
Risk Analysis, Vol. I ,  No. I ,  1981 

On The Quantitative Definition of Risk 

Stanley Kaplan’ and B. John Garrick2 

Received July 14, 1980 

A quantitative definition of risk is suggested in terms of the idea of a “set of triplets.” The 
definition is extended to include uncertainty and completeness, and the use of Bayes’ theorem 
is described in this connection. The definition is used to discuss the notions of “relative risk,” 
“relativity of risk,” and “acceptability of risk.” 
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1. INTRODUCTION 

As readers of this journal are well aware, we are 
not able in life to avoid risk but only to choose 
between risks. Rational decision-making requires, 
therefore, a clear and quantitative way of expressing 
risk so that it can be properly weighed, along with all 
other costs and benefits, in the decision process. 

The purpose of this paper is to provide some 
suggestions and contributions toward a uniform con- 
ceptual/linguistic framework for quantifying and 
making precise the notion of risk. The concepts and 
definitions we shall present in this connection have 
shown themselves to be sturdy and serviceable in 
practical application to a wide variety of risk situa- 
tions. They have demonstrated in the courtroom and 
elsewhere the ability to improve communication and 
greatly diminish the confusion and controversy that 
often swirls around public decision making involving 
risk. We hope therefore with this paper to widen the 
understanding and adoption of this framework, and 
to that end adopt a leisurely and tutorial place. 

We begin in the next section with a short discus- 
sion of several qualitative aspects of the notion of 
risk. We then proceed to a first-pass or first-level 
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quantitative definition. Since the notion of “probabil- 
ity” is fundamentally intertwined with the definition 
of risk, the next section addresses the precise mean- 
ing adopted in this paper for the term “probability.” 
In particular, at this point, we carefully draw a 
distinction between “probability” and “frequency.” 
Then, using this distinction, we return to the idea of 
risk, and give a “second-level” definition (of risk 
which generalizes the first-level definition) and is 
large enough and flexible enough to include at least 
all the aspects and subtleties of risk that have been 
encountered in the authors’ experience. 

2. QUALITATIVE ASPECTS OF THE NOTION 
OF RISK 

The subject of risk has become very popular in 
the last few years and is much talked about at all 
levels of industry and government. Correspondingly, 
the literature on the subject has grown very large [see 
for example refs. (1-3)]. In this literature the word 
“risk” is used in many different senses. Many differ- 
ent kinds of risk are discussed: business risk, social 
risk, economic risk, safety risk, investment risk, mili- 
tary risk, political risk, etc. Now one of the require- 
ments for an intelligible subject is a uniform and 
consistent usage of words. So we should like to begin 
sorting things out by drawing some distinctions in 
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meaning between various of these words as we shall 
use them. We begin with “risk” and “uncertainty.” 

reduces risk. Thus, if we know there is a hole in the 
road around the corner, it poses less risk to us than if 
we zip around not knowing about it. 

2.1. The Distinction Between Risk and Uncertainty 
2.3. Relativity of Risk 

Suppose a rich relative had just died and named 
you as sole heir. The auditors are totaling up his 
assets. Until that is done you are not sure how much 
you will get after estate taxes. It may be $1 million or 
$2 million. You would then certainly say you were in 
a state of uncertainty, but you would hardly say that 
you were facing risk. The notion of risk, therefore, 
involves both uncertainty and some kind of loss or 
damage that might be received. Symbolically, we 
could write this as: 

risk= uncertainty + damage. 

This equation expresses our first distinction. As a 
second, it is of great value to differentiate between 
the notions of “risk” and “hazard.” This is the sub- 
ject of the next section. 

2.2. The Distinction Between Risk and Hazard 

It is very useful, especially in understanding the 
public controversies surrounding energy production 
and transport facilities, to draw a distinction between 
the ideas of risk and hazard. 

In the di~tionary‘~) we find hazard defined as “a 
source of danger.” Risk is the “possibility of loss or 
injury” and the “degree of probability of such loss.” 
Hazard, therefore, simply exists as a source. Risk 
includes the likelihood of conversion of that source 
into actual delivery of loss, injury, or some form of 
damage. This is the sense in which we use the words. 
As an example, the ocean can be said to be a hazard. 
If we attempt to cross it in a rowboat we undergo 
great risk. If we use the Queen Elizabeth, the risk is 
small. The Queen Elizabeth thus is a device that we 
use to safeguard us against the hazard, resulting in 
small risk. As in Sec. 2.1., we express this idea 
symbolically in the form of an equation: 

hazard 
safeguards risk = 

This equation also brings out the thought that we 
may make risk as small as we like by increasing the 
safeguards but may never, as a matter of principle, 
bring it to zero. Risk is never zero, but it can be 
small. 

Included under the heading “safeguards” is the 
idea of simple awareness. That is, awareness of risk 

Connected to this thought is the idea that risk is 
relative to the observer. We had a case in Los Angeles 
recently that illustrates this idea. Some people put a 
rattlesnake in a man’s mailbox. Now if you had asked 
that man: “Is it a risk to put your hand in your 
mailbox?” He would have said, “Of course not.” We 
however, knowing about the snake, would say it is 
very risky indeed. 

Thus risk is relative to the observer. It is a 
subjective thing- it depends upon who is looking. 
Some writers refer to this fact by using the phrase 
“perceived risk.” The problem with the phrase is that 
it suggests the existence of some other kind of risk- 
other than perceived. It suggests the existence of an 
“absolute risk.” However, under attempts to pin it 
down, the notion of absolute risk always ends up 
being somebody else’s perceived risk. This brings us 
in touch with some fairly deep philosophical matters, 
which incidentally are reminiscent of those raised in 
Einstein’s theory of the relativity of space and time. 

This subject will become clear after we have 
given precise, quantitative definitions of “risk” and 
“probability.” We begin this process in the next 
section by giving the definition of risk. We postpone 
the definitions of probability until Sec. 4. This order 
of presentation departs a little from the logical order 
because the definition of risk uses the term probabil- 
ity. This works out all right, however, since the reader 
already has a good intuitive grasp of the meaning of 
probability. The earlier discussions of risk will then 
serve to motivate the detailed attention given to the 
subtleties of the definition of probability. 

So, qualitatively, risk depends on what you do 
and what you know and what you do not know. Let 
us proceed now to put the idea on a quantitative 
basis. 

3. QUANTITATIVE DEFINITION OF RISK 
(FIRST LEVEL) 

3.1. “Set of Triplets Idea” 

In analyzing risk we are attempting to envision 
how the future will turn out if we undertake a certain 
course of action (or inaction). Fundamentally, there- 
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Table I. Scenario List 
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Table 11. Scenario List with Cumulative Probability 

Scenario Likelihood Consequence 

Sl PI XI 

s 2  P2 x 2  

s, P N  X N  

fore, a risk analysis consists of an answer to the 
following three questions: 

(i) What can happen? (i.e., What can go 

(ii) How likely is it that that will happen? 
(iii) If it does happen, what are the conse- 

wrong?) 

quences? 

To answer these questions we would make a list of 
outcomes or “scenarios” as suggested in Table I. The 
ith line in Table I can be thought of as a triplet: 

(SI 5 PI 9 xi ) 
where si is a scenario identification or description; 

p, is the probability of that scenario; and 
x, is the consequence or evaluation measure of 

that scenario, i.e., the measure of damage. 

If this table contains all the scenarios we can 
think of, we can then say that it (the table) is the 
answer to the question and therefore is the risk. More 
formally, using braces, { }, to denote “set of” we can 
say that the risk, R ,  “is” the set of triplets: 

R = { ( s i , p i , x i ) } ,  i=1,2 ,..., N .  

This definition of risk as a set of triplets is our 
first-level definition. We shall refine and enlarge it 
later.3 For now let us show how to give a pictorial 
representation of risk. 

3.2. Risk Curves 

Imagine now, in Table I, that the scenarios have 
been arranged in order of increasing severity of 
damage. That is to say, the damages x i  obey the 
ordering relationship: 

x i  <x2 e x 3  Q * * * Qx,. 

By adding a fourth column in which we write the 
cumulative probability, adding from the bottom, we 
have Table 11. 

’Having defined risk as a set of triplets, we may now, in line with 
section 2.2, define hazard as a set of doublets thus: H =  ((s,, x , )  }. 

~~ 

Scenario Likelihood Consequences Cumulative probability 

SI PI 
s 2  P 2  

s, P i  

s N - l  p N - I  

S N  P N  

X I  PI ‘P2 +PI 
x 2  p2 = 3 +P2 

‘ N -  I = p N  + P N -  I x N -  I 

X N  p N  = P N  

If we now plot the points ( x i ,  P i )  we obtain the 
staircase function shown as a dashed line, in Fig. 1. 

Let us next note that what we called “scenarios” 
in Table I are really categories of scenarios. Thus for 
example, the scenario “pipe break” actually includes 
a whole category of different kinds and sizes of 
breaks that might be envisioned, each resulting in a 
slightly different damage, x . ~  Thus we can argue 
ourselves into the view that the staircase function 
should be regarded as a discrete approximation to a 
continuous reality. Thus if we draw in a smoothed 
curve, R( x ) ,  through the staircase, we can regard that 
curve as representing the actual risk. Hence we call it 
the “risk curve.” 

Probably the most well-known examples of such 
curves were published in the Reactor Safety Study, 
Wash 1400 [ref. ( 5 ) ] .  Figure 2 is an example taken 
from that study. Note in this example that the curves 
are plotted on log-log scale which results in the 
characteristic concave downward shape. In this case 
the asymptotes, as shown in Fig. 3, have the interpre- 
tation of “maximum possible damage” and “proba- 
bility of any damage at all.” 

3.3. Comments on the Definition 

One often hears it said that “risk is probability 
times consequence.” We find this definition mislead- 
ing and prefer instead, in keeping with the set 
of triplets idea, to say that “risk is probability 
and consequence.” In the case of a single scenario the 
probability times consequence viewpoint would 
equate a low-probability high-damage scenario with a 
high-probability low-damage scenario- clearly not 
the same thing at all. 

In the case of multiple scenarios the probability 
times consequence view would correspond to saying 

4The categories of scenarios, incidentally, should of course be 
chosen so that they are mutually exclusive and the same event 
does not show up in more than one category. 
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Fig. 1. Risk curve. 

that the risk is the expected value of damage, i.e., the 
mean of the risk curve. We say it is not the mean of 
the curve, but the curve itself which is the risk. A 
single number is not a big enough concept to com- 
municate the idea of risk. It takes a whole curve. 

Now the truth is that a curve is not a big enough 
concept either. It takes a whole family of curves to 
fully communicate the idea of risk. This is the basis 
for the level 2 definition to which we shall come 
shortly. First we pick up some further points in 
connection with level 1. 

3.4. Multidimensional Damage 

In many applications, it is appropriate to iden- 
tify different types of damage, e.g., loss of life and 
loss of property. In these cases, the damage, x, can be 
regarded as a multidimensional or vector quantity 
rather than a single scalar. The risk curve now be- 
comes a risk surface over the multidimensional space 
as suggested in Fig. 4. 

In this case the ordinate, R ( x ,  y) ,  over the point 
x , y  is the probability that damage type 1 will be 
greater than x and damage type 2 will be greater 
than y. 

An example of a risk surface, presented in tabu- 
lar form, is shown in Table 111 taken from a hearing 
on railroad transport of spent nuclear fuel,(@ and 
modeled after a similar table given in ref. (7). This 
table at any box lists the probability that N people or 
more will receive a dose of D mr or more as a result 
of a shipment of spent fuel. 

3.5. Completion of the Scenario List 

One of the criticisms that has been made of the 
Reactor Safety Study may be paraphrased essentially 
as follows: 

A risk analysis is essentially a listing of scenarios. In reality, 
the list is infinite. Your analysis, and any analysis, is 
perforce finite, hence incomplete. Therefore no matter how 
thoroughly and carefully you have done your work, I am 
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Fig. 2. Frequency of fatalities due to man-caused events. 

Nevertheless, the critic has made a good point 
about the risk analysis formalism. Let us see there- 

not going to trust your results. I’m not worried about the 
scenarios you have identified, but about those you haven’t 
thought of. Thus I am never going to be satisfied. - - -  

fore what can be done to improve the formalism to 
The critic here has a valid point about risk 

analysis. The implied conclusion, that we should not 
build nuclear reactors, is not valid. For whatever 
course of action, or nonaction, is proposed in place of 
building reactors must also be subject to a risk analy- 
sis. That risk analysis will also have the same inherent 
limitation as the Reactor Safety Study. That limita- 
tion in itself, therefore, cannot be used to argue for 
one branch of the decision tree over another since it 
applies to all branches. 

address this point. 
One tactic that comes to mind, in light of the 

fact that the si are categories of scenarios, is to 
include another category, sN+ , , to the list. We may 
call this category the “other” category. By definition, 
it contains all scenarios not otherwise included in the 
list. Correspondingly we would now say that a risk 
analysis is a set of triplets: 

R = { ( s i , p i , x i ) } , x i = 1 , 2  ,..., N + 1  



16 Kaplan and Garrick 

LOG R 

P MAX 

I LOG x 

Fig. 3. Risk curve on a log-log scale. 

DAMAGE TYPE ONE 

Fig. 4. 



On the Quantitative Definition of Risk 17 

Table 111. Probability of Human Exposure to Radiation“, 

Number 
of 

people, Dose, mr 
N / D  1 10 102 10’ lo4 105 106 

1 1.17X10-5 1.17X10-s 1.17X10P5 1.16X10-5 9.00X10-6 4.24X10-6 1.69X10-6 
10 1.17X10-5 1.17X10-5 1.15X10-5 8.90X10-6 4.54X1OP6 1.79X10-6 4.15X10-7 
l o2  1.17X10-5 1.17X10-5 8.65X10-6 5.O5X1OP6 1.03X10-6 5.45XIO-’ 7.74X1OP8 
lo3 1.17X10P5 1.14X10-5 6.05X10-6 2.63X10-6 6.95X10-7 1.50X10-7 4.27X10-9 
l o4  1.03X 7.40X 3.60X 1.24X 2.96X lo- ’  1.64X lo-’ 2.26X lo - ”  
lo5 8.45X10-’ 5.95X10-6 2.31X10-6 6.70X10P7 1.14X10-7 2.85X10-’0 

“In a 1,000-mile-long train shipment of spent nuclear fuel, probability that N or more persons will receive D or 
more dose to the whole body from gross fission products which are released in an accident during this 
shipment and which deposit (Le., Fallout) on the ground. 

h P (  r N ,  >D). 

which includes all the scenarios we have thought of, 
and also an allowance for those we have not thought 
of. 

Thus extended, the set of scenarios may be said 
to be logically complete. 

It seems at first glance that what we have done 
here is simply a logical trick which does not address 
the fundamental objection. It is a little bit more than 
a trick, however. For one thing, it takes the argument 
out of the verbal realm and into the quantitative 
realm. Instead of the emotional question, “What 
about the things that you have not thought of?” 
“What probability should we assign to the residual 
category sN+ 

Once the question has been phrased in this way, 
we can proceed like rational people, in the same way 
we do to assign any probability. We ask what evi- 
dence do we have on this point? What knowledge, 
what relevant experience? In particular, we note that 
one piece of evidence is always present-namely that 
scenarios of the type sN+l have not occurred yet, 
otherwise we would have included them elsewhere on 
the list. 

How much is this piece of evidence worth? This 
is a question that can be answered rationally within 
the framework of the theory of probability using 
Bayes’ theorem. We shall return to this point in Sec. 
6. It is timely now to explain the sense in which we 
are using the word probability. 

4. PROBABILITY 

People have been arguing about the meaning of 
probability for at least 200 years, since the time of 
Laplace and Bayes. The major polarization of the 

argument is between the “objectivist” or “frequentist” 
school who view probability as somethng external, 
the result of repetitive experiments, and the “sub- 
jectivists” who view probability as an expression of 
an internal state-a state of knowledge or state of 
confidence. 

In this paper we adopt the point of view that 
both schools are right; they are just talking about two 
different ideas. Unfortunately, they both use the same 
word-which seems to be the source of most of the 
confusion. We shall, therefore, assign each idea the 
dignity of its own name. 

4.1. The Definition of Probability and Distinction 
Between Probability and Frequency 

What the objectivists are talking about we shall 
call “frequency.” What the subjectivists are talking 
about we shall call “probability.” Thus, “probability” 
as we shall use it is a numerical measure of a state of 
knowledge, a degree of belief, a state of confidence. 
“Frequency” on the other hand refers to the outcome 
of an experiment of some kind involving repeated 
trials. Thus frequency is a “hard” measurable num- 
ber. This is so even if the experiment is only a 
thought experiment or an experiment to be done in 
the future. At least in concept then, a frequency is a 
well-defined, objective, measurable number. 

Probability, on the other hand, at first glance is 
a notion of a different kind. Defined, essentially, as a 
number used to communicate a state of mind, it thus 
seems “soft” and changeable, subjective- not mea- 
sureable, at least not in the usual way. 

The cornerstone of our approach is the idea that 
given two meaningful statements (or propositions or 
events), it makes sense to say that one is more (less, 
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equally) likely than the other. That is, we accept as an 
axiom the comparability of uncertainty. Since two 
uncertain statements can be compared, the next logi- 
cal step is to devise a scale to calibrate uncertainty. 

This can be done in several ways. The most 
direct, however, is to use frequency in the following 
way.5 Suppose we have a lottery basket containing 
coupons numbered from 1 to 1000. Suppose the 
basket is to be thoroughly mixed, and that you are 
about to draw a coupon blindfolded. We ask: Will 
you draw a coupon numbered 632 or less? With 
respect to ths  question you experience a certain state 
of confidence. Similarly, I experience a state of confi- 
dence with respect to this same question. Let us agree 
to call thts state of confidence, “probability 0.632.” 
Now we both know exactly what we mean by p =  
0.632. So if you now say that the probability of your 
horse winning tomorrow is 0.632, 1 know exactly 
what your experiential state of confidence is. We 
have communicated! 

In the same way, we may define or “calibrate” 
the entire probability scale using frequency as a 
standard of reference. Note that the process is en- 
tirely parallel to the way by which we define “red,” 
“chair,” “seventeen,” and all words or other symbols. 

This method of definition shows the intimate 
connection between probability and frequency. This 
connection needs to be recognized always and at the 
same time not allowed to obscure the fundamental 
difference. Frequency is used to calibrate the proba- 
bility scale in a “bureau of standards” sense. Once 
the calibration is established, we then use probability 
lo discuss our state of confidence in areas where we 
are dealing with one time events and have no 
frequency information at all. 

In this way we liberate ourselves from the re- 
strictions of the relative frequency school of thought 
(e.g., that only mass repetitive phenomena can be 
analyzed probabilistically) and create for ourselves a 
systematic, disciplined theory and language for deal- 
ing with rare events, for quantifying risks, and 
making decisions in the face of the uncertainties 
attendant to these events. 

This then is the definition adopted in this paper. 
For additional insight we quote the following para- 
graph, from unpublished notes by E. T. Jaynes: 

Probability theory is an extension of logic, which describes 
the inductive reasoning of an idealized being who represents 
degrees of plausibility by real numbers. The numerical value 
of any probability ( A / B )  will in general depend not only 

on A and B, but also on the entire background of other 
propositions that this being is taking into account. A 
probability assignment is ‘subjective’ in the sense that it 
describes a state of knowledge rather than any property of 
the ‘real‘ world; but it is completely ‘objective’ in the sense 
that it is independent of the personality of the user; two 
beings faced with the same total background of knowledge 
must assign the same probabilities. 

and, as further elaboration cite the following para- 
graph by A. DeMorgan? 

We have lower grades of knowledge, which we usually call 
degrees of belief, but they are really degrees of 
knowledge. .. . It may seem a strange thing to treat 
knowledge as a magnitude, in the same manner as length, or 
weight, or surface. This is what all writers do who treat of 
probability, and what all their readers have done, long 
before they ever saw a book on the subject.. . . By degree of 
probability we really mean, or ought to mean, degree of 
belief.. . . Probability then, refers to and implies belief, 
more or less, and belief is but another name for imperfect 
knowledge, or it may be, expresses the mind in a state of 
imperfect knowledge. 

4.2. Distinction between Probability and Statistics 

Corresponding to the above definitions of 
frequency and probability, as numbers, we may say 
that statistics, as a subject, is the study of frequency 
type information. That is, it is the science of handling 
data. On the other hand probability, as a subject, we 
might say is the science of handling the lack of data. 

Thus, one often hears people say that we cannot 
use probability because we have insufficient data, In 
light of our current definitions, we see that this is a 
misunderstanding. When one has insufficient data, 
there is nothing else one can do but use probability. 

4.3. “Probability of Frequency” Framework 

Now there are two ways we could talk about the 
flipping of coins, corresponding to two different 
questions. We could first ask: What is the probability 
of a head on the next toss? Alternately we could say: 
I am going to toss the coin 10,000 times. What is the 
frequency, i.e., the percentage of heads going to be? 

In the first method we answer simply with a 
number, our state of confidence on the prospect of a 
head on the next toss, as reflected for example in the 
odds we would take in a bet. 

In the second method we are asked to predict 
the outcome, +, of an experiment to be done in the 

’Modeled after ref. (10). p. 161. 
‘Further discussion of the foundations of the subjectivistic theory 
can be found in refs. (8- 11). 
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future. Since we do not know this outcome we ex- 
press our prediction in the form of a probability 
curve against it (Fig. 5). Thus in the second method 
we are led to the notion of a probability curve against 
frequency as a way of, or a framework for, expressing 
our state of knowledge. 

This notion of probability of frequency will be 
of use to us in the next section in expanding the 
definition of risk. Before proceeding to this, we note, 
coming back to the coins, that the answer to the first 
question can be derived from the answer to the 
second. Thus, having given the probability of 
frequency curve p (  +) we would then, consistent with 
that, express our probability of heads on the next try 
as: 

Thus the second method includes or encompasses the 
first. The reverse cannot be said, and thus the second 
method intuitively comes across as a fuller, more 
complete discussion of the situation. 

5. LEVEL 2 DEFINITION OF RISK 

When one presents a risk curve as the result of 
an analysis, one of the things that invariably happens 
is that someone asks: “How confident are you in the 

curve?’” In view of our usage of the term probability, 
the risk curve already expresses our state of confi- 
dence. It appears thus as if the question is asking: 
“How confident are you in your state of confidence?’ 
In this form the question seems undefined and un- 
answerable. However, there is a valid thought behind 
it. What we need to do, therefore, is to expand our 
framework somehow, in such a way that within the 
enlarged framework the question can be given a 
precise meaning and then be answered. 

5.1. Risk Curves in Frequency Format 

For this purpose we make use of the probability 
of frequency idea in the following way. We imagine a 
thought experiment in which we undertake the pro- 
posed course of action, or inaction, many, many 
times. At the end of this experiment we will be able 
to look back at the records and ask: “How frequently 
did scenario si occur?” This frequency will then be an 
experimentally measured number. Let us denote it by 
+i. Its units are occurrences per trial. 

At the end of the experiment, therefore, we will 
have the set of numbers, $I j ,  and the set of triplets: 

{ ( S ~ , + ~ , X ~ ) }  i = l ,  ..., N+I. 

’For example, the major criticism b, the Lewis Committee‘’*) of 
the Rmctor Sufety Srudy(s) had to do with the uncertainty of the 
risk curves. 
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Fig. 6. Risk curve in frequency format. 

As in Sec. 3.2. we could then compute the cumulative 
frequency: 

@, = E cp, 
x, a x ,  

(where the sum is over all scenarios having damage 
equal to or greater than x i ) .  Also as in Sec. 3.2, we 
could now plot @ vs. x ,  obtaining Fig. 6 which we 
refer to as a risk curve in frequency format. This 
whole curve may be regarded as the outcome of our 
thought experiment. 

5.2. Inclusion of Uncertainty 

Now since we have not yet actually done the 
thought experiment of the previous section, we have 
uncertainty about what its outcome would be. The 
degree of uncertainty depends upon our total state of 
knowledge as of right now; upon all the evidence, 
data, and experience with similar courses of action in 

the past. We seek therefore to express this un- 
certainty using, naturally, the language of probabil- 
ity. 

Since the thing we are uncertain about is a curve, 
(P( x ) ,  we express the uncertainty by embedding this 
curve in a space of curves and erecting a probability 
distribution over this space. 

Pictorially, this is represented by a diagram of 
the form of Fig. 7. This figure is what we call a risk 
curve in probability of frequency format. It consists 
of a family of curves, (PP(x) ,  with the parameter 
being the cumulative probability. To use this diagram 
we would, for example, enter with a specific x value 
and choose say the curve P=0.90. The ordinate of 
this curve (P,,,w(x) is then the 90th percentile 
frequency of x. That is to say, we are 90% confident 
that the frequency with which damage level x or 
greater occurs, is not larger than @'o,w(x). 

Figure 7 is the pictorial form of our level 2 
definition of risk. It is of interest to express ths 
definition also in terms of the set of triplets idea. 



On the Quantitative Definition of Risk 

LOG 9 

21 

LOG x 
LEVELOF DAMAGE 

Fig. 7. Risk curve in probability of frequency format. 

5.3. Set of Triplets Including Uncertainty 

In listing our set of triplets for a proposed course 
of action, suppose that we now acknowledge that, to 
tell the truth about it, we do not know the frequency 
with which scenario category si occurs. We would 
then express our state of knowledge about this 
frequency with a probability curve p i ( + i )  is the prob- 
ability density function for the frequency +i ,  of the 
ith scenario. Thus we now have a set of triplets in the 
form: 

R = { ( s i  9 pi (+i ) ,  x i )  1 (1) 

which set of triplets, we could say, is the risk includ- 
ing uncertainty in frequency. 

From set (1) we can construct the risk family 
Fig. 7 by cumulating frequencies from the bottom in 
a manner entirely parallel to that used in Sec. 3.2. 

Similarly, if there is uncertainty in the damage 
also, we would have the set of triplets: 

or more generally, 

using a joint distribution on +i ,  x i .  In this case also 
we can construct the risk family of curves, Fig. 7. The 
method for doing this is for our present purposes a 
mechanical detail and is outlined in the Appendix. 

5.4. Comments on the Level 2 Definition 

Figure 7, or equivalently equations (I) ,  (2), or 
(3), constitutes our expanded level 2 definition of 
risk. We observe that it includes the level 1 definition 
in the sense that the expected frequency, 5( x ) ,  at any 
x is the probability P ( x )  at that X .  Thus we have lost 
nothing in going from level 1 to level 2 and have 
gained the ability to explicitly include uncertainty in 
the calculation of risk. This is particularly important 
in risk analyses, such as in ref. (5 ) ,  where scenarios 
are identified using fault trees and event trees, and 
where the fundamental input data on failure rates of 
components is uncertain. 

The explicit inclusion of uncertainty also al- 
lows us to avoid the awkward notion of “relative 
risk”(”. 13) which was introduced to compare the risk 
of different designs or systei is when there was little 
confidence in the calculations of the individual risks 
themselves. In the level 2 point of view, the un- 
certainty is an intrinsic part of the risk, as it should 
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be, and the comparison of two systems is readily 
done by viewing Fig. 7 for the two systems side by 
side. 

The use of the term “relative” in the preceding 
paragraph refers to comparing two things being 
looked at; i.e., alternate plant designs or courses of 
action, etc. In Sec. 2.3, relativity of risk was used in 
another sense, in comparing who it is that is doing 
the looking. In the latter sense, risk is always relative 
to the observer. It is subjective just as is probability 
itself. It depends on what the observer knows. 

On the other hand, however, as Jaynes points 
out in the last sentence of his definition (Sec. 4.1) any 
two rational observers given the same totality of 
information must calculate the same Fig. 7, and thus 
agree on the quantification of risk. 

In this sense, we may say that the level 2 defini- 
tion of risk is “absolute” and “objective.” It depends 
upon the evidence at hand, but other than that is 
independent of the personality of the user. Two ra- 
tional beings given the identical evidence must assess 
the risk identically. 

6. ASSESSMENT OF THE FREQUENCIES OF 
SCENARIOS, INCLUDING THE “OTHER’ 

THEOREM 
SCENARIO- THE USE OF BAYES’ 

We have now said, essentially, that risk is a 
listing of scenarios, and that any two rational ob- 
servers, given the same total background of informa- 
tion and evidence, must assign the same frequency to 
those scenarios. More precisely, they will assign the 
same probability of frequency curves, pi( +,), to those 
scenarios. In the present section we shall say a few 
words on the use of Bayes’ theorem in this connec- 
tion. 

6.1. Example 

Suppose for example that the scenario under 
consideration is the occurrence of a certain event, a 
turbine trip, at a specific power plant, plant rn. We 
wish to know the frequency, qm, of this event.’ 

The information we have relating to this point 
may be regarded as falling into three categories: 

(1) Our general background knowledge of the 

‘Harking back to Sec. 5.1, we mean by +,,, here, the average 
occurrence rate, Occurrences per year, in a thought experiment in 
which we operate plant m millions, and millions of years. 

design and manufacture of the turbine, operating 
procedures of the plant, and so on. 

(2) The experience we have had with our specific 
plant so far. 

(3) Our experience with similar turbines in simi- 
lar plants. 

For example, at our specific plant, we may have 
had k ,  occurrences in T, operating years. Similarly, 
the typec3) data would consist of a set of doublets: 

giving the experience of all plants which are deemed 
to be “similar” to plant rn. 

The question now is how to combine these three 
types of information into a probability curve, 
p(+ , , , /E)  expressing our state of knowledge about 
&. The fundamental conceptual tool admirably suited 
to this purpose is Bayes’ theorem, which we write as 
follows: 

where p (  & / E ) ,  the “posterior,” is the probability 
we assign to +,,, after having evidence E; p ( ~ $ ~ ) ,  the 
“prior,” is the probability we would assign to +,,, 
before learning the evidence E; p (  E/+,) ,  the “likeli- 
hood,” is the conditional probability that evidence E 
would be ohyerved if the true frequency were actually 
+,; and p ( E ) ,  is the prior probability of the evi- 
dence E .  

Now to use Bayes’ theorem, we would express, 
or encode, the information of types (1) and (3) in the 
prior, p(+,,,). This could now be called the “generic” 
prior. The plant specific experience, (2), would con- 
stitute the evidence and enters the calculation through 
the likelihood function: 

The denominator p (  E )  is then the sum, or integral, of 
the numerator 



On the Quantitative Definition of Risk 23 

and ensures that the normalization of p ( @ , , / E )  is 
correct. 

Further details of this application of Bayes’ the- 
orem may be found in numerous published 

6.2. “Two-Stage” Use of Bayes’ Theorem 

A more recent development consists of a “two- 
stage” use of Bayes’ theorem in which information 
type (1) alone is used as prior and type (3) as 
evidence to generate a population variability curve. 
This curve expresses the fact that different plants in 
the population have different frequencies of occur- 
rence of this event. The population variability curve 
is then used as the prior in a second application of 
Bayes’ theorem with information (2) as evidence. 
Details of this two stage process will be presented in 
a subsequent paper. 

6.3. Application to the “Other” Scenarios 

The same reasoning as above may be applied to 
s ~ + ~ ,  the category of scenarios we have not yet 
thought of (see Sec. 3.5). In this case k, =O. In fact 
k j  = O  for all plants, j ,  since if such a scenario had 
occurred, we would have added it to the list explici- 
tily. Thus the evidence, E, for scenario s N + I  is that it 
has not yet occurred in all the years of experience so 
far. But this is a perfectly good piece of evidence like 
any other and Bayes’ theorem applies exactly as 
before. 

Thus, the category of scenarios not yet thought 
of, may be handled by the same process as any other 
scenario category: The relevant evidence is assembled 
and quantitatively assessed using Bayes’ theorem. 
Thus, this aspect of the risk controversy may be 
brought closer to a rational, more unemotional treat- 
ment. 

7. ON “ACCEPTABLE” RISK 

We now explore whether our definitions offer 
any insights into the perennial question of “What is 
the Acceptable ri~k?”(’,~,’*,’~) At the outset we re- 
mark that when a question has been debated as long 
and as unsuccessfully as this one, perhaps that is a 
clue that we are asking the wrong question, or asking 
the question in the wrong way. 

There are two difficulties with the notion of 
acceptable risk: one major and one minor. The minor 
difficulty is that it implies that risk is linearly com- 
parable. It implies that one can say that the risk of 
course of action A or design A is greater or less than 
that of design B. The difficulty with this is evident at 
the level 1 definition. For example, in Fig. 8, the risks 
are clearly different, yet we cannot readily say that 
one is bigger than the other. They are not linearly 
comparable. The situation is even more difficult in 
the corresponding level 2 definition, Fig. 9, for exam- 
ple. 

Of course it is possible to reduce these risk 
curves, or families of curves, to single numbers, for 
example in level 1 by introducing a utility function, 
U ( x ) ,  against x and performing an expected value 
operation : 

- m dP U=-/, U ( x ) - ( x ) d x .  dx 

In level 2 we could proceed similarly by regarding the 
set of curves in Fig. 7 as a discrete probability 
distributiod2’) over the function space of curves @(x) 

For each such discrete curve, Qi, then we calculate an 
expected utility as: 

and then set 

u= zpiq. 
i 

These figures of demerit are scalars and thus 
linearly comparable. The risks could then be said to 
have been made linearly comparable, but only at the 
cost of a great loss of information in the expectation 
operation. One wonders whether it would not be 
better, rather than defining an explicit utility func- 
tion, to simply look at Fig. 9 and say: “Design B will 
cost, say, A dollars more than A. Is it worth it to 
you?” 

Assuming we prefer risk B to risk A ,  to decide 
whether it is worth A dollars more we would have to 
ask ourselves what else we could do with these A 
dollars. Perhaps we could obtain a much larger risk 



24 

P 

Kaplan and Garrick 

X 

Fig. 8. Risks for two designs. 

reduction by spending these dollars on automobile 
safety, or drinking water, or SO, emissions, etc.’ 

This brings us to the major difficulty with the 
notion of acceptable risk. That is, that risk cannot be 
spoken of as acceptable or not in isolation, but only 
in combination with the costs and benefits that are 
attendant to that risk. Considered in isolation, no risk 
is acceptable! A rational person would not accept any 
risk at all except possibly in return for the benefits 
that come along with it. 

Even then, if a risk is acceptable on that basis, it 
is still not acceptable if it is possible to obtain the 
same benefit in another way with less risk. Or, if it is 
possible to reduce the risk at small cost, then the risk 

’Perhaps even, as Cohen & Lee suggest, by organizing computer 
dating services [see ref. (2), p. 1461. 

is unacceptable. Conversely, a much larger risk may 
be perfectly acceptable if it brings with it a substan- 
tially reduced cost or increased benefit. 

Thus one cannot talk about risk in isolation. 
One needs to adopt a decision theory point of view 
and ask: “What are my options, what are the costs, 
benefits, and risks of each?’ That option with the 
optimum mix of cost, benefit, and risk is selected. 
The risk associated with that option is acceptable. All 
others are unacceptable. 

8. CONCLUSION 

In this paper we have first attempted to pull 
apart some qualitative considerations related to the 
idea of risk and then presented two ways of quantita- 
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X 

Fig. 9. Risk curves for two designs in probability of frequency format. 

tively defining risk. The second of these, including 
uncertainty, appears to be comprehensive enough to 
deal with whatever questions and subtleties arise in 
the course of risk assessment. 

In light of these definitions we have discussed 
the question of completeness of a risk analysis, 
and the notions of relative risk, relativity of risk, and 
acceptability of risk. We have argued that the ques- 
tion of completeness can be handled in a rational 
way by introducing a category of “other” scenarios, 
and assessing the frequency of occurrence of this 
category using the existing evidence and Bayes’ theo- 
rem, just as for any “ordinary” category of scenarios. 

We have argued that a single number is not a big 
enough concept to communicate risk. It takes a whole 
curve, or actually a family of curves, to communicate 
the idea of risk. Notwithstanding this, we have indi- 
cated how the family of curves can be reduced to a 
single number, but have urged caution in the use of 
this reduction since it inevitably involves a great loss 
of information. 

Finally let us emphasize that the purpose of risk 
analysis and risk quantification is always to provide 
input to an underlying decision problem which in- 
volves not just risks but also other forms of costs and 
benefits. Risk must thus be considered always within 
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a decision theory context. Within this context, that 
risk is acceptable, which comes along with the opti- 
mum decision option, all other risks are unaccepta- 
ble, even if smaller. 

APPENDIX. CONSTRUCTING THE RISK 
FAMILY FROM THE SET OF TRIPLETS 
IN THE CASE OF UNCERTAINTY 

Let us begin with the set (1) 

0; =frequency of damage xi or greater, 

and 

Ili( O i )  =probability density function for ai. 
Then since 

a; =ai+, ++, 
the distributions for may be obtained by working 
up from the bottom as in Table 11, doing a prob- 
abilistic addition at each step. 

The probabilistic addition is expressed by the 
convolution operation: 

or, if there is dependency, by 

In the case of the set (3) 

of which (2) is a special case, we define 

This is the probability, per unit +, that the 
frequency of scenario si is + and that the damage is 
greater than x. We next augment this definition with 

so that now the integral of Pi(+ ,  x)  over +, including 
+ = 0 in a Lebesgue sense, is unity. 

If we now define: 

the function IIl(@,x) can now be plotted as the 
family of risk curves, Fig. 7. We have thus shown 
how to compute Fig. 7 from the sets of triplets (l) ,  

It may appear that this is a complicated compu- 
tation. In fact it can be done quite simply using the 
concepts of discrete probability distribution (DPD) 
arithmetid2'). This subject will be included in a fu- 
ture paper devoted to DPD methodology. 

(21, or (3). 
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