

Natural Units

Relativity

Summary

Kahoot!

Relativistic

kinematics/dynamics

$$
\begin{aligned}
& \beta=\frac{v}{c} \Rightarrow v \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}} \\
& E=m \gamma c^{2} \Rightarrow m \gamma \\
& p=m \beta \gamma c \Rightarrow m \beta \gamma \\
& T=E-m \Rightarrow m(\gamma-1) \\
& E=\sqrt{p^{2}+m^{2}} \\
& \beta \ll 1 \Rightarrow T \approx \frac{p^{2}}{2 m}
\end{aligned}
$$

Natural Units

- In relativistic quantum mechanics (i.e. particle physics), it is customary to express quantities assuming $\hbar=c=1 \rightarrow$ Natural Units (NU) as opposed to International System (IS)
- With this assumption relevant physics quantities can be related to powers of only one, e.g. energy
- To connect between the two systems each guantity needs to be multiplied by the powers of \hbar and c needed to restore the physics quantities (m and n uniquely determined)

$$
Q[I S]=Q[N U]^{\star} \hbar^{m \star} c^{n}
$$

Kahoot!

Dimensions of \hbar and c

	Dimensions	measurement
\hbar	Momentum*position	
	Energy*time	$1.03510-34 \mathrm{Js}$
		$6.510^{-16} \mathrm{eV} \mathrm{s}$
		$6.510-13 \mathrm{MeV} \mathrm{ns}$
c	Position/time	$3.010^{8} \mathrm{~m} / \mathrm{s}$
		$300 \mathrm{~km} / \mathrm{s}$
		$30 \mathrm{~cm} / \mathrm{ns}$
		$3.010^{14} \mathrm{fm} / \mathrm{ns}$
		Energy*position
ћc	$3.110^{-26} \mathrm{Jm}$	
		200 MeV fm

My favourite approach: use

$$
Q[I S]=Q[N U]^{\star}(\hbar c)^{m \star} c^{n}
$$

With the units in red

Natural Units: examples

1. An electron has a momentum $\mathrm{p}=1 \mathrm{MeV} / \mathrm{c}$, which is its momentum in IS?

- MeV is a unit of energy $1 \mathrm{MeV}=10^{6}$ e[C] J~1.6 $10^{-13} \mathrm{~J}$
- p in the I.S. should be in $\mathrm{kg} \mathrm{m} / \mathrm{s}$
- to convert between the two representations one needs to multiply

$$
\mathrm{p}=1 \mathrm{MeV} / \mathrm{c}=1.610^{-13} / 310^{8}=510^{-22} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

2. Which is the e.s. energy in NU of an electron at a distance $d=0.5 \AA$ from a carbon nucleus with ($Z=6$). Assume no shielding from other electrons

$$
\mathrm{U}=\mathrm{Z} e^{2} / 4 \pi \varepsilon_{0} \mathrm{~d}=\mathrm{Z} \alpha_{\mathrm{em}} / \mathrm{d}
$$

To convert you need to add the correct power of \hbar and c. U is an energy (E), d a length (L), therefore the power of $\hbar(m)$ and $c(n)$ need to satisfy

$$
E=\hbar^{m} c^{n} / L=(E T)^{m}(L / T)^{n} / L
$$

$\rightarrow m=n=1 \rightarrow U=Z \hbar c \alpha_{e m} / d=6 * 200(\mathrm{MeV} / \mathrm{fm}) / 137 / 5^{*} 10^{4}=1.2^{*} 10^{5} / 137 / 5=175 \mathrm{eV}$ [N.B. binding energy is half the e.s. energy]

Examples

- Find the kinetic energy of an He nucleus with $\mathrm{p}=50 \mathrm{MeV} / \mathrm{u}$
- Find the radius of the orbit of a $\mathrm{T}=10 \mathrm{MeV}$ proton in $\mathrm{B}=0.5 \mathrm{~T}$ magnetic field
$P=e B R$ with $e=300 \mathrm{MeV} / \mathrm{TM}$
- Find the beta and beta*gamma of an electron accelerated by 2 MV

