui il punto O è una
sella. Per identificare i punti critici vincolati sul bordo del dominio possiamo ricorrere al metodo dei
moltiplicatori di Lagrange, quindi dobbiamo cercare i punti critici non vincolati della funzione

L(x,c) = f(x) + cH(x) = 2x2
1 + x2

2 − x2
3 + c(4x2

1 + x2
2 + x2

3 − 16) (x,c) ∈�4

e per farlo dobbiamo calcolare le soluzioni del sistema
�1L(x,c) = 4(1 + 2c)x1 = 0
�2L(x,c) = 2(1 + c)x2 = 0
�1L(x,c) = 2(c− 1)x3 = 0
�1L(x,c) = 4x2

1 + x2
2 + x2

3 − 16 = 0

Se c < {−1,−1/2, 1}, le prime tre equazioni implicano che x1 = x2 = x3 = 0, tale punto non soddisfa la
quarta relazione, per cui non otteniamo nulla.
Se c = −1 il sistema si riduce alle equazioni

−4x1 = −4x3 = 4x2
1 + x2

2 + x2
3 − 16 = 0

che ha soluzioni A1,2 = (0,±4,0). Ragionando in maniera analoga nei casi c = −1/2 e c = 1, troviamo
(rispettivamente) i punti B1,2 = (±2,0,0) e C1,2 = (0,0,±4). Poiché vale

f(A1,2) = 16 f(B1,2) = 8 f(C1,2) = −16 f(O) = 0

possiamo concludere che A1,2 sono punti di massimo assoluto, C1,2 sono punti di minimo assoluto e
B1,2 ed O sono punti di sella.

ESERCIZIO 7 (punti: 1+2+2+3). Dato il solido E =
{
0 ≤ x3 ≤ x2

1 + x2
2 ≤ 1

}
⊆�

3

i. si spieghi perché è limitato e misurabile secondo Lebesgue,
ii. si provi a disegnare il solido E,
iii. si calcoli la massa, di densità d(x) = e−cx3 (con c > 0), contenuta in E,
iv. si calcoli l’area della superficie totale �E.

SVOLGIMENTO. i. È possibile descrivere il solido E nel seguente modo

E =
{
0 ≤ x3 ≤ x2

1 + x2
2 ≤ 1

}
=
{
x2

1 + x2
2 ≤ 1

}
∩
{
x3 − (x2

1 + x2
2) ≤ 0

}
∩ {x3 ≥ 0}

quindi E è chiuso, in quanto intersezione di chiusi, e quindi misurabile secondo Lebesgue. Infine
notiamo che dalla precedente descrizione dell’insieme segue anche

E ⊆ B(O,1)× [0, 1] ⊆�
2 ×� = �3

il che mostra la limitatezza dell’insieme.
ii. Le relazioni che definiscono E ci suggeriscono che la variabile x3 deve essere nel’intervallo [0, 1],
mentre (x1, x2) devono trovarsi nel cerchio chiuso centrato in (0,0) di raggio 1, quindi il solido è con-
tenuto in un cilindro retto avente raggio di base e altezza pari ad 1 con asse di simmetria l’asse x3,
inoltre i punti di E devono trovarsi sotto il grafico del paraboloide di equazione {x3 = x2

1 + x2
2}, queste

informazioni sono riassunte nell’immagine che segue
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iii. Ricordiamo che per ottenere la massa totale dell’oggetto è necessario integrare la funzione densità
di massa sul volume, quindi

ME =
$

E
d(x)dx =

∫
B(O,1)

∫ x2
1 +x2

2

0
e−cx3dx3

dx1dx2 = − 1
c

∫
B(O,1)

[
e−cx3

]x2
1 +x2

2

0
dx1dx2

= − 1
c

∫ 1

0

∫ 2á

0

[
e−cr2

− 1
]
dÚ

 rdr = −2á
c

∫ 1

0
r
[
e−cr2

− 1
]
dr = á

c

[
r2 + 1

ce−cr2
]1

0

= á

c2

[
c + e−c − 1

]
Si noti che prima abbiamo usato il teorema di Fubini integrando ”per fili” lungo la direzione e3, poi
siamo passati alle coordinate polari nel piano per sfruttare la simmetria del cerchio B(O, 1) ⊆�

2, il che
spiega la comparsa del fattore r.
iv. Abbiamo visto precedentemente che il solido è un cilindro ”scavato”, quindi la sua superficie totale
è la somma di tre contributi: l’area del fondo, la superficie laterale e l’area della superficie che sovrasta
la struttura. Il fondo di E è il cerchio {x2

1 + x2
2 ≤ 1} × x3 = 0 la cui area è á, mentre la superficie laterale

è la supercie laterale di un cilindro avente raggio di base 1 e altezza 1, l’area di questa superficie è 2á.
Infine il tetto del solido è la parte del grafico della funzione f(x1, x2) = x2

1 + x2
2 contenuta nel cilindro

{x2
1 + x2

2 ≤ 1} la cui area si calcola con il seguente integrale

A =
∫

B(O,1)

[
1 + 4u2

1 + 4u2
2
]1/2 du1du2 = 2á

∫ 1

0

[
1 + 4r2]1/2 rdr = á

6
[
(1 + 4r2)3/2]1

0
= á

6
[
5
√

5− 1
]

dove abbiamo usato la seguente parametrizzazione regolare

x(u) =
(
u1,u2,u2

1 + u2
2
)

u ∈ B(O,1) ⊆�
2

ESERCIZIO 8 (punti: 3+3+2). Sia Õ la curva di parametrizzazione

x(s) =
(
as + 1,bs,cs2) con s ∈ [0, 1] a,b,c ≥ 0 e (a,b,c) ,O

i. si verifichi che Õ è una curva regolare,
ii. si calcoli il lavoro compito lungo Õ dalla forma differenziale

é = x1
x2

1 + x2
2

dx1 + x2
x2

1 + x2
2

dx2 + x3dx3

iii. si dica se é è chiusa e/o esatta.
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SVOLGIMENTO. i. x è un’applicazione a valori in �
3 le cui componenti sono dei polinomi, quindi è una

funzione che appartiene allo spazio vettoriale C∞
(
[0, 1],�3

)
, per mostrare la regolarità della curva

dobbiamo provare che in ogni punto della curva esiste un vettore tangente, il che è equivalente a
verificare che il vettore velocità non è mai nullo per s ∈ (0, 1), infatti vale

x′(s) = (a,b,2cs) ,O in quanto (a,b,c) ,O
ii. Ricorriamo alla definzione di lavoro di una 1-forma lungo una curva per calcolare la quantità richiesta∫

Õ
é =

∫ 1

0

 x1(s)
x2

1 (s) + x2
2(s)

x′1(s) + x2(s)
x2

1 (s) + x2
2(s)

x′2(s) + x3(s)x′3(s)
ds

=
∫ 1

0

[
as + 1

(as + 1)2 + b2s2
· a + bs

(as + 1)2 + b2s2
· b + cs2 · 2cs

]
ds

=
∫ 1

0

 1
2

2a(as + 1) + 2b2s
(as + 1)2 + b2s2

+ 2c2s3
ds = 1

2
[
ln
(
(as + 1)2 + b2s2)

)
+ c2s4]1

0

= 1
2
[
ln
(
(a + 1)2 + b2)

)
+ c2]

iii. Verificare che la 1-forma é è esatta è solo questione di alcuni calcoli, posto é = A(x)dx1 + B(x)dx2 +
C(x)dx3 possiamo scrivere che

�2A(x) = − 2x1x2
(x2

1 + x2
2)2

= �1B(x) �3A(x) = 0 = �1C(x) �3B(x) = 0 = �2C(x)

provando che la forma differenziale è chiusa. Poiché é non ha dominio esplicitamente dichiarato e il
suo dominio massimale è D = �3 \ {x2

1 + x2
2 , 0} che non è semplicemente connesso, non possiamo

ricorrere direttamente a teoremi noti per concludere che la forma è esatta, però è sufficiente produrre
una sua primitiva per avere conferma dell’esattezza di é, ponendo uguale a 0 la costante addivitiiva
nulla abbiamo

F(x) = 1
2
[
ln
(
x2

1 + x2
2
)

+ x2
3
]

infatti è possibile verificare che ∇F(x) = (A(x),B(x),C(x)). Dalla primitiva F della forma differenziale è
possibile ricavare, con meno calcoli, il lavoro richesto al punto ii, infatti vale∫

Õ
é = F(x(1))− F(x(0)) = F(a + 1,b,c)− F(1,00) = 1

2
[
ln
(
(a + 1)2 + b2)

)
+ c2]

senza particolari sorprese...


