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AVVERTENZE:
La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti
svolti e dalla chiarezza dell’esposizione, come anche dalla correttezza dei
passaggi matematici e del risultato finale.

ex.1
ex.2
ex.3
ex.4
tot.

ESERCIZIO 1 (punti: 2+3+3). Data la funzione f : �3 −→ � di legge f(x1, x2, x3) = x2
1 − x2

2 +æ(x3), dove æ è
una funzione di classe C2(�):
i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si dica per quali æ la funzione f è armonica in �

3,
iii. tra le precedenti si identifichino le funzioni æ tali che f(O) = 0.

ESERCIZIO 2 (punti: 2+2+4). Assegnati i vincoli di equazione

V =
{
x2

1 +
x2

2
4 +

x2
3

9 = 1
}
,M =

{
x2

1 + x2
2 + x2

3 = 1
}
⊆�

3

i. si spieghi perché che V ed M sono chiusi e limitati,
ii. si spieghi perché V ed M sono misurabili secondo Lebesgue e si calcoli m3(M),
iii. si trovi massimo e minimo della funzione d(p,q) = ∥p−q∥2, al variare di p ∈ V e q ∈M.

ESERCIZIO 3 (punti: 2+3+3). Dato E =
{
x2

1 + x2
2 ≤ cos2(x3), |x3| ≤ á/2

}
⊆�

3

i. si spieghi perché E è limitato e misurabile secondo Lebesgue,
ii. si calcoli il suo volume m3(E),
iii. si calcoli il flusso, uscente da E, del campo vettoriale F = (x2, x1, sin(x3)).

ESERCIZIO 4 (punti: 3+3+2). Data la parametrizzazione
x(u1,u2) =

(
u2

1 ,u2
2,u2

1 − u2
2
)

(u1,u2) ∈ D = [0, 1]2

i. si verifichi che la coppia (x,D) è una superficie regolare orientabile,
ii. si calcoli l’area della superficie,
iii. si calcoli il flusso del campo F = (0,0,x3) attraverso la superficie, orientata in modo che n · e3 > 0.
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ESERCIZIO 1 (punti: 2+3+3). Data la funzione f : �3 −→ � di legge f(x1, x2, x3) = x2
1 − x2

2 +æ(x3), dove æ è
una funzione di classe C2(�):
i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si dica per quali æ la funzione f è armonica in �

3,
iii. tra le precedenti si identifichino le funzioni æ tali che f(O) = 0.

SVOLGIMENTO. i. La funzione f è definita in tutto lo spazio ed è somma del polinomio in due variabili
p(x) = x2

1 − x2
2 e della funzione æ che accetta in entrata solo x3. Essendo æ di classe C2 e p di classe

C∞, possiamo concludere che f ∈ C2(�3) ⊆ C1(�3) , dal teorema del differenziale totale segue la
differenziabilità di f in tutto lo spazio.
ii. Ricordiamo che una funzione (di classe C2 si dice armonica se il suo laplaciano è nullo, nel nostro
caso abbiamo che

Éf(x) = �11f(x) +�22f(x) +�33f(x) = 2− 2 +æ′′(x3) = æ′′(x3)
quindi la funzione è armonica se e solo se

æ′′(x3) = 0 cioè æ(x3) = mx3 + q per m,q ∈�
come è noto dalle teoria delle equazioni differenziali lineari omogenee a coefficienti costanti.
iii. concludiamo osservando che

f(x) = x2
1 − x2

2 + mx3 + q f(O) = q = 0
da cui possiamo dedurre che le funzioni desiderate sono tutte e sole

f(x) = x2
1 − x2

2 + mx3 m ∈�
□

ESERCIZIO 2 (punti: 2+2+4). Assegnati i vincoli di equazione

V =
x2

1 +
x2

2
4 +

x2
3

9 = 1
 ,M =

{
x2

1 + x2
2 + x2

3 = 1
}
⊆�

3

i. si spieghi perché che V ed M sono chiusi e limitati,
ii. si spieghi perché V ed M sono misurabili secondo Lebesgue e si calcoli m3(M),
iii. si trovi massimo e minimo della funzione d(p,q) = ∥p−q∥2, al variare di p ∈ V e q ∈M.

SVOLGIMENTO. entrambi i vincoli sono insiemi chiusi, in quanto possiamo scrivere che

V =
x2

1 +
x2

2
4 +

x2
3

9 − 1 = 0
 = {g1(x) = 0} M =

{
x2

1 + x2
2 + x2

3 − 1 = 0
}

= {g2(x) = 0}
È noto che {0} ⊆ (�,d2) è un insieme chiuso e poiché g1, g2 ∈ C∞(�3) (essendo polinomi) segue che V
ed M sono chiusi in �

3, perché controimmagine di un insieme chiuso tramite una funzione continua.
Per provare la limitatezza dei due insiemi è sufficiente osservare che

M =
{
x2

1 + x2
2 + x2

3 = 1
}
⊆

{
x2

1 + x2
2 + x2

3 < 4
}

= B(O,2)

V =
x2

1 +
x2

2
4 +

x2
3

9 = 1
 ⊆

x2
3

9 +
x2

3
9 +

x2
3

9 < 4
 = B(O,6)

ii. V ed M sono misurabili secondo Lebesgue in quanto chiusi, la loro misura m3 è nulla, perché sono
solo la frontiera di oggetti molto regolari (un ellissoide e una palla, rispettivamente), di fatto il testo
chiede di calcolare il volume della sfera, cioè del bordo della palla, cioè di un oggetto senza ”spessore”.
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È possibile provare la precedente affermazione nel seguente modo: restringiamo la nostra attenzione
a V ed osserviamo che, per ogni n ∈�, vale

V ⊆
1− 1

2n ≤ x2
1 +

x2
2

4 +
x2

3
9 ≤ 1

 =
x2

1 +
x2

2
4 +

x2
3

9 ≤ 1
 \

x2
1 +

x2
2

4 +
x2

3
9 < 1− 1

2n

 = E1 \ En

e per la monotonia della misura di Lebesgue possiamo dedurre

0 ≤m3(V) ≤m3(E1)−m3(En) = 6á
1−

(
2n

2n − 1

)3/2 −→ 0

È possibile mostrare che la misura di M è nulla procedendo nello stesso modo.
iii. Utilizziamo la procedura dei moltiplicatori di Lagrange per trovare i punti critici della funzione d
vincolata, però studieremo (per semplificare i calcoli) la funzione f(p,q) = d2(p,q) = ∥p−q∥22 che ha gli
stessi punti critici (aventi la stessa natura), questo perché le potenze pari sono iniettive e strettamente
crescenti sulla semiretta [0,+∞). Scriviamo la funzione di Lagrange

L(p,q,c) = f(p,q)− c1g1(p)− c2g2(q)

= (p1 −q1)2 + (p2 −q2)2 + (p3 −q3)2 − c1

p2
1 +

p2
2

4 +
p2

3
9 − 1

− c2
(
q2

1 + q2
2 + q2

3 − 1
)

e cerchiamo i suoi punti critici liberi, i punti in cui il gradiente di L è nullo, cioè le soluzioni delle seguenti
equazioni

�1L(p,q,c) = 2(p1 −q1)− 2c1p1 = 0 �2L(p,q,c) = 2(p2 −q2)− 1
2c1p2 = 0

�3L(p,q,c) = 2(p3 −q3)− 2
9c1p3 = 0 �4L(p,q,c) = −2(p1 −q1)− 2c2q1 = 0

�5L(p,q,c) = −2(p2 −q2)− 2c2q2 = 0 �6L(p,q,c) = −2(p3 −q3)− 2c2p3 = 0

�7L(p,q,c) = −
p2

1 +
p2

2
4 +

p2
3

9 − 1
 �8L(p,q,c) = −

(
q2

1 + q2
2 + q2

3 − 1
)

Dalle prime sei equazioni otteniamo che o p = q e c1 = c2 = 0, e siccome p ∈ V e q ∈ M segue che
pa = qa = e1, oppure valgono le seguenti relazioni

q1 = (1− c1)p1 = 1
1− c2

p1 q2 = 1
4(1− c1)p2 = 1

1− c2
p2 q3 = 1

9(1− c1)p3 = 1
1− c2

p3

che sono soddisfatte esclusivamente se

qa = pa = e1 o qb = 1
2pa = e2 o qc = 1

3pc = e3

per opportuni valori dei moltiplicatori c = (c1, c2). A questo punto possiamo calcolare i valori che la
funzione d assume sui punti critici individuati

d(pa,qa) = ∥pa −qa∥2 = ∥e1 − e1∥2 = 0
d(pb,qb) = ∥2e2 − e2∥2 = ∥e2∥2 = 1 e d(pc,qc) = ∥3e3 − e3∥2 = 2

quindi possiamo concludere che il punto di massimo assoluto della funzione d vincolata alle due
superfici è (pc,qc), mentre il minimo assoluto è (pa,qa). □

ESERCIZIO 3 (punti: 2+3+3). Dato E =
{
x2

1 + x2
2 ≤ cos2(x3), |x3| ≤ á/2

}
⊆�

3

i. si spieghi perché E è limitato e misurabile secondo Lebesgue,
ii. si calcoli il suo volume m3(E),
iii. si calcoli il flusso, uscente da E, del campo vettoriale F = (x2, x1, sin(x3)).
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SVOLGIMENTO. i. Cominciamo osservando che

E =
{
x2

1 + x2
2 − cos2(x3) ≤ 0

}
∩

{
|x3| ≤

á
2

}
quindi l’insieme è chiuso in quento intersezione di due insiemi chiusi, questo implica che E è misura-
bile secondo Lebesgue., inoltre possiamo scrivere che

E ⊆
{
x2

1 + x2
2 ≤ 1

}
∩

{
|x3| ≤

á
2

}
⊆ [−1, 1]× [−1, 1]×

[
−á2 , á2

]
da cui possiamo concludere che E è un insieme limitato nello spazio.
Si noti che il dominio è definito da una limitazione relativa alla variabile x3 e da una relazione che dice
che, per x3 fissato, le altre due varibili appartengono ad una circonferenza centrata in (0,0) con raggio
che dipende (in modo molto regolare, dalla terza variabile. Le precedenti osservazioni mostrano che
il dominio è un solido di rotazione, con asse di simmetria la retta di equazioni {x1 = x2 = 0}.
ii. A scopo didattico illustriamo due procedimenti differenti per il calcolo del volume di E.
Sappiamo, dalla teoria della misura che

m3(E) =
$

E
dx =

∫
�

m2(S(t))dt dove S(t) = E∩ {x3 = t}

S(t) è la sezione E a quota x3 = t. Tale insieme è non vuoto solo per t ∈ [−á/2,á/2] e siccome S(t) è
un cerchio di raggio r = |cos(t)|, vale che m2(S(t)) = ácos2(t), da cui abbiamo che

m3(E) =
∫ á/2

−á/2
ácos2(t)dt = á

2

∫ á/2

−á/2

[1 + cos(2t)]dt = á2

2
In alternativa è naturale sfruttare la simmetria assiale di E e utilizzare le coordinate cilindriche per il
calcolo dell’integrale di volume nel seguente modo

m3(E) =
∫ á/2

−á/2

∫ 2á

0

∫ cos(x3)

0
âdâ

dÚ
dx3 = á

∫ á/2

−á/2
cos2(x3)dx3

il risultato è identico al precedente, perché non deve dipendere dalla strategia seguita per studiare
il problema, e perché le due procedure (a guardare bene) si appoggiano sulla stessa idea legata alle
proprietà di simmetria del dominio.
□

ESERCIZIO 4 (punti: 3+3+2). Data la parametrizzazione

x(u1,u2) =
(
u2

1 ,u2
2,u2

1 − u2
2
)

(u1,u2) ∈ D = [0, 1]2

i. si verifichi che la coppia (x,D) è una superficie regolare orientabile,
ii. si calcoli l’area della superficie,
iii. si calcoli il flusso del campo F = (0,0,x3) attraverso la superficie, orientata in modo che n · e3 > 0.

SVOLGIMENTO. i. Osserviamo subito che D è il quadrato chiuso di�2 aventi vertici i punti O, e1 ed e2
e che le componenti della funzione vettoriale x sono dei polinomi, cioè funzioni analitiche, da cui de-
duciamo che x ∈ C∞(D) ⊆ C1(D). Per poter concludere la regolarità della superficie dobbiamo anoca
mostrare due proprietà della mappa: l’iniettività dell’applicazione e l’esistenza dei piani tangenti.
L’iniettività di x è equivalente all’implicazione

x(u) =
(
u2

1 ,u2
2,u2

1 − u2
2
)

=
(
w2

1 ,w2
2,w2

1 −w2
2
)

= x(w) se e solo se u = w

per u,w ∈ D. Tale affermazione è vera perché le potenze pari (in particolare la potenza 2) sono
strettamente crescenti (quindi iniettive) sulla semiretta [0,+∞) e quindi sull’intervallo [0, 1].
Per mostrare che l’immagine di x ha piano tangente per ogni u ∈ int(D) è sufficiente mostrare l’esi-
stenza di vettori normali, cioè che

�1x(u)∧�2x(u) ,O per ogni u ∈ int(D)
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Quindi calcoliamo
�1x(u) = (2u1,0,2u1) e �2x(u) = (0,2u2,−2u2)
�1x(u)∧�2x(u) = 4(u1u2,u1u2,u1u2) ,O per ogni u ∈ int(D)

A questo punto possiamo dire che Î = Im(x) = x(D) è una superficie regolare di parametrizzazione
(x,D).
Concludiamo osservando che il versore normale indotto dalla parametrizzazione è un vettore co-
stante, infatti (ricordando che u1,u2 ∈ [0, 1]) vale

n(u) = �1x(u)∧�2x(u)
∥�1x(u)∧�2x(u)∥2

= 4(u1u2,u1u2,u1u2)
4
√

3u1u2
= 1
√

3
(1, 1, 1)

e questo implica che Î è una porzione di un piano, quindi una superficie orientabile.
ii. Per calcolare l’area della superficie utilizziamo la definizione e sfruttiamo il fatto che D = [0, 1]×[0, 1]
è un quadrato, quindi un insieme normale rispetto ad entrambe le variabili

A(Î) =
∫
Î

dã =
"

D
∥�1x(u)∧�2x(u)∥2du =

"
D

4
√

3u1u2du

= 4
√

3
∫ 1

0
u1

∫ 1

0
u2du2

du1 = 4
√

3 · 1
2 ·

1
2 =
√

3

iii. Abbiamo calcolato precdentemente il versore normale, per cui abbiamo già verificato che la para-
metrizzazione x orienta la superficie come richiesto dal testo dell’esercizio, ricordando la definizione
di integrale di flusso possiamo procedere come segue

ÐÎ(F) =
∫
Î

[F(x) ·n(x)]dã =
∫
Î

[(0,0,x3) ·n(x)]dã

=
"

D

[
(0,0,x3(u)) · �1x(u)∧�2x(u)

∥�1x(u)∧�2x(u)∥2

]
∥�1x(u)∧�2x(u)∥2du

=
"

D

[(
0,0,u2

1 − u2
2
)
· 1
√

3
(1, 1, 1)

]
4
√

3u1u2du

= 4
∫ 1

0
u1

∫ 1

0

(
u2

1 − u2
2
)

u2du2

du1 = 4
∫ 1

0
u1

[
1
2u2

1 u2
2 −

1
4u4

2

]1

0
du1

= 4
∫ 1

0

[
1
2u3

1 −
1
4u1

]
du1 = 4

[
1
8u4

1 −
1
8u2

1

]1

0
= 0

Questo calcolo conclude lo svolgimento. Si osservi che Î non è il bordo di un dominio regolare di �3,
quindi non è possibile utilizzare il teorema della divergenza per trasformare l’integrale di superficie in
un integrale di volume. □


