RNA-SEQUENCING

FROM RNA WITH LOVE: EXPLORING THE TRANSCRIPTOME

OMICS APPROACHES FOR THE STUDY OF BIOLOGICAL PROCESSES

With the advent of increasingly advanced technologies, such as **Next Generation Sequencing (NGS)**, it has become possible to study biological processes in far greater depth and detail than ever before. These innovative tools have paved the way for the development of **–omics**, which enable a comprehensive and a deeper analysis of the cellular processes.

THE TRANSCRIPTOME: A SNAPSHOT OF GENE EXPRESSION

- The sum of all RNAs present in a cell is called **Transcriptome.**
- The **Transcriptome** of a cell is a **dynamic entity**: unlike the **Genome**, it constantly changes.
- Understanding the transcriptome is essential for interpreting how cells communicate or how cells respond to external stimuli.

THE TRANSCRIPTOME: A SNAPSHOT OF GENE EXPRESSION

- The sum of all RNAs present in a cell is called **Transcriptome.**
- The Transcriptome of a cell is a dynamic entity: unlike the Genome, it constantly changes.
- Understanding the transcriptome is essential for interpreting how cells communicate or how cells respond to external stimuli.

MICROARRAYS: THE FIRST STEP TOWARD TRANSCRIPTOMIC ANALYSIS

Microarray

RNA-SEQ: HIGH-THROUGHPUT SEQUENCING FOR TRANSCRIPTOME PROFILING

- RNA-seq is essentially massively parallel sequencing of RNA (in particular cDNA).
- It is based on next-generation sequencing (NGS) platforms.
- The introduction of RNA-seq has provided the ability to look at:
 - I. Transcriptional structure of genes
 - 2. Alternatively spliced transcripts, alternative promoters and polyA sites
 - 3. Post-transcriptional modifications
 - 4. Identifying and studying all species of transcripts.
 - 5. Changes in gene expression under different conditions

RNA-Seq VS Microarray

- **RNA-seq** has a wider dynamic range.
- **RNA-seq** is more sensitive and more specific than microarray.
- **RNA-seq** is capable of **detecting single nucleotide polymorphisms (SNPs).**
- RNA-seq is able to identify and quantify novel splicing isoforms.
- **RNA-seq** can allow the **identification of rare** or low-abundance transcripts.

RNA-SEQ: HIGH-THROUGHPUT SEQUENCING FOR TRANSCRIPTOME PROFILING

- RNA-seq is essentially massively parallel sequencing of RNA (in particular cDNA).
- It is based on next-generation sequencing (NGS) platforms.
- The introduction of RNA-seq has provided the ability to look at:
 - I. Transcriptional structure of genes
 - 2. Alternatively spliced transcripts, alternative promoters and polyA sites
 - 3. Post-transcriptional modifications
 - 4. Identifying and studying all species of transcripts.
 - 5. Changes in gene expression under different conditions

THE METHOD

bioinformaticians thats what we do

tp://biocomicals.blogspot.com

Sample preparation

Gene identificatio

Novel genes Discoveries...

Sequencing

A detailed knowledge of each step of RNA-seq protocol and the linked biases is essential for:

- The correct design of the experiment
- A careful interpretation of NGS data,
- Finding ways to improve library quality
- Developing bioinformatics tools to compensate for the biases

- Intact total RNA run on a denaturing gel will have sharp, clear 28S and 18S rRNA bands
- The 28S rRNA band should be approximately twice as intense as the 18S rRNA band

The sample

sample well

through the

The microchannels of the glass chip are filled with a sleving

polymer and fluorescent dye

moves electro-

driven from the

micro-channels

The sample

is electro-

kinetically

injected into

tion channel

the separa-

Sample

components are electro-

phoretically

separated

Bioanalyzer

Samples are combined with a **fluorescent dye** and injected into wells in the chip. The samples move through a gel matrix in the microchannels and are separated by **electrophoresis**. The samples then are detected by fluorescence, and electropherograms and gel-like images are created by the data analysis software for sizing and quantification.

Components are detected by their

fluorescence and

translated into

gel-like images

rograms (peaks)

DNA LabChir

(bands) and

electrophe-

To determine the RIN, the instrument software uses an algorithm that takes into account the entire electrophoretic trace of the RNA, not just the ratio of 28S and 18S rRNAs. Bioanalyzer measures RNA integrity, displayed as the **RNA Integrity Number (RIN).**

mRNA IncRNA Pseudogenes circRNA tRNA snoRNA miRNA piRNA Etc.

Poly(A) affinity selection

mRNA IncRNA Pseudogenes circRNA tRNA snoRNA miRNA piRNA Etc.

Ribo-zero

mRNA IncRNA Pseudogenes circRNA tRNA snoRNA miRNA piRNA Etc.

2. FRAGMENT RNA INTO SHORT SEGMENT

Is useful to fragment the RNAs since the transcript length is not compatible with the Maximum Read Length of most current sequencing platforms.

3. LIBRARY PREPARATION

Single-stranded RNA molecules must be converted into double-stranded complementary DNAs (cDNA).

Illumina TruSeq stranded poly(A) library preparation

3. LIBRARY PREPARATION

Illumina TruSeq stranded poly(A) library preparation

Illumina TruSeq stranded poly(A) library preparation

A Index 1 PS

P7 Index 2

3. LIBRARY PREPARATION

sequenced

Illumina TruSeq stranded poly(A) library preparation

5. PERFORM NGS SEQUENCING

5. SINGLE-END SEQUENCING VS PAIRED END SEQUENCING

- Single-End sequencing (SE) : consists in sequencing the fragment from only one end
- Paired-End sequencing (PE) : consists in sequencing both ends of a fragment, resulting in the production of read pairs. This allows to improve the alignment, to better identify e quantify splicing variants and to detect rearrangements such as insertions, deletions and inversions

17 Index

Chemistry-Only-

Ovcles

i7 Index

15 Index

Grafted P5 Oligo

THE METHOD

Biological Question

Sequencing **T**ype

Which genes are Upregulated or Downregulated? Which miRNA are Upregulated or Downregulated?

THE METHOD

Number and type of Reads

Number of replicates

FASTQ files

Y103.fastg @Y103_0 HISEO 301:HNWGKBCXX:2:1101:6397:2187 1:N:0:CCAGTT grig_bc=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaca. TACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCGTCGGAAATCCCGCAGCTCAACTGCGGGCGTTGCAGGCGATACGG GCAAACTTGAGTACTGCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTGACGC TGAGGAGCGAAAGCGTGGGTAGCGAACAGG @Y103_1 HISEQ:301:HNWGKBCXX:2:1101:11507:2246 1:№0:CCAGTT grig_bs=AAAAAAAAAAAAAAAAAA TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCAAGGCAAGTCTGATGTGAAAACCCAGGGCTTAACCCTGGGACTGCATTGGAAAAC GTCTGGCTCGAGTGCCGGAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAAGAACACCAGTGGCGAAGGCGGCTTACTGGACGGTAACTGACG TTGAGGCTCGAAAGCGTGGGGGGGGGAGCAAACAGG @Y103_2 HISEQ:301:HNWGKBCXX:2:1101:18481:2208 1:N:0:CCAGTT orig_bc=AAAAAAAAAAAA new_bc=AAAAAAAAAAAA bc_diffs=0 TACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCGTCTGTGAAAATCCCGCAGCTCAACTGCGGGGCTTGCAGGCGATACGG TGAGGAGCGAAAGCGTGGGTAGCGAACAGG @Y103_3 HISEQ:301:HNWGKBCXX:2:1101:5935:2268 1:N:0:CCAGTT orig_bc=AAAAAAAAAAAA new_bc=AAAAAAAAAAA bc_diffs=0 TACGAAGGGGGCTAGCGTTGTTCGGATTTACTGGGCGTAAAGCGCACGTAGGCCGGATTGGTCAGTTAGAGGTGAAATCCTGGAGCTCAACTCCAGAACTGCCTTTAATACTG TGAGGTGCGAAAGCGTGGGGGGGGCAAACAGG @Y103_4 HISEO:301.HNWGKBCXX:2:1101:9217:2438 1:N:0:CCAGTT orig_bs=AAAAAAAAAAAAAA new_bc=AAAAAAAAAAAA bc_diffs=0 TACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCCAAAAAC CTGAGGTGCGAAAGCGTGGGGGAGCAAACAGG @Y103_5 HISEO:301:HNWGKBCXX:2:1101:5325:2570 1:N:0:CCAGTT orig_bc=AAAAAAAAAAAAA new_bc=AAAAAAAAAAAA bc_diffs=0 TACGTAGGGTCCGAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCGTCTGTGAAATCCCGCAGCTCAACTGCGGGCGTTGCAGGCGATACGG TGAGGAGCGAAAGCGTGGGTAGCGAACAGG @Y103_6 HISEQ:301:HNWGKBCXX:2:1101:17617:2520 1:N:0:CCAGTT orig_bc=AAAAAAAAAAAA new_bc=AAAAAAAAAAAA bc_diffs=0 CTGAGGTGCGAAAGCGTGGGGAGCAAACAGG @Y103_7 HISEO:301:HNWGKBCXX:2:1101:19548:2731 1:N:0:CCAGTT orig_bc=AAAAAAAAAAA new_bc=AAAAAAAAAAA bc_diffs=0 TACGTAGGGTGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCGTGGAAATCCCGCAGCTCAACTGCGGGCTTGCAGGCGATACGG GCAAACTTGAGTACTGCAGGGGGGGGGGGACTGGAAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTGACGC TGAGGAGCGAAAGCGTGGGTAGCGAACAGG

$\mathbf{Q} = -\mathbf{I} \mathbf{0} \log_{10} \mathbf{P}$

⁶³Per sequence GC content

Splice-unaware aligners

Splice-aware aligners

Each column is a sample

GENE ID	KD.2	KD.3	OE.1	OE.2	OE.3	IR.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	55	38	45	31	39
A1BG	71	40	100	81	41	77	58	40
A1BG-AS1	256	177	220	189	107	213	172	126
A1CF	0	1	1	0	0	0	0	0
A2LD1	146	81	138	125	52	91	80	50
A2M	10	9	2	5	2	9	8	4
A2ML1	3	2	6	5	2	2	1	(
A2MP1	0	0	2	1	3	0	2	1
A4GALT	56	37	107	118	65	49	52	37
A4GNT	0	0	0	0	1	0	0	(
AA06	0	0	0	0	0	0	0	(
AAA1	0	0	1	0	0	0	0	(
AAAS	2288	1363	1753	1727	835	1672	1389	1121
AACS	1586	923	951	967	484	938	771	635
AACSP1	1	1	3	0	1	1	1	3
AADAC	0	0	0	0	0	0	0	(
AADACL2	0	0	0	0	0	0	0	(
AADACL3	0	0	0	0	0	0	0	(
AADACL4	0	0	1	1	0	0	0	(
AADAT	856	539	593	576	359	567	521	410
AAGAB	4648	2550	2648	2356	1481	3265	2790	2118
AAK1	2310	1384	1869	1602	980	1675	1614	1108
AAMP	5198	3081	3179	3137	1721	4061	3304	2623
AANAT	7	7	12	12	4	6	2	7
AARS	5570	3323	4782	4580	2473	3953	3339	266
44000	4451	2727	2201	2121	1340	2400	2074	1000

gene

ർ

Each row is

Count Normalization

Count Normalization

RPKM/FPKM(Reads/Fragment per kilobase per million mappable reads= $\frac{C}{LN}$

TPM(Transcripts per milion) =
$$\frac{C/L}{\sum_{x} \frac{C_{x}}{L_{x}}} \times 10^{6}$$

C= Number of mappable reads on a feature (e.g. transcript, exon etc.) L= Length of feature N= Total number of mappable reads (in millions)

DE analysis allows to find genes (or other genomic features like transcripts and exons) that are expressed at significantly different levels between two groups of samples (conditions)

- Fold Change = $\frac{Mean FPKMCondition_A}{Mean FPKMCondition_B}$
- Pvalue

An enrichment analysis will find which GO terms are over-represented (or under-represented) using annotations for that gene set.

An enrichment analysis will find which GO terms are over-represented (or under-represented) using annotations for that gene set.

Molecular Function

Biological Process

Cellular Component

APPLICATION

APPLICATION

APPLICATION

Spatial Transcriptomics

