Lezione Sof tissue tumors

2024-25

Rita Alaggio Università La Sapienza IRCCS-Ospedale Pediatrico Bambino Gesù Roma

Soft tissue Tumors

Extra-skeletal mesechymal neoplasm, include also neoplasms of peripheral nerves

Soft tissue tumors: Epidemiology

Soft tissue tumors: majority benign (e.g. lipoma) Benign/malignant ratio about 200:1 Malignant forms (Sarcomas) are rare (about 5/100.000) Age: 50% from second decade, most frequently in the fourth Different tumor types acc

Soft tissue tumors: Epidemiology

Pediatric STS

More than 50 histotypes and subtypes, with different biology and clinical behavior... and their spectrum varies according to age

 Uno stesso istotipo di tumore presenta spesso una aggressività variabile in funzione di differenti parametri

Dimensioni Sede Topografici Istopatologici Età Ploidia Fattori cinetici Alt. citogenetiche Alt. molecolari

Distribuzione anatomica dei sarcomi dei tessuti molli

•	arto inferiore	37,8 %
•	arto superiore	13,5 %
•	testa - collo	11,8 %
•	tronco	13,4 %
•	retroperitoneo e mesentere	16,7 %
•	mediastino	1,0%
•	Tratto urogenitale	2,9%
•	Cordone spermatico	1,3 %
•	Altre sedi	1,6 %

Soft tissue Tumors: Etiology

Unknown

Association with trauma not demonstrated

Foreign material

Radiation therapy (1% of sarcomas)

Chemical agents (e.g. angiosarcoma of liver and vynil polyclorure)

Virus (Kaposi Sarcoma, EBV)

Genetic predisposition (Li Fraumeni syndrome, Retinoblatoma, Neurofibromatosis type 1, Tuberous Sclerosis, FAP

La diagnosi di Neoplasia delle parti molli è difficile

Esame Clinico

Sintomi

Caratteristiche cliniche della lesione:: età, sede, dimensioni, velocità di crescita

Esami di laboratorio

Esami ematochimici routinary; Markers tumorali

Imaging

- Rx standard
- Ecografia
- TAC
- RMN

Approccio alla lesione: (Eventuale Agoaspirato) Biopsia (tru-cut, chirurgica) Exeresi

Valutazione Istologica Utilizzo di tecniche ancillary: Immunoistochimica Analiisi citogenetiche/molecolari

Soft tissue Tumors: Classification

Classification based on

- Differentiative lineage, i.e. histologic resemblance to normal tissue (e.g. lipoma resembles mature adipocytes)
- Presence of mature or immature components characteristic of sarcomas (e.g. liposarcoma is composed of immature adipocytes)
- *Exceptions:* lipoblastoma-a pediatric adipocytic tumor with immature adipocytes, not malignant

What about tumors with no evident differentiation lineage?

Category of Soft Tissue tumors with uncertain differentiation based on cytologic and/or molecular features

Algelelegelelegelelegel

Soft tissue Tumors: Molecular Pathogenesis

STT with "simple" genome

1-Tumors with chimeric transcription factors and transcriptional deregulation into oncogenic gene fusions

2-Activating and inactivating point mutations

3-Gene amplifications

STT with complex genome

4-Tumors with highly complex karyotypes

Sarcoma Subtype	Translocation	Genes	Oncogenic Mechanism		
Ewing sarcoma	t (11; 22) (q24; q12) t (21; 22) (q22; q12) t (16; 21) (p11; q22)	EWSR1, FLI1 EWSR1, ERG FUS, ERG	Transcription factor		
DSRCT	t (11; 22) (p13; q12)	EWSR1, WT1	Transcription factor		
Alveolar rhabdomyosarcoma	t (2;13) (q35; q14) t (1; 13) (p36; q14)	PAX3, FOXO1 PAX7, FOXO1	Transcription factor		
Clear cell sarcoma	t (12; 22) (q13; q12)	EWSR1, ATF1	Transcription factor		
Extraskeletal myxoid chondrosarcoma	t (9; 22) (q22–31; q11–12)	EWSR1, NR4A3	Transcription factor		
Myxoid liposarcoma	t (12; 22) (q13; q12) t (12; 16) (q13; p11)	EWSR1, CHOP FUS, CHOP	Transcription factor		
Alveolar soft part sarcoma	t (X; 17) (p11.2; q25)	ASPL, TFE3	Transcription factor		
PEComa	Xp11 rearrangement	*, TFE3	Transcription factor		
Low grade fibromyxoid sarcoma	t (7; 16) (q33; p11)	FUS, CREB3L2	Transcription factor		
Sclerosing epithelioid fibrosarcoma	t (11; 22) (p11; q12)	EWSR1, CREB3L1	Transcription factor		
Low grade endometrial stromal tumor	t (7; 17) (p15; q21)	JAZF1, JJAZ1	Transcription factor		
Synovial sarcoma	t (X; 18) (p11; q11) SYT, SSX1, S		Chromatin remodeling		
Congenital fibrosarcoma	t (12; 15) (p13; q25)	ETV6, NTRK3	Tyrosine Kinase		
Inflammatory myofibroblastic tumor	t (2; 19) (p23; p13.1) t (1; 2) (q22–23; p23)	TPM4, ALK TPM3, ALK	Tyrosine Kinase		
Dermatofibrosarcoma protuberans	t (17; 22) (q22; q13)	COL1A1, PDGFβ	Growth Factor		
PVNS/TGCT	t (1; 2) (p13; q37)	COL6A3, CSF1	Growth Factor		

Abbreviations: DSRCT: desmoplastic small round cell tumor, PVNS/TGCT: pigmented villonodular synovitis/tenosynovial giant cell tumor. * Multiple gene partners. **International Agency for Research on Cancer**

WHO Classification of Tumours <u>online</u>

World Health Organization

About Us Contact Us Home

My Account My Notes My Favourite Loaout

Soft Tissue and Bone Tumours (5th ed.)

Adipocytic tumours Lipoma Lipomatosis Lipomatosis of nerve Lipoblastoma and lipoblastomatosis Angiolipoma Myolipoma of soft tissue Chondroid lipoma Spindle cell lipoma and pleomorphic lipoma Hibernoma Atypical spindle cell / pleomorphic lipomatous tumour Atypical lipomatous tumour / well-differentiated liposarcoma Dedifferentiated liposarcoma Myxoid liposarcoma Pleomorphic liposarcoma Myxoid pleomorphic liposarcoma Fibroblastic and myofibroblastic tumours Myositis ossificans and tibro-osseous pseudotumour of digits Ischaemic fasciitis Flastofibroma Fibrous hamartoma of infancy Fibromatosis colli Juvenile hyaline fibromatosis Inclusion body fibromatosis Fibroma of tendon sheath Desmoplastic fibroblastoma Myofibroblastoma Calcifying aponeurotic fibroma EWSR1-SMAD3-positive fibroblastic tumour (emerging) Angiomvofibroblastoma Cellular angiofibroma Angiofibroma of soft tissue Nuchal-type fibroma Acral fibromyxoma Gardner fibroma Palmar fibromatosis and plantar fibromatosis Desmoid fibromatosis Lipofibromatosis Giant cell fibroblastoma Dermatofibrosarcoma protuberans Solitary fibrous tumour Inflammatory myofibroblastic tumour Low-grade myofibroblastic sarcoma Superficial CD34-positive fibroblastic tumour Myxoinflammatory fibroblastic sarcoma Infantile fibrosarcoma Adult fibrosarcoma Myxofibrosarcoma Low-grade fibromyxoid sarcoma Sclerosing epithelioid fibrosarcoma

So-called fibrohistiocytic tumours Tenosynovial giant cell tumour Deep fibrous histiocytoma Plexiform fibrohistiocytic tumour Giant cell tumour of soft tissue Vascular tumours Haemangiomas Synovial haemangioma Intramuscular angioma Arteriovenous malformation/haemangioma Venous haemangioma Anastomosing haemangioma Epithelioid haemangioma Lymphangioma and lymphangiomatosis Tufted angioma and kaposiform haemangioendothelioma Retiform haemangioendothelioma Papillary intralymphatic angioendothelioma Composite haemangioendothelioma Kaposi sarcoma Pseudomvogenic haemangioendothelioma Epithelioid haemangioendothelioma Angiosarcoma Pericytic (perivascular) tumours Glomus tumour Myopericytoma, including myofibroma Angioleiomyoma Smooth muscle tumours Leiomyoma EBV-associated smooth muscle tumour Inflammatory leiomyosarcoma Leiomyosarcoma Skeletal muscle tumours **Bhabdomyoma** Embryonal rhabdomyosarcoma Alveolar rhabdomyosarcoma Pleomorphic rhabdomyosarcoma Spindle cell / sclerosing rhabdomyosarcoma Ectomesenchymoma Gastrointestinal stromal tumour Gastrointestinal stromal tumour Chondro-osseous tumours Soft tissue chondroma

Extraskeletal osteosarcoma

Peripheral nerve sheath tumours Schwannoma Neurofibroma Perineurioma Granular cell tumour Dermal nerve sheath myxoma Solitary circumscribed neuroma Ectopic meningioma and meningothelial hamartoma Benign triton tumour / neuromuscular choristoma Hybrid nerve sheath tumour Malignant peripheral nerve sheath tumour Malignant melanotic nerve sheath tumour Tumours of uncertain differentiation Intramuscular myxoma Juxta-articular mvxoma Deep (aggressive) angiomyxoma Atypical fibroxanthoma Angiomatoid fibrous histiocytoma Ossifying fibromyxoid tumour Myoepithelioma, myoepithelial carcinoma, and mixed tumour Pleomorphic hyalinizing angiectatic tumour of soft parts Haemosiderotic fibrolipomatous tumour Phosphaturic mesenchymal tumour NTRK-rearranged spindle cell neoplasm (emerging) Synovial sarcoma Epithelioid sarcoma Alveolar soft part sarcoma Clear cell sarcoma of soft tissue Extraskeletal myxoid chondrosarcoma Desmoplastic small round cell tumour Extrarenal rhabdoid tumour PEComa Intimal sarcoma Undifferentiated sarcoma

3. Undifferentiated small round cell sarcomas of bone and soft tissue

Ewing sarcoma Round cell sarcoma with EWSR1-non-ETS fusions CIC-rearranged sarcoma Sarcoma with BCOR genetic alterations

World Health Organization			Soft	Tissue S	arcoma	S			
Adipocytic	Fibro Histiocytic	Vascular	Fibroblastic & myofibroblastic	Peripheral nerve sheath	Smooth muscle	GI Stromal	Chondro osseous	Skeletal muscle	Uncertain differentiation
Myxoid	Giant Cell Tumor	EHE	Infantile	MPNST	LMS	GIST	Extraskeletal Osteosarcoma	ARMS	CIC-sarcoma

WHO Subcategories based on morphology:

- •Round cell
- •Spindle cell
- Pleomorphic
- •Epithelioid cell
- •Not Otherwise Specified (NOS)

Courtesy dr T. Santiago

Sarcoma Grading: FNCLCC system

Combination of tumor differentiation / histology, mitotic count and tumor necrosis

- Tumor differentiation
 - 1, 2 or 3 points based on resemblance to normal tissue
- Mitotic count: 10 successive high power fields (HPFs) in the most mitotically active area
 - 1 point: 0 9 mitoses
 - 2 points: 10 19 mitoses
 - 3 points: 20 or more mitoses
- Tumor necrosis
 - 0 points: no necrosis
 - 1 point: < 50% necrosis
 - 2 points: \geq 50% necrosis

Tumor Grade: sum total of tumor differentiation, mitotic count and tumor necrosis scores

- Grade 1: 2 3 points
- Grade 2: 4 5 points
- Grade 3: 6 8 points

Histologic type	Score
Atypical lipomatous tumor / well differentiated liposarcoma	1
Well differentiated leiomyosarcoma	1
Malignant neurofibroma	1
Well differentiated fibrosarcoma	1
Myxoid liposarcoma	2
Conventional leiomyosarcoma	2
Conventional fibrosarcoma	2
Myxofibrosarcoma	2* (see <u>above</u>)
High grade myxoid liposarcoma	3
Pleomorphic liposarcoma	3
Dedifferentiated liposarcoma	3
Pleomorphic rhabdomyosarcoma	3
Poorly differentiated / pleomorphic leiomyosarcoma	3
Synovial sarcoma	3
Mesenchymal chondrosarcoma	3
Extraskeletal osteosarcoma	3
Extraskeletal Ewing sarcoma	3
Malignant rhabdoid tumor	3
Undifferentiated pleomorphic sarcoma	3
Undifferentiated sarcoma, NOS	3

Adipocytic tumours

Adipocytic tumours
Lipoma
Lipomatosis
Lipomatosis of nerve
Lipoblastoma and lipoblastomatosis
Angiolipoma
Myolipoma of soft tissue
Chondroid lipoma
Spindle cell lipoma and pleomorphic lipoma
Hibernoma
Atypical spindle cell / pleomorphic lipomatous tumour
Atypical lipomatous tumour / well-differentiated liposarcoma
Dedifferentiated liposarcoma
Myxoid liposarcoma
Pleomorphic liposarcoma
Myxoid pleomorphic liposarcoma

Lipoma

Lipoma

Epidemiology

- most common mesenchymal neoplasm in adults, more common in males, tends to be associated with obesity
- Age: fifth to seventh decades, rare in the paediatric population.

Clinical features

painless mass; larger tumours may compress peripheral nerves and result in pain or tenderness.

Site: upper back, proximal extremity, and abdominal region, mostly superficial (subcutaneous) soft tissue mass, less frequently deep-seated

Prognosis

Benign, recurrence rate < 5%.

17

Angiolipoma

Multiple subcutaneous small nodules, tender to painful.

Mature fat cells intermingled with small and thin-walled vessels, a number of which contain fibrin thrombi.

Ibernoma

Clinical Features:

< 2% of benign adipocytic tumours.

young adults (mean age: 38 years; range: 2–75 y)

small, slow-growing, painless, subcutaneous masses in thigh, trunk, chest, upper extremity, and head and neck.

10% intra-abdominal, retroperitoneal, or thoracic

Histology:

Composed of eosinophilic and pale, polygonal, multivacuolated, granular, brown fat cells

Lipoblastoma

- Benign neoplasm of embryonal white fat with a tendency for local recurrence if incompletely excised.
- Age: 90% before 3 years, 40% 1st year of life
- Site: trunk, extremities, less frequent in retroperitoneum, pelvis, abdomen, head/neck, organs (lung, heart)
- Lobulated architecture with fibrovascular septa
- Lipoblasts in various stages of differentiation to mature fat with orientation from periphery to the center:

Adipocytic tumours

Atypical spindle cell / pleomorphic lipomatous tumour Atypical lipomatous tumour / well-differentiated liposarcoma Dedifferentiated liposarcoma Myxoid liposarcoma Pleomorphic liposarcoma

Muxeid pleemerphic lineacros

Myxoid pleomorphic liposarcoma

WD Liposarcoma

- MDM2 (12q14-15) ampl
- IHC (protein)
- FISH (gene amplification)

Histology: Adipose

Molecular Features: *MDM2 or CDK4* ampl+highly complex karyotype

Diagnosis:

Dedifferentiated Liposarcoma (high grade)

Distant metastases 15–20%, overall mortality rate:28–30% at 5-year follow-up

Prognostic significance of grade

Courtesy Silvia Vallese (OPBG, Rome)

Adipocytic tumours

Clinical History 50 yr old, M Mass in the upper leg

Histology: Adipocytic lineage Lipoblasts Myxoid Background Prominent capillary vasculature

Molecular Features: *FUS::DDIT3*

Diagnosis:

Myxoid Liposarcoma

20–30% of liposarcomas ,5% of adult soft tissue sarcomas

Molecular/Cytogenetic Testing

Reverse transcription polymerase chain reaction (RT-PCR)

A RNA template is converted into a complementary DNA (cDNA) using a reverse transcriptase. The cDNA is then used as a template for exponential amplification using PCR. RT-PCR is a sensitive method of detection of specific fusion transcripts in RNA (eg *FUS::DDIT3*)

Molecular/Cytogenetic Testing

Fluorescence in situ hybridization (FISH)

Detects and localizes specific DNA sequences using fluorescently labelled complementary DNA probes

(eg a gene rearrangement)

Disadvantage: partner gene not known: eg EWSR rearrangement

Histology: ? Lineage

Molecular Features: *FUS::DDIT3*

Diagnosis:

High grade Myxoid Liposarcoma

- 5% of the tumour with cellular overlap, diminished myxoid matrix, less-apparent capillary vasculature, elevated nuclear grade, and increased mitotic activity.
- Significantly poorer prognosis

Molecular/Cytogenetic Testing

Next-generation sequencing (NGS)

Detects known and novel fusions with arbitrary

breakpoints in DNA or RNA

Disadvantage: time consuming, costs

@ Ouiv

Previous 1 Next

Low Med High

Complete

Review Complete

Sample History

Sample Commer

Sample Reports

A Processing Log Sample QC ALK_E_d_020_mid_GSP2 ALK_E_r_021_62_R_0_GSP2

Showing 1 to 2 of 2 entries

~ 🖸

EML4 → ALK 48 500

Myofibroblastic Tumors

World Health Organization

> Myositis ossificans and fibro-osseous pseudotumour of digits Ischaemic fasciitis Elastofibroma Fibrous hamartoma of infancy Fibromatosis colli Juvenile hyaline fibromatosis Inclusion body fibromatosis Fibroma of tendon sheath Desmoplastic fibroblastoma Myofibroblastoma Calcifying aponeurotic fibroma EWSR1-SMAD3-positive fibroblastic tumour (emerging) Angiomyofibroblastoma Cellular angiofibroma Angiofibroma of soft tissue Nuchal-type fibroma Acral fibromyxoma Gardner fibroma Palmar fibromatosis and plantar fibromatosis Desmoid fibromatosis Lipofibromatosis Giant cell fibroblastoma Dermatofibrosarcoma protuberans Solitary fibrous tumour Inflammatory myofibroblastic tumour Low-grade myofibroblastic sarcoma Superficial CD34-positive fibroblastic tumour Myxoinflammatory fibroblastic sarcoma Infantile fibrosarcoma Adult fibrosarcoma Myxofibrosarcoma Low-grade fibromyxoid sarcoma Sclerosing epithelioid fibrosarcoma

Nodular Fasciitis

- Self-limiting mesenchymal neoplasm that usually occurs in subcutaneous tissue.
- It is composed of plump, uniform fibroblastic/myofibroblastic cells displaying a tissue culture–like architectural pattern,
- Usually harbours USP6 gene rearrangement

Desmoid Fibromatosis

Locally aggressive but non-metastasizing deep-seated (myo)fibroblastic neoplasm with infiltrative growth and <u>propensity for</u> <u>local recurrence (especially after</u> <u>incomplete resection.</u>

Site: extremities (30–40%). retroperitoneum or abdominal cavity (15%), abdominal wall (20%), chest wall (10–15%). Other sites:head and neck, paraspinal region, flank

Molecular findings:

- Sporadic: 90–95% point mutations in the gene that encodes β -catenin (CTNNB1)
- Gardner syndrome: germline mutations in the APC tumour suppressor gene

Dermatofibrosarcoma protuberans

1/100.000, rare in children (6% of all DFSP) Pts are young/adults; more frequently male

Slow growing, firm, nodular dermal/subcutaneous mass, often present years before diagnosis in the trunk , extremities, less frequently head and neck

Histology: Infiltration of dermis and subcutis. cytologically uniform spindled tumour in storiform, whorled, or cartwheel growth patterns. Cytological atypia is minimal and mitotic activity is low.

Recurrence rate 1-9% (20-50% in adults), Rare

mets

Solitary Fibrous Tumor

Adults

Localization:any anatomical site, including superficial and deep soft tissues (80-90%) and visceral organs

Slow-growing, painless masses. Paraneoplastic syndromes: Doege– Potter syndrome, severe hypoglycaemia or (more rarely) acromegaloid changes due to tumour production of IGF2

prominent, branching, thin-walled, dilated (staghorn) vasculature and NAB2-STAT6 gene rearrangement.

Soft Tissue Sarcomas

Smooth muscle tumours

Leiomyoma

EBV-associated smooth muscle tumour

Inflammatory leiomyosarcoma

Leiomyosarcoma

Leiomyoma

Benign smooth muscle tumour of somatic soft tissue Middle-aged adults,

<u>**Cutaneous**</u> (from wall of blood vessels (vascular leyomyoma) or erector hair follicle muscle (pilar leyomyoma)

Deep soft tissue: retroperitoneal

with no sex difference

omentum, mesentery, and peritoneal surface, inguinal region

Although usually solitary, retroperitoneal tumours may be multiple

Histology:

Cells that closely resemble normal smooth muscle cells with eosinophilic cytoplasm and uniform bluntended, cigar-shaped nuclei. arranged in intersecting fascicles.

Leiomyosarcoma (LMS)

Definition: A malignant neoplasm composed of cells showing smooth muscle differentiation.

Site: Soft tissue (extremities, retroperitoneum, abdomen/pelvis, and trunk, large blood vessels (inferior vena cava, the large veins of the lower extremity)

Epidemiology: 7th decade, 11% of all soft tissue sarcomas

Women constitute the majority of patients with retroperitoneal and inferior vena cava LMSs

Progosis: aggressive neoplasms with local recurrences and distant metastases.

Prognostic factors: histological grade, tumour location and size

Retroperitoneal LMSs often fatal; typically large (> 10 cm), difficult or impossible to excise with clear margins

Non-retroperitoneal LMSs are generally smaller, more amenable to local control, and better prognosis. intramuscular rather than subcutaneous related to increased metastasis and poorer survival. Metastases in lung, liver, and soft tissue, and more rarely in bone

Leiomyosarcoma (LMS)

Leiomyosarcoma (LMS)

nttps://pposs.iarc.tr/supmission.pnp?cnapid=100&supcnapid=100&page=4

Soft Tissue Sarcomas

Skeletal muscle tumours Rhabdomyoma Embryonal rhabdomyosarcoma Alveolar rhabdomyosarcoma Pleomorphic rhabdomyosarcoma Spindle cell / sclerosing rhabdomyosarcoma Ectomesenchymoma Gastrointestinal stromal tumour Gastrointestinal stromal tumour Chondro-osseous tumours Soft tissue chondroma Extraskeletal osteosarcoma

Skeletal muscle

Rhabdomyosarcoma

Most frequent pediatric sarcoma

Malignant mesenchymal tumor with morphologic and/or immunophenotype of embryonal skeletal muscle

Prognosis related to:

Histology/Molecular features underlying RMS

Site

- Favorable (GU,non VP; Orbit; Head/neck non PM)
- Unfavorable (GU-VP, Extremities, Head/neck PM)

Age

Size

Stage (IRS)

Rhabdomyosarcoma: Definition

General Features

Classification

Histotypes

RMS in Tumor predisposition syndromes Malignant mesenchymal tumor with morphologic and/or immunophenotypic features of embryonal skeletal muscle

 Rhabdomyosarcoma reproduces skeletal muscle

 development

 Satellite Cell

Classification

Critical Issues

RMS in Tumor predisposition syndromes

Rhabdomyosarcoma: Immunophenotype

Transcription Factors

Rhabdomyosarcoma

Rhabdomyosarcoma: Immunophenotype

Intermediate Filaments: Desmin

General Features

Classification

Critical Issues

RMS in Tumor predisposition syndromes

.....

Desmina -

Rhabdomyosarcoma: WHO Classification 5th Edition

	HISTOLOGY*	Age (yr)	Site
	ERMS	0-5 (18% >10)	Head/neck GU-tract. orbit, bile ducts, retroperitoneum
Classification	SPINDLE/SCLEROSING RMS	Infantile	back
		Older children, adults	head and neck, trunk and extremities
		Older children, adults	Bone, facial bones
	ARMS	6.8-9	extremities, paraspinal, perineal, breast

* Pleomorphic RMS are extremely rare in children

Embryonal Rhabdomyosarcoma: histological Features

ERMS

Alveolar Rhabdomyosarcoma

HISTOLOGY	Age (yr)	Site	Prognosis	FUSIONS
ARMS	6.8-9	extremities, paraspinal, perineal, breast	Unfavorable	PAX3/7-FOXO1

Alveolar Rhabdomyosarcoma: histological Features

Spindle/Sclerosing RMS: Histology

General Features

	Age (yr)	Site	Prognosis	FUSIONS
	Infantile (1)	back	Favorable	NCOA2,VGLL2 fusions
Histotypes	Older children, adults (2,3)	head and neck, trunk and extremities	poor	MyoD1 mut ((L122R) *
	Older children, adults	Bone, facial bones	poor	FUS/EWSR1::TFCP 2

RMS in Tumor predisposition syndromes

> Genomic Classification and Clinical Outcome in Rhabdomyosarcoma: A Report From an International Consortium

> Jack F. Shem, MD¹⁻² Joanna Selle, PhD¹; Elisa Izquierdo, MD¹; Rajesh Palidar, MS¹; Hsien-Chao Chou, PhD¹; Young K. Song, PhD²; Maniala E. Yole, MD, PhD²; Steastish Shoffi, MS¹; Jan Wu, PhD²; Jony Wu, MS¹; Elin R. Rudanski, MD² Sabid Janut, MS², Winel Jenery, MD¹, Juli Chisholm, MD²; Heescea Rhow, MD²; Kinthia Jones PhD²⁰; Baynad Hciks, PhD¹; Paola Angelini, MD¹; Sally Googe, MD²¹; Louis Chesker, MD²; Michael Rhannk, MD²; Anna Hong, ND²¹, Stustine A. Gatz, MD²¹⁴; Stephen X. Slager, MD¹¹; Sally Googe, MD²¹¹; Louis Chesker, MD²¹; Michael Nethor, MD¹; Anna Marce, MD²¹; Salari Googe, MD²¹⁴; Jones Angelini, MD¹¹; Sally Googe, MD²¹⁴; Louis Chesker, MD²¹; Michael Mark, MD¹²; Anathael Mark, MD¹²; Jane H

*Associated alterations of PIK3CA (53%); deep deletions in CDKN2A (24%).

Spindle/Sclerosing RMS: Histology

General Features

Classification

Histotypes

RMS in Tumor predisposition syndromes

F, Abdominal Mass 14 yr: Sclerosing RMS with MyoD1 mut

Soft Tissue Sarcomas

Peripheral nerve sheath tumours

Schwannoma

Neurofibroma

Perineurioma

Granular cell tumour

Dermal nerve sheath myxoma

Solitary circumscribed neuroma

Ectopic meningioma and meningothelial hamartoma Benign triton tumour / neuromuscular choristoma

Hybrid nerve sheath tumour

Malignant peripheral nerve sheath tumour

Malignant melanotic nerve sheath tumour

MPNST

NEUROFIBROMA

Benign peripheral nerve sheath tumor consisting of differentiated Schwann cells, perineurial-like cells, fibroblasts, mast-cells, residual myelinated and unmyelinated axons embedded in the extracellular matrix

Growth pattern: well-demarcated intraneural or diffuse infiltration of soft tissue at extraneural sites

NEUROFIBROMA

Solitary NF

Adulthood, broad anatomic location, non NF1 (deep lesions associated with NF1 and malignant change)

Multiple NF

If associated with skin spots: NF1

Diffuse NF (NF1)

1st – 3rd decades, trunk and head & neck, 10%, no malignant change

Plexiform NF (NF1)

Children and young adults, head and neck, malignant change

Neurofibromatosis

- NF1: 1/3500 newborn infants.
- Manifestations of NF1 highly variable, even in the same family:

Cafè-au-laits spots

Pigmented iris hamartoma (Lish nodules)

Neurofibromas (plexiform)

Gliomas

Molecular Features

- Inactivation of one allele of neurofibromin 1 (NF1), a tumor suppressor gene (nonsense, missense or frameshift mutations, or mutations affecting RNA splicing)
- Complete deletion rare (5% of NF1)

٠

At superficial cutaneous sites, localized, pedunculated growths.

Plexiform neurofibroma in a major nerve trunk almost always associated with NF1. Generally involvement of numerous adjacent nerve fascicles or multiple components of a nerve plexus.

Admixture of areas resembling localized and diffuse-type neurofibromas. Plexiform neurofibroma has a potential for malignant degeneration, and

Schwannoma

- Adulthood
- M = F
- Wide anatomic distribution
- Bilateral schwannomas of acoustic nerve = NF2 syndrome
- Malignant change exceptional

Schwannoma

Encapsulated nerve sheath tumor, composed of well differentiated Schwann cells

Biphasic with:

1-Compact cellular areas (Antoni A), occasional palisades (Verocay Bodies). Cytoplasmic nuclear inclusions

2-Hypocellular (Antoni B) areas

MPNST: Definition (WHO 2022)

Malignant peripheral nerve sheath tumour (MPNST) is a spindle cell sarcoma arising from a peripheral nerve, or from a preexisting benign nerve sheath tumour or in patients with neurofibromatosis type-1 (NF1). Outside these settings, the diagnosis is based on morphological, immunophenotypical, or molecular features suggesting Schwannian differentiation.

MPNST: WHY A CHALLENGING DIAGNOSIS?

- The diagnosis of MPNST is not based on reproducible criteria
- NO specific morphologic features (e.g. rhabdomyoblasts or lipoblasts)
- NO highly specific and sensitive immunohistochemical markers
- NO recurrent genetic aberrations

MPNST: Clinical Features

3% to 10% of all soft tissue sarcomas

50% in patients with neurofibromatosis type 1

10% radiation induced

Remainders "sporadic" forms

Mean age: 30

Male/Female ratio: 1.2:1

Site: trunk and extremities; less commonly MPNST affect the head and neck region

Overall survival 5 yrs< 50%

Noiecular Niechanisms in NIENSI

NF1 loss: effect on Schwann cell:

Neurofibromin inactivates members of the Ras family both classic Ras (H-, N-, and K-Ras) and R-Ras (R-Ras, R-Ras2/TC21, and M-Ras) subfamilies.

Pathogenesis of Neurofibromas and MPNSTs

Multiple members of Classic Ras and R-Ras are simultaneously expressed and activated in MPNST.

Classic Ras and R-Ras proteins contribute to MPNST proliferation

Only classic Ras proteins promote the survival of MPNST, whereas R-Ras proteins drive their migration

Nolecular Mechanisms in MPNS I denesis

Other genetic alterations:

- CDKN2A mutations in up to 50% of MPNSTs. It encodes p16INK4A (which inhibits CDK4 and CDK6) and p19ARF, (that inhibits Mdm2, which tags p53 for proteasomal degradation).
- Deletions and other loss of function mutations of TP53 occur in up to 75% of MPNSTs.
- Inactivating mutations of SUZ12, a gene encoding a chromatin-modifying protein that forms part of polycomb repressive complex 2 (PRC2).

Pathogenetic Mechanisms in MPNST

MPNST: loss of H3K27me3: an important marker

Lee W et al. Nat Genet. 2014

Uniform spindle cells with hypercromic, weavy, serpentine-like nuclei

Alternance of hyper/hypo cellular areas Palisade arrangement (around necrotic areas)

H3K27me loss (SOX10 and S100 –ve)

International Agency for Research on Cancer

WHO Classification of Tumours <u>online</u>

World Health Organization

Home About Us Co

Js Contact Us My Account My Notes My Favourite

ourite Logout

Soft Tissue and Bone Tumours (5th ed.)

Tumours of uncertain differentiation

Intramuscular myxoma

Juxta-articular myxoma

Deep (aggressive) angiomyxoma

Atypical fibroxanthoma

Angiomatoid fibrous histiocytoma

Ossifying fibromyxoid tumour

Myoepithelioma, myoepithelial carcinoma, and mixed tumour

Pleomorphic hyalinizing angiectatic tumour of soft parts

Ossifying fibromyxoid tumour

Myoepithelioma, myoepithelial carcinoma, and mixed tumour

Pleomorphic hyalinizing angiectatic tumour of soft parts

Haemosiderotic fibrolipomatous tumour

Phosphaturic mesenchymal tumour

NTRK-rearranged spindle cell neoplasm (emerging)

Synovial sarcoma

Epitnelioid sarcoma Alveolar soft part sarcoma

Clear cell sarcoma of soft tissue Extraskeletal myxoid chondrosarcoma Desmoplastic small round cell tumour Extrarenal rhabdoid tumour PEComa Intimal sarcoma

Undifferentiated sarcoma

Synovial sarcoma

- Mass with infiltrative borders
- The cut surface is firm; pink or gray;
- focal mucoid, necrotic, hemorrhagic, or cystic changes
- Calcification may be extensive
- Size from 1 cm to very large.
- Lymph node metastases possible

Biphasic SS: spindle and epithelial-like cells, with areas recapitulating gland formation anastomosing network of epithelial strands

Synovial Sarcoma: immunohistochemical profile/Molecular Features

- Cytokeratins + patchy in spindle cells, diffuse in epithelial component
- Broad-spectrum cytokeratins AE1/AE3 and CAM5.2, keratins 7, 13, and 19
- EMA+
- TLE1+diffuse nuclear

Molecular Features

- Chromosomal t(X;18) translocation with transcripts: *SS18::SSX1, SS18::SSX2, SS18::SSX4*
- 5% alternative gene fusions (such as SS18L1/SSX1) or cryptic rearrangements.

Undifferentiated Small Round Cell Sarcomas of Bone and Soft tissue

WHO Classification 2020, 5th edition

Ewing Sarcoma

Second most frequent bone malignancy Young adults (80% < 20 yr old) Site:

Bone (88%): lower extremities (41 %), Pelvis (26 %), chest wall (16 %), upper extremities (9 %), spine (6 %), foot, hand (3 %), skull (2 %)

Extra-osseousI(12%): Soft tissues, Skin, Visceral **Clinical features**:

Pain, nerve trunk compression, fractures, fever **Diagnosis:**

CT, MRI,

25 % metastatic at diagnosis

Undifferentiated Small Round Cell Sarcomas

Ewing Sarcoma 20y Peak incidence 88% bone Site 14% soft tissue parenchymal Monotonous round cells, fine Cytology/Nuclear features chromatin Solid, alveolar Pattern Stroma CD99, NKX2-2, FLI1, ERG IHC (in ERG fusion+) **Molecular Features** EWSR1-FLI1, *EWSR1-ERG, FUS-ERG* **RT-PCR** Molecular Detection Method(s) [if necessary]

*Additional alterations STAG2. mut (17%); CDKN2A (12%);TP53 (7%, w STAG2 and TP53, Loss of 16q, y 9p ,gain 8, 1q, 2,

Undifferentiated Small Round Cell Sarcomas

Round cell sarcomas with EWSR1-non-ETS fusions Peak incidence young long bones (metaphisis/diaphysis Site Soft tissue (head/neck, chest wall). Cytology/Nuclear monotonous round cells features Variations: pleomorphic cells, hyperchromatic/vesicular nuclei, small/prominent nucleoli Cords/nests/trabeculae Pattern Fibro (myxo)-hyaline stroma Stroma CD99 (diffuse in 50%), PAX7, NKX2-2, IHC CK AE1/AE3, CD138 (f), AGGRECAN. EWSR1 (FUS)-NFATC2, EWSR1-PATZ1 **Molecular Features** RNA sequencing panel (e.g. Archer) Molecular Detection Method(s) [if necessary]

Undifferentiated Small Round Cell Sarcomas

	CIC-Rearranged Sarcoma	COR .	P		90900	
Peak incidence	30-40 y	Price	A Car	150	10- 00	
Site	Soft tissue (trunk, pelvis, extremities)	No.	JY YU	2000		
Cytology/Nuclear features	Round cells ,eosinophilic cytoplasm. Vescicular, pleomorphic, nucleoli	per a	And I	100		
Pattern Stroma	Solid, Myxoid, hyaline	St. Jak				
ІНС	CD99 (p), ETV4, WT1, (ERG, FLI1)	1.5.5				
Molecular Features	CIC-DUX4, (rare 3' partners: FOXO4, LEUTX, NUTM1, NUT M2A)	Tank a st	1.1.1.1	a Por		
Molecular Detection Method(s) [if necessary]	FISH or RNA sequencing panel (e.g. Archer)	CD99	NT1	50		

3. Undifferentiated small round cell sarcomas of bone and soft tissue

• Mass of the left foot (astragalus bone), with extension to soft tissue (Surgical specimen after CT)

Desmoplastic Small Round Cell Tumor

- Young adults
- Serosal surface of the abdominal cavity (90% of patients)
- At diagnosis usually intraabdominal spread with lymph node involvement (50–80% of patients) and/or distant metastases (25%)

Desmoplastic Small round cell tumor

Fusion EWSR::WT1

Small Round Blue Cell Tumors

Descripitive term, not a histologic category

Small Roud Blue Cell Sarcomas

Undifferentiated Small Round Cell Sarcomas of Bone and Soft tissue

Rhabdomyosarcoma

DSRCT

Malignant Tumors non Sarcomatous

Neuroblastoma

Lymphomas

Retinoblastoma

Conclusions

The evolution of surgical pathology From "Histologic diagnosis" to "Integrated Diagnosis"

	Morphology	Immunoistochemistry	Molecular testing/genetic
Description	Microscopic analysis	AB conjugated to an enzyme, that can catalyse a colour-producing reaction once they bind to specific proteins	Molecular testing/genetic
Focus			Comparatively cheaper & faster
	Cytology (cell differentiation)	Intermediate filaments	FISH (fusions, amplifications)
	Pattern	Transcription factors	RT-PCR (fusions, Mutations)
	Vascular network	Mutated proteins (or loss of expression for mutation)	High cost, long lead time
	Stromal components	Fusions	NGS (Fusions, Mutations, Amplifications)
		Overexpression of proteins	
Cost & Lead Time	Low cost, Short lead time		High cost, Longer lead time

A multidisciplinary approach and a common language are essential is for a correct diagnosis and an appropriate treatment

A shared language means...

- Give the necessary information and know the steps deriving from it
- Avoid unnecessary information
- In case of a difficult diagnostic decision share doubts and certainties

Tumori a Piccole Cellule Rotonde dell'età pediatrica

Caratteristiche citologiche

Tumori a Piccole Cellule Rotonde dell'età pediatrica

Pattern di aggregazione cellulare

Pattern di aggregazione cellulare

Pattern di aggregazione cellulare

