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Nome: Cognome:
ex.1
AVVERTENZE: o2
La valutazione degli esercizi aperti dipende dalla solidita dei ragionamenti ex.3
svolti e dalla chiarezza dell'esposizione, come anche dalla correttezza dei - 7
passaggi matematici e del risultato finale. f;(t'

ESERCIZIO 1 (punti: 2+3+3). Data la funzione f: R3 — R di legge f(x1,x2,x3) = x2 — X3 + p(x3), dove ¢ &
una funzione di classe C2(R):

i. si spieghi perché tale funzione é differenziabile in tutto lo spazio,

ii. si dica per quali ¢ la funzione f & armonica in R3,

iii. tra le precedenti si identifichino le funzioni ¢ tali che f(O) = O.

ESERCIZIO 2 (punti: 2+2+4). Assegnatii vincoli di equazione

x2 X2
V={ 12+ZZ+33=1}'M={ 12+x%+X§=1}QFR3

i. si spieghi perché che V ed M sono chiusi e limitati,
ii.. si spieghi perché V ed M sono misurabili secondo Lebesgue e si calcoli m3(M),
iii. si trovi massimo e minimo della funzione d(p,q) = ||p — qll, al variaredip e Ve q € M.

ESERCIZIO 3 (punti: 2+3+3). DatoE = {x12 +x2 < cos?(x3),[x3] < n/Z} CR3
i. si spieghi perché E é limitato e misurabile secondo Lebesgue,

ii. si calcoli il suo volume m3(E),

iii. si calcoli il flusso, uscente da E, del campo vettoriale F = (x3,X1,sin(x3)).

ESERCIZIO 4 (punti: 3+3+2). Data la parametrizzazione
x(u1,u2)=(u12,u%,u12—u%) (uy,up) € D=[0,1)?

i. si verifichi che la coppia (x, D) é una superficie regolare orientabile,
ii.. si calcoli larea della superficie,
iii. si calcoli il flusso del campo F = (O, 0, x3) attraverso la superficie, orientata in modo che n-e3 > O.




ESERCIZIO 1 (punti: 2+3+3). Data la funzionef : R3 5 Rdi legge f(xq,x7,x3) = x12 — x% +p(x3), dove ¢ €
una funzione di classe C2(R):
i. si spieghi perché tale funzione é differenziabile in tutto lo spazio,

ii. si dica per quali ¢ la funzione f & armonica in R3,
iii. tra le precedenti si identifichino le funzioni ¢ tali che f(O) = O.

SVOLGIMENTO. i.Lafunzionef & definitain tutto lo spazio ed € sommma del polinomio in due variabili

p(x) = x12 - x% e della funzione ¢ che accetta in entrata solo x3. Essendo ¢ di classe C? e p di classe

C®, possiamo concludere che f € CZ(fR3) c CY(R3) , dal teorema del differenziale totale segue la
differenziabilita di f in tutto lo spazio.
ii. Ricordiamo che una funzione (di classe C2 si dice armonica se il suo laplaciano & nullo, nel nostro
caso abbiamo che

Af(x) = O1rf(x) + 922f(x) + 933f(x) = 2 -2+ ¢ (x3) = ' (x3)
quindi la funzione € armonica se e solo se

¢”(x3)=0  cioé  ¢(x3)=mx3+q perm,qeR

come & noto dalle teoria delle equazioni differenziali lineari omogenee a coefficienti costanti.
iii. concludiamo osservando che

f(x)=x12—x%+mX3+q f(O)=q=0

da cui possiamo dedurre che le funzioni desiderate sono tutte e sole

f(x)=x12—x%+mX3 m < R

O

ESERCIZIO 2 (punti: 2+2+4). Assegnati i vincoli di equazione

X2 x2
V= X12+72+33=1 ,M={X12+X%+X§=1}QTR3
i. si spieghi perché che V ed M sono chiusi e limitati,
ii.. si spieghi perché V ed M sono misurabili secondo Lebesgue e si calcoli m3(M),
iii. si trovi massimo e minimo della funzione d(p,q) = ||p — qll, al variaredip e Ve q € M.

SVOLGIMENTO. entrambi i vincoli sono insiemi chiusi, in quanto possiamo scrivere che
2% % 2,.2,.2
V={1+Z+3—1=o ={g1)=0}  M={x]+x+xF-1=0}={g,(x) =0}

E noto che {0} C (RR,d;) & uninsieme chiuso e poiché g;,g, € C*(R3) (essendo polinomi) segue che V
ed M sono chiusi in R3, perché controimmagine di un insieme chiuso tramite una funzione continua.
Per provare la limitatezza dei due insiemi € sufficiente osservare che

M={x?+x3+x5 =1} {x] +xJ+x] < 4}=B(0,2)

2 2 2 2 2
X X X X X
V={Xf*f*§=1}g{§*§*§<4}=B‘0'6)

ii. V.ed M sono misurabili secondo Lebesgue in quanto chiusi, la loro misura m3 & nulla, perché sono
solo la frontiera di oggetti molto regolari (un ellissoide e una palla, rispettivamente), di fatto il testo
chiede di calcolare il volume della sfera, cioe del bordo della palla, cioé di un oggetto senza "spessore’.
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E possibile provare la precedente affermazione nel seguente modo: restringiamo la nostra attenzione
a V ed osserviamo che, per ognin € N, vale

2 2 2 2 2 2
1 X5 X X5 X X5 X 1
Vg{1—2—nSX%+ZZ+33S1}={X%+72+33S1}\{X%+Zz+33<1—2—n}=E1\En

e per la monotonia della misura di Lebesgue possiamo dedurre

ylt 3/2
i)

—0

0 <m3(V) <m3(Eq) —m3(En) = 67 [1 —(

E possibile mostrare che la misura di M & nulla procedendo nello stesso modo.

iii. Utilizziamo la procedura dei moltiplicatori di Lagrange per trovare i punti critici della funzione d
vincolata, pero studieremo (per semplificare i calcoli) la funzione f(p,q) = dz(p, q)=|lp- q||% che ha gli
stessi punti critici (aventi la stessa natura), questo perché le potenze pari sono iniettive e strettamente
crescenti sulla semiretta [0, +co). Scriviamo la funzione di Lagrange

L(p.q,c) =f(p,q) - c1g1(p) — c28,(q)
2

2
P2 P
=(p1—q1)2+(pz—qz)2+(pa—qs)z—q[mz*?z*??"1]‘C2(q12+q§+q§—1)

e cerchiamo i suoi punti critici liberi, i punti in cui il gradiente di L € nullo, cioé le soluzioni delle seguenti
equazioni

1
diL(p.q.c) = 2(py — ay) — 2¢1py = O 97L(p.q.€) = 2(p; ~d2) — 5c1p2 = O
2
93L(p.q,¢) = 2(p3 -~ q3) - 5c1p3 =0 9d4L(p.q.c) = ~2(py ~ ) - 2¢291 = O
dsL(p.q.c) = -2(p; - %2) —22C2<h =0 deL(p.q,c) = —2(p3 —q3) —2cp3 =0
p; P
d7L(p.q.) = —[p12 r g 98L(p,q.0) =~ (af +a3+q3 - 1)

Dalle prime sei equazioni otteniamo che o p = qe ¢y =c; = O, e siccome p € Ve q € M segue che
P4 = d, = €1, oppure valgono le seguenti relazioni

1 1 1
Py Q2=Z(1—C1)P2=1_C2P2 93 = g{1-cilp3 = 1=

q1=(1—C1)p1= 1—C2

che sono soddisfatte esclusivamente se

1 1
Ja=pPa=€1 O qb=ipa=e2 o qc=§pc=e3

per opportuni valori dei moltiplicatori ¢ = (cq,c3). A questo punto possiamo calcolare i valori che la
funzione d assume sui punti critici individuati

d(pavqa) = “pa _qa”Z = ||e1 _e1||2 = O

d(pp.ap) =ll2e2 —ezll2 =lleall =1 e dlp..qc) =113e3 ezl =2

quindi possiamo concludere che il punto di massimo assoluto della funzione d vincolata alle due
superfici & (p.,q.), mentre il minimo assoluto & (p,,q,). O

Esercizio 3 (punti: 2+3+3). Dato E = {x12 +x% < COSZ(X3), Ix3] < n/Z} C R3
i. si spieghi perché E e limitato e misurabile secondo Lebesgue,
ii. si calcoli il suo volume m3(E),

iii. si calcoli il flusso, uscente da E, del campo vettoriale F = (x,X,sin(x3)).
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SVOLGIMENTO. i. Cominciamo Osservando Che
2. .2 2 n
= — < < —
E { 1 + X2 Ccos (X3) O} {|X3| 2 }

quindi l'insieme & chiuso in quento intersezione di due insiemi chiusi, questo implica che E & misura-
bile secondo Lebesgue., inoltre possiamo scrivere che

Ec{d+xd<1)n {|X3| < ;} C [-1,1]x [-1,1] x [—gg]
da cui possiamo concludere che E & un insieme limitato nello spazio.
Si noti che il dominio é definito da una limitazione relativa alla variabile x3 e da una relazione che dice
che, per x3 fissato, le altre due varibili appartengono ad una circonferenza centrata in (O, O) con raggio
che dipende (in modo molto regolare, dalla terza variabile. Le precedenti osservazioni mostrano che
il dominio & un solido di rotazione, con asse di simmetria la retta di equazioni {xq = x; = O}.
ii. A scopo didattico illustriamo due procedimenti differenti per il calcolo del volume di E.
Sappiamo, dalla teoria della misura che

m3(E) = jf dx = j m>(S(t))dt dove S(t)=EN{x3 =1}
E R

S(t) e la sezione E a quota x3 = t. Tale insieme € non vuoto solo per t € [-7t/2,7t/2] e siccome S(t) €
un cerchio di raggio r = |cos(t)|, vale che m(S(t)) = ncos?(t), da cui abbiamo che

/2 7 /2 72
m3(E) = f rcos?(t)dt = — j [1+cos(2t)]dt = =
—n2 2 Jnp 2
In alternativa € naturale sfruttare la simmetria assiale di E e utilizzare le coordinate cilindriche per il
calcolo dell'integrale di volume nel seguente modo

7t/2 27 cos(x3) 71/2
m3(E) = f U- [J pdp] del dxz = nJ COSZ(X3)dX3
-1t/2|JO

0 —7t/2

il risultato e identico al precedente, perché non deve dipendere dalla strategia seguita per studiare
il problema, e perché le due procedure (a guardare bene) si appoggiano sulla stessa idea legata alle
proprieta di simmetria del dominio.

i

ESERCIZIO 4 (punti: 3+3+2). Data la parametrizzazione

x(u1,u2)=(u12,u%,u12—u%) (ug,up) € D =[0, 1
i. si verifichi che la coppia (x, D) é una superficie regolare orientabile,
ii.. si calcoli larea della superficie,
iii. si calcoli il flusso del campo F = (0, O, x3) attraverso la superficie, orientata in modo che n - e3 > O.

SVOLGIMENTO.  i. Osserviamo subito che D & il quadrato chiuso di IR? aventi verticii punti O, e; ed e,
e che le componenti della funzione vettoriale x sono dei polinomi, cioé funzioni analitiche, da cui de-
duciamo che x € C*(D) c C'(D). Per poter concludere la regolarita della superficie dobbiamo anoca
mostrare due proprieta della mappa: l'iniettivita dellapplicazione e l'esistenza dei piani tangenti.
Liniettivita di x & equivalente all'implicazione

x(u) =(u%,u%,u%—u%)=(w%,w%,wf—w%)=x(w) se e solo se u=w
per u,w € D. Tale affermazione € vera perché le potenze pari (in particolare la potenza 2) sono
strettamente crescenti (quindi iniettive) sulla semiretta [0, +c0) e quindi sull'intervallo [0, 1].
Per mostrare che limmagine di x ha piano tangente per ogni u € int(D) € sufficiente mostrare lesi-
stenza di vettori normali, cioé che

d1x(u) A dax(u) = O per ogni u € int(D)



Quindi calcoliamo
d1x(u) = (2uy,0, 2uq) e dax(u) = (0,2uy,-2u3)
d1x(u) A dax(u) = 4 (ujuz,ugusz,uquy) = O per ogni u € int(D)

A questo punto possiamo dire che ¥ = Im(x) = x(D) & una superficie regolare di parametrizzazione
(x, D).

Concludiamo osservando che il versore normale indotto dalla parametrizzazione € un vettore co-
stante, infatti (ricordando che uy,u; € [O,1]) vale

Iix(u) A dyx(u) 4 (ugup,ugup,uruy) L“ ")
[[91x(u) A dox(u)ll 4v3uquy V3

e questo implica che ¥ € una porzione di un piano, quindi una superficie orientabile.
ii. Per calcolare larea della superficie utilizziamo la definizione e sfruttiamo il fatto che D = [0, 1]x[O, 1]
€ un quadrato, quindi un insieme normale rispetto ad entrambe le variabili

A(X) = J- do = j [[d1x(u) A dox(u)||2du = jf 4\/§u1u2du
> D D
dU1=4\/§-l-%=‘/§

1 1
=4\/§J‘ U1 [J U2dU2
o |Jo 2

iii. Abbiamo calcolato precdentemente il versore normale, per cui abbiamo gia verificato che la para-
metrizzazione x orienta la superficie come richiesto dal testo dell'esercizio, ricordando la definizione
di integrale di flusso possiamo procedere come segue

Py (F) = L [F00 -n(x)] do = L [(0,0,x3) - n)] do

B . d1x(u) A dx(u)
, ﬂD [(o,o,X3(u>) T ] 18x(u) A Fpx(u) 2

1
= 0,0,u? — u? -—(1,1,1)]4\/§uu du
ﬂo[( -u) 3 2
1 T 2) dus |d "0 1y
=4ju fu—u updu u=4fu[—uu——u
01[0(1 222}1 0121242
1

—4j lu3—lu du; =4 lu4—lu21 =0
B A i R - P
Questo calcolo conclude lo svolgimento. Si osservi che ¥ non &il bordo di un dominio regolare di R3,

quindi non & possibile utilizzare il teorema della divergenza per trasformare l'integrale di superficie in
un integrale divolume. 0O

n(u) =

1
dU1
0]




