Esame di Meccanica Quantistica 14/05/2025

Esercizio 1. Si consideri una particella di massa m e spin 0 vincolata a muoversi in una dimensione. Si considerino le seguenti Hamiltoniane:

$$\hat{H}_{0} = \frac{\hat{p}^{2}}{2m} + V_{0}(\hat{x}), \qquad V_{0}(\hat{x}) = \frac{1}{2}m\omega^{2}\hat{x}^{2}$$

$$\hat{H}_{1} = \frac{\hat{p}^{2}}{2m} + V_{1}(\hat{x}), \qquad V_{1}(\hat{x}) = \hbar^{\alpha}m^{\beta}\omega^{\gamma}e^{-\frac{\hat{x}^{2}}{2x_{0}^{2}}}$$

$$\hat{H}_{2} = \frac{\hat{p}^{2}}{2m} + V_{2}(\hat{x}), \qquad V_{2}(\hat{x}) = \hbar^{\delta}m^{\eta}\omega^{\xi}\hat{x}e^{-\frac{\hat{x}^{2}}{2x_{0}^{2}}}$$

$$\hat{H}_{3} = \hat{H}_{0} + V_{1}(\hat{x})$$

$$con x_0 = \sqrt{\frac{\hbar}{m\omega}}.$$

- a) Determinare $\alpha, \beta, \gamma, \delta, \eta \in \xi$.
- b) Studiare qualitativamente lo spettro degli operatori \hat{H}_1 , \hat{H}_2 e \hat{H}_3 indicando gli intervalli di energia dove lo spettro è continuo o discreto, la degenerazione degli autovalori e la natura delle autofunzioni (se esse corrispondano a stati di scattering o a stati legati).

Si consideri ora una particella di spin 1/2 la cui Hamiltoniana è la seguente:

$$\hat{H} = \hat{H}_0 + \epsilon \hat{V}(\hat{x}), \qquad V(\hat{x}) = V_1(\hat{x})|+\rangle\langle+|+V_2(\hat{x})|-\rangle\langle-|$$

con $0 < \epsilon \ll 1$ e $\hat{S}_z |\pm\rangle = \pm \frac{\hbar}{2} |\pm\rangle$.

- c) Si calcoli la correzione al livello fondamentale al primo ordine in ϵ .
- d) Si calcolino i commutatori $\left[\hat{S}_z,\hat{H}\right],\;\left[\hat{S}_x,\hat{H}\right]$ e $\left[\hat{p},\hat{H}\right].$

Esercizio 2. Due particelle identiche di spin 1 sono confinate su un cerchio di raggio R che giace nel piano xy ed è centrato nell'origine. La Hamiltoniana del sistema è

$$H = a(L_{1z}^2 + L_{2z}^2) - \gamma S_z,$$

dove S_z è la componente z dello spin totale $S = S_1 + S_2$. Si supponga $a, \gamma > 0$.

- a) Si ricavi lo spettro (senza degenerazioni) di H per $\gamma=0$. Si ricavi quindi l'energia e la degenerazione dei primi 10 livelli di H per $0<\gamma\ll a$.
- b) Si determini lo stato $|\Psi\rangle$ delle due particelle tale che: i) è autostato di S_z con autovalore $-\hbar$; ii) è autostato di S_z ; il corrispondente autovalore è il più piccolo possibile tra quelli coerenti con la condizione i). iv) Tra tutti gli stati che soddisfano a i), ii), iii), lo stato $|\Psi\rangle$ è quello per cui $\langle\Psi|H|\Psi\rangle$ assume il valore più piccolo possibile.
- c) Al tempo t=0 la Hamiltoniana diventa

$$H = a(L_{1z}^2 + L_{2z}^2) - \gamma S_x$$

Se $|\Psi(t=0)\rangle = |\Psi\rangle$, dove $|\Psi\rangle$ è lo stato determinato al punto b), si calcoli $\langle \Psi(t)|S_z|\Psi(t)\rangle$.