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A B S T R A C T

The establishment of the body axis and developmental blueprint in embryos has remained to be a central 
question in developmental biology, captivating scientists for centuries. A milestone in this field was achieved in 
1924 when Hans Spemann and Hilde Mangold discovered the dorsal organizer for embryonic body axis for-
mation in amphibians. Since then, extensive studies have demonstrated that the dorsal organizer is evolutionarily 
conserved in vertebrates. This organizer functions as a signaling center, directing adjacent cells toward specific 
fates and orchestrating pattern formation to establish the embryonic axis. After 70 years since the discovery of 
the organizer, studies in different model animal species had revealed that locally activated β-catenin signaling 
during blastulation plays an indispensable role in organizer induction. Then, efforts have been made to identify 
initiators of β-catenin activation in blastulas. Now, it appears that maternal Huluwa, a transmembrane protein, is 
a bona fide organizer inducer at least in teleost fish and frog, which can activate downstream signaling pathways, 
including but probably not limited to β-catenin pathway. More studies are needed to decode the complete 
molecular network controlling organizer induction.

1. Introduction

Vertebrate development begins with a single fertilized egg that un-
dergoes extensive morphogenetic and molecular transformations to give 
rise to a fully developed organism. The most critical period for cell fate 
specification and body patterning occurs from the middle blastula to 
gastrulation stages. During this time, coordinated signals and extensive 
cell movements establish the foundational body plan and fate map. 
Among these processes, the dorsal organizer plays a pivotal role in 
guiding the formation of the embryonic body axis (Bouwmeester, 2001; 
Cousin, 2019).

In the 1920s, Hans Spemann (winner of the Nobel Prize for Physi-
ology or Medicine in 1935) and Hilde Mangold first identified and 
named the embryonic organizer in amphibian embryos (Spemann and 
Mangold, 1924). Through transplantation experiments in salamander 
and Xenopus embryos, they demonstrated that tissue from the dorsal lip 
of the blastopore could induce a secondary body axis when grafted onto 
another embryo, coining the term “organizer”, now known as the Spe-
mann–Mangold organizer. Subsequent research identified equivalents of 
the Spemann–Mangold organizer in various vertebrates, including the 

Hensen’s node in avians, the embryonic shield in fish, and the node in 
mammals (Fig. 1)(Boettger et al., 2001; Saude et al., 2000; Shih and 
Fraser, 1996; Waddington, 1933; Zhou et al., 1993).

The dorsal organizer, a localized group of cells in early gastrula 
embryos, serves as a crucial signaling center directing dorsal fate spec-
ification and primary body axis formation. Through secreted proteins 
and intracellular transcription factors, it orchestrates developmental 
cues necessary for body plan establishment (Anderson and Stern, 2016). 
In the absence of the organizer, embryos fail to develop a body axis, 
exhibiting ventralized phenotypes devoid of dorsal and anterior 
structures.

Maternal and zygotic signaling pathways, including Wnt/β-catenin, 
BMP and Nodal, tightly regulate dorsal organizer formation. According 
to the “default model” (Hemmati-Brivanlou and Melton, 1997), several 
maternal factors primarily induce ventralizing signals during blastula-
tion. Rather than actively inducing dorsal fates, dorsalizing factors from 
the organizer acts by antagonizing ventralizing signals (Baker et al., 
2010; Leung et al., 2003). While the genetic control of axis formation has 
been extensively reviewed (Hikasa and Sokol, 2013; Jones and Mullins, 
2022; Langdon and Mullins, 2011; Schier and Talbot, 2005), this review 
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revisits maternal control of the dorsal organizer, especially recent dis-
coveries in activation of maternal β-catenin signaling on the future 
dorsal side.

2. Maternally derived dorsal determinants

In addition to zygotic genome products, maternal factors are crucial 
for organizer induction in fish and frog. Among these, the most exten-
sively studied and essential maternal signal is β-catenin signaling 
(Carron and Shi, 2016; Guger and Gumbiner, 1995; Kelly et al., 2000; 
Wylie et al., 1996). Compelling evidence demonstrates that maternal 
β-catenin accumulates specifically in the nuclei of dorsal blastomeres, 
where it activates organizer-specific genes, such as bozozok, squint and 
chordin in zebrafish, as well as siamois and nodal-related 3 in Xenopus 
(Schneider et al., 1996). Loss-of-function studies in zebrafish, frogs, and 
mice further confirm the indispensable role of β-catenin signaling in 
dorsal organizer formation (Haegel et al., 1995; Heasman et al., 1994; 
Heasman et al., 2000; Huelsken et al., 2000; Kelly et al., 2000). These 
findings consolidate the concept that the organizer formation is induced 
by maternally derived critical factors, commonly referred to as maternal 
dorsal determinants (DDs) in zebrafish and Xenopus.

2.1. Dorsal determinants and asymmetric translocation

Mature Xenopus and zebrafish eggs are radially symmetrical along 
the animal-vegetal (AV) axis, with dorsal determinants initially local-
ized at the vegetal pole. Removal of the vegetal pole prior to the first 
cleavage results in ventralized embryos, supporting the vegetal pole 
localization of dorsal determinants (Mizuno et al., 1999; Ober and 
Schulte-Merker, 1999; Shao et al., 2017).

The asymmetrical transport of dorsal determinants following fertil-
ization is essential for organizer formation and dorsal fate specification 
(Fig. 2). This concept is strongly supported by both biochemical and 
genetic evidence. Treatments such as UV irradiation, low temperatures, 

or treatment with nocodazole (a compound that suppresses the assembly 
of microtubule bundles) disrupt this asymmetrical transport process, 
resulting in dorsal-deficient (or called ventralized) phenotypes in both 
zebrafish and Xenopus (Elinson and Rowning, 1988; Jesuthasan and 
Stahle, 1997). The importance of asymmetrical transport of dorsal de-
terminants is further underscored by several maternal-effect zebrafish 
mutants, such as brom bones (hnrnp1), tokkaebi (syntabulin), hecate 
(grip2a) and kif5ba (Campbell et al., 2015; Ge et al., 2014; Mei et al., 
2009; Nojima et al., 2010; Oh and Houston, 2017).

2.2. Dorsal determinants and β-catenin signaling

A key outcome of the directional transport of dorsal determinants is 
the activation of β-catenin signaling in dorsal marginal blastomeres 
(Kelly et al., 2000; Liao et al., 2006; Schneider et al., 1996). Endogenous 
β-catenin protein was found to be enriched dorsally at the two-cell stage 
in Xenopus embryos, coinciding with the establishment of the dorsal- 
ventral axis (Larabell et al., 1997). In the zebrafish, two maternal 
β-catenin genes, ctnnb1 and ctnnb2, are expressed. In ichabod mutants, 
the absence of maternal ctnnb2 transcripts results in loss of the embry-
onic shield and body axis. Overexpression of ctnnb2 can rescue the 
ichabod mutant phenotype, whereas manipulation of upstream compo-
nents of the canonical Wnt/β-catenin signaling pathway fails to phe-
nocopy this rescue effect (Kelly et al., 2000). Similarly, in mice, embryos 
lacking β-catenin exhibit abnormal visceral endoderm patterning prior 
to gastrulation and fail to form the primitive streak (Haegel et al., 1995; 
Huelsken et al., 2000). These findings indicate an essential role of 
β-catenin signaling in dorsal organizer formation.

What, then, is the relationship between dorsal determinants and 
β-catenin activation? A straightforward hypothesis posits that β-catenin 
itself functions as the dorsal determinant, accumulating dorsally via 
asymmetrical transport. However, experimental evidence challenged 
this view. The subcortical vegetal cytoplasm from β-catenin-depleted 
Xenopus embryos retains the ability to induce a secondary axis 

Fig. 1. Dorsal organizers in vertebrates. Embryonic shield in zebrafish (A), Spemann-Mangold organizer in Xenopus (B), Hensen’s node in chick (C), and Node in 
mouse embryo (D) are marked with blue. Primitive streak in chick(C) and mouse (D) embryo are labeled in red. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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(Marikawa and Elinson, 1999). This observation implies that there may 
exist other dorsal determinants except β-catenin in the subcortical veg-
etal cytoplasm.

3. Discoveries of bona fide dorsal determinants

For decades, researchers have dedicated to understand the identity 
and nature of these dorsal determinants that trigger localized activation 
of maternal β-catenin signaling in the future dorsal region. While several 
potential activators/determinants have been proposed, these findings 
have remained controversial until the discovery of Huluwa.

3.1. Extracellular Wnt ligands

As critical stimulators of the canonical Wnt/β-catenin signaling 
pathway, Wnt ligands have been hypothesized to trigger maternal 
β-catenin signaling during organizer formation (Hikasa and Sokol, 2013; 
Langdon and Mullins, 2011; Schier and Talbot, 2005). Early evidence 
supporting the role of Wnt/β-catenin signaling in body axis determina-
tion emerged from gain-of-function experiments, where overexpression 
of Wnt mRNA led to the formation of an ectopic organizer (McMahon 
and Moon, 1989; Smith and Harland, 1991). Similarly, overexpression 
of lrp6 alone or in combination with wnt5a induces axis duplication in 
Xenopus (Tamai et al., 2000). In agreement, antisense 
oligodeoxynucleotide-mediated depletion of wnt11b or lrp6 mRNA in 
Xenopus oocytes results in loss of the dorsal organizer and axial struc-
tures (Kofron et al., 2007; Tao et al., 2005). Further studies indicate that 
Wnt11b and Wnt5 can form heterodimer to activate β-catenin signaling 
(Cha et al., 2008). However, overexpression of dominant-negative 
Wnt11 (DnWnt11) in Xenopus embryos or depletion of maternal and 
zygotic wnt11 (MZwnt11) in zebrafish embryos does not impact orga-
nizer induction, but disrupts convergent extension movements during 
gastrulation (Heisenberg et al., 2000). Moreover, a recent study dem-
onstrates that maternal mutation of wnt11b results in reduced cortical 
rotation in Xenopus embryos, suggesting that Wnt11b may affect the 
distribution of dorsal determinants, rather than constituting the dorsal 

determinant itself (Houston et al., 2022). Furthermore, overexpressing 
wnt11 alone is insufficient to induce ectopic body axis formation in 
zebrafish and Xenopus, suggesting that wnt11 is unlikely to be the dorsal 
determinant for β-catenin activation during organizer formation.

In the zebrafish, maternal wnt8a, localized at the vegetal pole in eggs 
and asymmetrically translocated after fertilization, has been supposed to 
activate β-catenin signaling (Lu et al., 2011). Overexpression of wnt8 
leads to nuclear accumulation of β-catenin and ectopic expression of 
organizer-specific genes in both Xenopus and zebrafish, indicating that 
wnt8a has the potential to activate β-catenin signaling. However, 
zebrafish zygotic wnt8a mutants (Zwnt8w8/w8) display an expanded 
organizer at the shield stage and a truncated trunk at 24 h post fertil-
ization, suggesting that zygotic Wnt/β-catenin signaling restricts orga-
nizer size and regulates non-axial mesoderm patterning (Ramel et al., 
2005; Ramel and Lekven, 2004). Additionally, a study by Masahiko 
Hibi’ group found that maternal wnt8a mutants (Mwnt8a− /− ) show no 
defects in dorsal-axis formation, and depletion of maternal wnt8a en-
hances the truncation phenotype in zygotic wnt8a mutant (Zwnt8a− /− ), 
indicating that maternal wnt8a supports zygotic wnt8a function but is 
dispensable for dorsal organizer induction (Hino et al., 2018). Consis-
tently, Xwnt8 in Xenopus has also been reported to restrict the dorsal fate 
during late blastulation (Christian and Moon, 1993).

Besides, wnt6a has been suggested as another potential dorsal 
determinant in the zebrafish responsible for dorsal organizer induction 
(Hino et al., 2018). However, this finding is primarily supported by 
overexpression experiments, and additional genetic knockout or 
knockdown evidence is required to validate its role as a dorsal deter-
minant. Additionally, overexpression of Wnt antagonists, such as Dkk1 
and Frzb, which block the function of endogenous zygotic Wnt/β-cat-
enin signaling and ectopic Wnt ligands, has minimal impact on body axis 
induction (Glinka et al., 1998; Wang et al., 1997). Therefore, whether 
Wnt ligands themselves directly contribute to dorsal organizer and body 
axis induction remains largely questionable. One possibility is that the 
canonical Wnt signaling is active in regulating the transcription of 
maternal dorsal determinants or in asymmetrical distribution of dorsal 
determinants during oocyte maturation.

Fig. 2. Deposition and asymmetrical transport of dorsal determinant(s) in zebrafish and Xenopus embryos. Different stages of oocytes or eggs are shown in each 
panel. Purple indicates Bb (Stage I) or the vegetal pole localized dorsal determinant(s) (Stage II/III). Green and brown dots indicate maternal factors deposited at the 
animal and vegetal region, respectively. GV, Germ vesicle; Bb, Balbiani body; fc, follicle cell; A, animal pole; V, vegetal pole; V (red), ventral side; D (red), dorsal side. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Intracellular dorsalizing factors

Beyond Wnt ligands, an intriguing alternative hypothesis proposes 
that dorsal organizer induction may involve a Wnt ligand/receptor- 
independent mechanism, directly activating intracellular components 
of the Wnt/β-catenin pathway. Supporting this hypothesis, intracellular 
kinases such as Akt, Erk, and c-Abl can facilitate β-catenin signal acti-
vation by promoting the release of β-catenin from the E-cadherin com-
plex, inhibiting GSK3β, or displacing Axin (Cross et al., 1995; Desbois- 
Mouthon et al., 2001; Fernandez et al., 2014; Jeong et al., 2018; Ji et al., 
2009; Yang et al., 2006). Besides, two intracellular components of the 
canonical Wnt/β-catenin pathway, Gsk3-binding protein (GBP/Frat1) 
and Dishevelled (Dsh/Dvl), are found to transport to the prospective 
dorsal side during cortical rotation, thereby stabilizing b-catenin in 
future dorsal blastomeres (Dominguez and Green, 2000; Miller et al., 
1999; Salic et al., 2000; Weaver et al., 2003; Yost et al., 1998).

Both GBP and Dsh can induce complete ectopic dorsal axes when 
overexpressed in Xenopus embryos (Sokol et al., 1995; Yost et al., 1998). 
GBP has been reported to be required for axis formation in Xenopus 
embryos as its antisense knockdown prior to fertilization in oocytes 
results in embryonic ventralization (Yost et al., 1998). However, this 
could be ascribed to its role in modulating Gsk3β activity during the 
early stages of dorsal determinant transport, shortly after fertilization 
(Shao et al., 2012). However, overexpression of dominant-negative Dsh, 
which strongly inhibits induction of secondary body axis by wild-type 
Xdsh mRNAs, has no effect on primary axis formation (Sokol, 1996). 
In the zebrafish, simultaneous mutations of maternal and zygotic dvl2 
and dvl3a, two most abundantly expressed maternal dvl genes, did not 
cause defective dorsal fate specification or loss of the head and anterior 
tissues, implying that dvl genes might be dispensable for ß-catenin 
activation during early development (Xing et al., 2018). Further studies 
suggest that neither Dsh nor GBP alone acts as the primary β-catenin 
stabilizing factor (Marikawa and Elinson, 1999). It seems more likely 
that GBP, Dsh, or both are not genuine dorsal determinants, but instead 
regulators of dorsal determinants movements (Weaver and Kimelman, 
2004).

3.3. Discovery of Huluwa

The precise nature of the endogenous dorsalizing activity responsible 
for dorsal organizer formation in vertebrates remains unclear for a long 
time, particularly it is unsure if this activity originates from Wnt ligands 
or intracellular components. Several years ago, our group found the 
zebrafish maternal mutant, Mhwatsu01sm, in which the transcription of 
the huluwa (hwa) gene is completely shut down due to the insertion of a 
7.3-kb DNA element (likely a retrotransposon sequence) into the huluwa 
promoter (Yan et al., 2018). Maternal huluwa transcripts at the vegetal 
pole are transported to the future dorsal side upon fertilization, under-
scoring its moving character of dorsal determinant. The Huluwa protein 
has an N-terminal 23-residue extracellular domain, a 21-residue single 
transmembrane domain and a 250-residue intracellular domain, being 
located on the plasma membrane of the presumptive dorsal blastomeres 
with nuclear β-catenin in early blastulas. All of Mhwa mutant embryos 
show the absence of the embryonic shield at the onset of gastrulation 
and a complete loss of the body axis at 24 h postfertilization (hpf), the 
most severely ventralized phenotypes. Microinjection of huluwa mRNA 
into two opposite blastomeres of 16/32-cell stage Mhwa mutants effi-
ciently induces two complete body axes in over 90 % of injected em-
bryos at 24 hpf, indicating an extremely potent organizer-inducing 
capacity. These observations demonstrate that maternal Huluwa is both 
necessary and sufficient for dorsal organizer induction and body axis 
formation. Thus, maternal Huluwa is a dorsal organizer inducer.

4. Huluwa signaling

As a newly identified novel protein, Huluwa’s function in 

determining dorsal organizer formation in vertebrates is assured, but its 
signaling pathway has not be fully explored.

4.1. Evo-devo insights into Huluwa function

From an evolutionary perspective, Huluwa homologs are broadly 
present in chordates, including amphioxus (Cephalochordata), sea 
squirt (Urochorda), lamprey (Cyclostomata), shark (Chondrichthyes), 
frog (Amphibia), and lizard (Reptilia). The essential role of huluwa in 
dorsal organizer and body axis formation in Xenopus laevis is supported 
by the findings that depletion of huluwa transcripts by antisense oligos in 
oocytes leads to loss of the organizer and body axis, and that microin-
jection of huluwa mRNA in two ventral blastomeres of 4-cell stage em-
bryos efficiently induces secondary body axis (Yan et al., 2018). This 
pivotal role of huluwa in organizer formation has since been indepen-
dently validated in Xenopus (Azbazdar and De Robertis, 2024; Tejeda- 
Munoz and De Robertis, 2022; Zhu et al., 2021). Remarkably, over-
expression of huluwa mRNA from lower organisms such as sea squirt and 
amphioxus can partially rescue the body axis in zebrafish Mhwatsu01sm 

mutant embryos (Li et al., 2024). These observations suggest a func-
tional conservation of the Huluwa protein across subphyla of the phylum 
Chordata. However, we must be aware that the Huluwa mechanism may 
be only one of ancient mechanisms for body axis induction in bilateria.

The formation of the embryonic body axis in annual killifish was 
reported to occur without Huluwa-mediated prepatterning. Instead, 
Nodal and β-catenin pathways are repurposed to coordinate cellular 
aggregation and axis formation (Abitua et al., 2024). It remains elusive 
how Nodal and β-catenin pathways are activated in annual killifish. 
Interestingly, the huluwa gene in annual killifish (GRZ strain) appears to 
be a pseudogene, encoding a truncated, non-functional protein, whereas 
non-annual killifish (MZM strain) possesses a functional huluwa gene. It 
is unclear whether the abandonment of Huluwa function in the GRZ 
strain represents an adaptation to its short lifespan and high-stress 
environment or reflects an alternative compensatory mechanism for 
body axis formation.

It seems that the Huluwa gene in aves or mammalia has been lost 
during evolution. One possibility is that dysfunction of this gene is fatal 
for reproduction so that species with poorer fecundity such as aves and 
mammals had to discard it during evolution. However, it is likely that 
Huluwa function has been replaced by mild factors with similar function 
in birds and mammals.

4.2. Downstream effectors of Huluwa signaling

In both zebrafish and frog, the axis-inducing activity of ectopic 
huluwa is largely inhibited by knockdown of ctnnb2 (Yan et al., 2018). 
On the other hand, overexpression of huluwa results in accumulation of 
nuclear β-catenin. The dorsalizing and axis-inducing activity of ectopic 
huluwa is unaffected by the co-expression of dnwnt8a-mCherry, DKK1- 
EGFP, or LRP5ΔC-mCherry, nor by Wnt-C59 treatment in zebrafish. 
These observations suggest that β-catenin signaling is activated during 
dorsal organizer formation by Huluwa rather than by Wnt ligand/re-
ceptor signaling. Mechanistically, Huluwa protein directly binds to and 
promotes the degradation of Axin through TNKS1/2-mediated PARsy-
lation (poly-ADP-ribosylation), thereby stabilizing cytosolic β-catenin 
(Fig. 3).

At least two pieces of evidence raise the possibility that β-catenin is 
not a sole intracellular effector of Huluwa signaling during dorsal 
organizer formation. First, unlike Mhwatsu01sm mutant embryos, all of 
which lack the body axis completely, only 34 % of zebrafish ichabod 
mutants lacking nuclear β-catenin have no body axis at all, while the 
remaining do have variable degrees of head and trunk tissues (Bellipanni 
et al., 2006; Kelly et al., 2000). Second, overexpression of ectopic 
constitutively active β-catenin in Mhwatsu01sm mutants restores a full 
body axis only in about one quarter of microinjected mutants, which is 
in sharp contrast to a rescue efficiency of over 90 % with injection of 
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wildtype huluwa mRNA (Yan et al., 2018). Therefore, we hypothesize 
that there may exist other effectors or pathways downstream of Huluwa 
signaling.

4.3. Regulators of Huluwa signaling

Our recent study has identified the Ser168 residue within a 
conserved PPNSP motif as an important phosphorylation switch for 
Huluwa function (Li et al., 2024). The zebrafish Huluwa with alanine 
substitution of Ser168 loses the organizer-inducing and β-catenin sta-
bilizing activities. Ser168 of Huluwa is likely subjected to phosphory-
lation by multiple cell cycle-related kinases, including Cdk2, Cdk16 and 
GSK3β. This finding raises several interesting questions: how multiple 
kinases are coordinated to regulate Huluwa activation; how phosphor-
ylated Huluwa is dephosphorylated; whether its phosphorylation and 
dephosphorylation are regulated spatially and temporally.

Our previous work revealed a specific location of Huluwa protein in 
presumptive dorsal blastomeres in zebrafish early blastulas (Yan et al., 
2018). An interesting question is how this asymmetrical distribution is 
achieved. Zhu et al. (2021) identified maternal E3 ubiquitin ligase 
ZNRF3 as a key negative regulator of Huluwa in Xenopus embryos (Zhu 
et al., 2021). Overexpression of a dominant negative form of Znrf3 
(Znrf3ΔRING) in one ventral blastomere of four-cell stage embryos in-
duces a secondary body axis. ZNRF3 mediates Huluwa ubiquitination 
and subsequent lysosomal degradation presumably in embryonic re-
gions outside the Spemann-Mangold organizer, preventing the expan-
sion of the organizer. On the other hand, De Robertis’ group highlights 
the role of endolysosomal trafficking and lysosome function in 
enhancing Huluwa/β-catenin signaling in the dorsal region of Xenopus 
blastulas for the organizer formation (Azbazdar and De Robertis, 2024; 
Tejeda-Munoz and De Robertis, 2022). As a central player for the dorsal 
organizer formation, Huluwa’s expression and activity should be pre-
cisely regulated at multiple levels. We are still at the beginning stage of 
understanding regulation of Huluwa signaling.

5. Concluding remarks

The dorsal organizer was first discovered a century ago, but the 
molecular mechanisms underlying its induction are not fully understood 
yet. In lower vertebrates such as fish and frog, it is clear that the dorsal 
organizer is controlled by maternal factors, among which Huluwa may 
be a master. In another word, information or programs for dorsal 
organizer induction are deposited in oocytes/eggs in lower vertebrates, 
which may be called prepatterning mode. The avian Henson’s node and 
mammalian node are considered as the equivalents of the Spemann- 
Mangold organizer, which are located at the tip of the primitive streak 
(Stern, 2024). In these species, the formation of the node involves co-
ordinated Wnt, Activin/Nodal and BMP gradients (Morgani and Had-
jantonakis, 2020; Robb and Tam, 2004). It remains unknown whether 
any maternal factors are required for primitive streak/node formation in 
avian or mammalian species. It is possible that the primitive streak/node 
is induced wholly by zygotic signals, which may be called zygotic 
patterning mode. It will be interesting to know how the dorsal organizer 
formation switches from the preset model to the induction model during 
evolution.
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Fig. 3. Huluwa/β-catenin signaling pathway. The transmembrane protein Huluwa binds to and promotes the degradation of Axin, which is mediated by TNKS1/2 
through PARsylation. Subsequently, stabilized cytosolic β-catenin translocate into nucleus to activate downstream target genes by binding to Tcf/Lef transcription 
activators. Huluwa may also transduce the signal to other unknown downstream effectors. In Mhwa mutants, β-catenin in the cytoplasm is degraded by the APC-Axin- 
GSK3β-CK1α destruction complex, and downstream target genes could not be activated.
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