

Natural Units

A COL

Relativity

Summary

kahoot !

Relativistic kinematics/dynamics

 $\beta = \frac{v}{c} \Longrightarrow v$ $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$ $E = m\gamma c^2 \Rightarrow m\gamma$ $p = m\beta\gamma c \Rightarrow m\beta\gamma$ $T = E - m \Rightarrow m(\gamma - 1)$ $E = \sqrt{p^2 + m^2}$ $\beta << 1 \Rightarrow T \approx \frac{p^2}{2m}$

Natural Units

- In relativistic quantum mechanics (i.e. particle physics), it is customary to express quantities assuming ħ=c=1 → Natural Units (NU) as opposed to International System (IS)
- With this assumption relevant physics quantities can be related to powers of only one, e.g. energy
- To connect between the two systems each quantity needs to be multiplied by the powers of h and c needed to restore the physics quantities (m and n uniquely determined)

Kahoot!

Q[IS]=Q[NU]*ħ^m*cⁿ

In this system $e^2/4\pi\epsilon_0 = \alpha_{em} = 1/137$ → Heavyside-Lorentz

Dimensions of ħ and c

	Dimensions	measurement
ħ	Momentum*position	
	Energy*time	1.035 10-34 Js 6.5 10 ⁻¹⁶ eV s 6.5 10-13 MeV ns
С	Position/time	3.0 10 ⁸ m/s 300 km/s <mark>30cm/ns</mark> 3.0 10 ¹⁴ fm/ns
ħc	Energy*position	3.1 10 ⁻²⁶ Jm 200 MeV fm
	My favourite ap	oproach: use
	Q[IS]=Q[NU]*(ħc) ^m *c ⁿ
	With the units	in red

Natural Units: examples

- 1. An electron has a momentum p=1MeV/c, which is its momentum in IS?
 - MeV is a unit of energy 1MeV=10⁶ e[C] J~1.6 10^{-13} J
 - p in the I.S. should be in kg m/s
 - to convert between the two representations one needs to multiply p= 1 MeV/c=1.6 10⁻¹³/3 10⁸= 5 10⁻²² kg m/s
 - 2. Which is the e.s. energy in NU of an electron at a distance d=0.5Å from a carbon nucleus with (Z=6). Assume no shielding from other electrons

 $U=Ze^{2}/4\pi\epsilon_{0}d=Z\alpha_{em}/d$

To convert you need to add the correct power of \hbar and c. U is an energy(E), d a length (L), therefore the power of \hbar (m) and c (n) need to satisfy

 $E=\hbar^m c^n/L=(E T)^m(L/T)^n/L$

→m=n=1 → U=Zħc α_{em} /d=6*200(MeV/fm)/137/5*10⁴=1.2*10⁵/137/5=175eV [N.B. binding energy is half the e.s. energy]

Examples

- Find the kinetic energy of an He nucleus with p=50MeV/u
- Find the radius of the orbit of a T=10MeV proton in B=0.5T magnetic field
- P=eBR with e=300 MeV/TM
- Find the beta and beta*gamma of an electron accelerated by 2MV

Kahoot!

