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This paper is a transcript of a talk given to a plenary session at the 1996 Annual Meeting of the 
Society for Risk Analysis. Its purpose is to contribute toward a single, uniformly understood 
language for the risk analysis community. 

1. INTRODUCTION 

Upon being informed that I would be expected to 
speak today I asked myself what I could say, in half an 
hour, that would be useful. Upon doing that I got an 
immediate answer. A voice in my head said, “Talk 
about the words.” My fist thought was that this would 
take more than one-half hour. Second thought was: I can 
squeeze it, and I’d like to do it. Besides, since I don’t 
hear voices all that often, maybe I should pay attention. 
So here goes. 

The words of risk analysis have been, and continue 
to be a problem. Many of you here remember that when 
our Society for Risk Analysis was brand new, one of 
the first things it did was to establish a committee to 
define the word “risk.” This committee labored for 4 
years and then gave up, saying in its final report, that 
maybe it’s better not to define risk. Let each author de- 
fine it in his own way, only please each should explain 
clearly what way that is. 

2. PROBABILITY 

Moreover, the discipline of risk analysis, as you 
know, is heavily entwined with the subject of Probabil- 
ity. In that subject the semantic confusion is legendary 
(see, for tip of the iceberg, Refs. 1-4). It has often been 
called a Tower of Babel. People have argued about the 
meaning of the word “probability” for at least hundreds 
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of years, maybe thousands. So bitter, and fervent, have 
the battles been between the contending schools of 
thought, that they’ve often been likened to religious 
wars. And this situation continues to the present time. 

To help sort out this situation, I’ve prepared Table 
I. There are three major meanings of probability, and 
several submeanings. The first is the statistician’s mean- 
ing, which I call “frequency” or “fraction.” This refers 
to the outcome of a repetitive experiment of some kind, 
like flipping coins. It includes also the idea of population 
variability. Such a number is called an “objective” 
probability because it exists in the real world and is in 
principle measurable by actually doing the experiment. 

In contrast, the Bayesian meaning of probability, 
which is degree of confidence or degree of certainty, 
does not exist in the real world, it exists only in our 
heads. For that reason it’s often called “subjective” 
probability. But that usage is misleading. It’s a misun- 
derstanding, and it has caused enormous confusion and 
controversy. I will come back to this point later on. 

Third is the mathematician’s meaning. To him, a 
probability curve is a mathematical abstraction. He is 
interested in the formal properties of such curves inde- 
pendent of their interpretation. 

Also, there are a bunch of more recent theories that 
have been invented to fix alleged deficiencies in the tra- 
ditional ideas. There’s Possibility Theory, Demps- 
ter/Shaefer Theory of Evidence, Higher Order 
Probability Theory, etc. Notable among these, and cur- 
rently in vogue, are the fuzzy theories (e.g., Ref. 5) ,  
which attempt to encompass, in addition to the tradi- 
tional meanings, the notions of ambiguity, vagueness, 
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408 Kaplan 

Table I. Linguistic Chaos 
~ ~~ 

New theories 

Fuzzy Dempster 
Traditional meanings of “probability” 

Statistician’s Bayesian Mathematical theories Possibility Shafer 
(frequency, fraction) (probability) (probability (fuzziness) theory (relief) 

Random Belief Formal probability Ambiguity 
Variability “Personal” probability “Axiomatic” probability Unclarity 
“Aleatory” probability Subjective probability Vagueness 
“Objective” probability Uncertainty 111-defined 
Stochastic ontological Confidence 
“In the world” probability 
Reliability Forensic probability 
Chance Plausibility 
Risk Credibility 

Epistemic probability 

“Evidence Based” Drobabilitv 

Notation 

4 What can happen? (3 
(What can go wrong?) 

o How likely is it? (4) 
(What is its frequency1 
probability?) 

(What is the damage?) 
4 What are the consequences? (xJ 

ExamDle 
Firdexplosion. 

.Ol% 

$100,000 
Two injuries. 
Environmental 

problems. 
Embarrassment, 

reputation. 

Fig. 1. The three risk questions. 

lack of definition, and also of paradoxes, such as the 
famous one about the barber who shaves those and only 
those who do not shave themselves. Does this barber 
shave himself? Well, if he does, he doesn’t, and if he 
doesn’t, he does. That’s the paradox. 

In fuzzy theory the answer to this question is 
“0.5.” From the traditional side of the line the answer 
is, “It’s a foolish question.” Ask a foolish question, and 
you get a foolish answer. No such barber exists, nor 
could he. So why ask about his shaving habits? 

3. TWO COMMUNICATION THEOREMS 

Incidentally, I don’t think there are any deficiencies 
in the traditional ideas. But that’s another whole story. 
The point for now is that, with all these meanings and 
viewpoints kicking around, it’s no surprise that there 
have been communication problems, big time. After 
struggling with these problems for a number of years, I 

was moved to formulate two theorems on communica- 
tion, as follows: 

0 Theorem 1: 50% of the problems in the world 
result from people using the same 
words with different meanings. 

0 Theorem 2: The other 50% comes from people 
using different words with the same 
meaning. 

These are actually very useful. I have them hung on the 
wall in my office. When an argument gets going around 
the table, I’m often able to point and say, “This is a 
case of Theorem 1 (or 2)’’ It’s amazing how that drains 
the emotion out of the argument. 

4. DEFINITION OF RISK 

Coming back now to the definition of risk. In the 
first issue of the journal of the Society for Risk Analysis, 
John Garrick and I published a paper entitled, “On the 
Quantitative Definition of Risk.”@) We argued (see Fig. 
l), that when one asks, “What is the risk?” one is really 
asking three questions: What can happen? How likely is 
that to happen? If it does happen, what are the conse- 
quences? The answer to the first we called a scenario, 
and we denoted the ith scenario by Si. Li then denotes 
the likelihood and &. the consequences of the ith sce- 
nario. 

So, as in Fig. 2, the triplet (Si, L ,  4.) constitutes 
“an” answer to the three questions. If we put curly 
brackets around it, which is mathspeak for “set of,” we 
obtain a set of answers. We then added a “c” after the 
bracket to mean “complete” and thus to emphasize that 
we really want to know all the possible scenarios, or at 
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The Words of Risk Analysis 409 

4 What can happen? 
o How likely is that? 
4 What are the consequences? 

‘An“ Answer 

Set of Answers { s i 9  4 s  x, > l 
Complete Set { e si* 4, x, > lc 

e s i s  4, x, > 

R = { e %, 2,,5 > lc 
lndude s,, = ’As-Planned Scenario” 

Fig. 2. Quantitative definition of risk. 

least all the important ones. So we defined risk, then, as 
the complete set of triplets. 

Notice that defined in this way, risk is not a num- 
ber, nor is it a curve, nor a vector, etc. None of these 
mathematical concepts is “big” enough in general to 
capture the idea of risk. But the set of triplets, we find, 
is always big enough, and if we start out with that, it 
always gets us on the right track. 

Since we called the risk scenarios Sj, we found it 
convenient to use So to denote the “as planned’’ or 
“success” scenario. This turns out to be a very usefil 
piece of language because if you’re starting a risk as- 
sessment, the first thing to do is to write down a very 
clear description of So. 

Turning to the damage index, x,  we note, in Fig. 3, 
that this could be a vector or multicomponent quantity, 
that it could be time dependent, that it could be uncer- 
tain, and if so, one should express this uncertainty by 
giving a probability curve against the possible magni- 
tudes of x. 

Turning to the likelihood term, we noted that there 
are three formats with which to capture and quantify, the 
intuitive idea of “likelihood.” 

Format 1. 

Format 2. 

(Frequency) This applies when we have 
a repetitive situation, and we ask, “How 
frequently does scenario i occur?” In 
this case the likelihood is expressed as 
a frequency li = +i and risk becomes R 

(Probability) When it is a “one shot” 
situation, like a mission to Mars, we 
want to quantify then our degree of con- 
fidence that the mission will succeed. In 
this case likelihood is expressed as a 
probability Zj  = pi and the triplets be- 

= {(So +i, X ) > c  

come R = {(Si, pi, 4 ) } c  

I 9 DAMAGEINDEX 

I CAN BE A VECTOR: 
DAMAGESTO: 

PEopLL,PRoPERTv, 
ENVIRONMENT, WILDUFE, 

x -  REPVrAnoY erc 

I CAN BE TIMEOEPENDENR 

t 

x CAN BE UNCERTAIN 

pl& X 1k t 

Fig. 3. Expressing the idea of damage. 

Format 3. (Probability of Frequency) The third for- 
mat applies when we have a repetitive 
situation, or can imagine one as a 
thought experiment, so that the fre- 
quency exists, but since we haven’t done 
the experiment we are uncertain about 
what that frequency would be. We there- 
fore express our state of knowledge 
about that frequency with a probability 
curve. We call this the “Probability of 
Frequency” format. li = pj(+J; R = {(Si, 

Of the three formats, we found that this third one is the 
most general and by far the most powerful and usefil 
idea, and so we adopted it into the triplets and thus ar- 
rived at the full blown definition of risk as follows: 

(1) 

Pi(+i), X ) } c  

R = { (S,, P,((P,X PI(&)) lC 
Scenario I 1‘ L Consequence 

Likelihood 

From this definition, given the curves for frequency and 
damage, we can draw the various risk diagrams, such as 
the so called complementary cumulative, shown in Fig. 
4. 

5. DOSE RESPONSE 

John and I thought that the definition in Eq. (1) was 
totally general, and applied to all kinds of risk. Indeed 
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410 Kaplan 

4A 

Fig. 4. Graphical portrayal of risk. 

Fig. 7. Dose response curve “probability of frequency” format. 

we applied it to engineering risk, investment risk, risk 
from agricultural pests, programmatic risk, strategic risk, 
environmental risk, etc. 

So we thought this definition would fit everybody’s 
needs. However, many people in our Society use a dif- 
ferent definition. When they say “risk” they have in 
mind a dose response curve (Fig. 5) .  So the question 
comes up: Is this really a different definition? 

There’s a way of looking at it which brings it within 
the triplets definition. We get this curve, of course, by 
giving groups of lab animals doses D, and plotting the 
fraction that get sick. If we define the success scenario 
So as the animal remains healthy, and S, that it gets sick, 
then we can see this as fitting the triplets definition, us- 
ing format 1, frequency, for expressing likelihood. 

If we were dosing a single animal we would plot 
p, our degree of confidence that it will get sick (Fig. 6). 
This fits our definition using format two for likelihood. 

Suppose we imagine giving the dose to an entire 
population of animals (see Fig. 7). Since we haven’t 
done this experiment we don’t know what fraction 
would get sick. But we know something about that, so 
we express what we know as a probability curve against 

Connecting the percentiles we then get a “band” 
of dose response curves expressing our state of knowl- 
edge about the outcome of the contemplated experiment. 
This can be viewed as the dose response curve in “prob- 
ability of frequency” format. 

In connection with this curve, much controversy 
centers on what it looks like in the low dose range. Is it 
concave, convex, linear? If we plot it on a log scale (see 
Fig. 8), the question changes to: What’s the probability 

the downside, because to distinguish between an illness 
fraction of and we’d have to do an experiment 

Fig. 5. Dose response curve, frequency format. 

PA that fraction. 

5 1.0 c 
0 

n m 

n P P  

w 

% 

.c 

w .- - 
E 

0 > curve at a low dose? That curve may be very broad on 
X Dose (D) 

Fig. 6. Dose response curve probability format. 
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The Words of Risk Analysis 41 1 

10. 

10' 

i! 
f 
8 10' 

9 10' 

t & 10' 

d 
Y 

10 

10 

Fig. 8. Dose response curve in low range. 

I"""I 
Theorem 

Fig. 9. "Evidence-based" approach. 
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412 Kaplan 

WHAT IS BAYES’ THEOREM? 

I I I I I I I I I I I (SCALE OF CERTAINTY) 
0 0.5 1.0 

p(A) + ME) I 1 .O 

THEREFORE: p(E) p(A1E) = p(A) p(EIA) 

THEOREM 
BAYES’ 

THEOREM 

Fig. 10. Derivation of Bayes’ theorem. 

I: MODUS PONENS 
(SYLLOGISM OF ARISTOW) 

IF A THEN B 
A 

p(BIA) = 1.0 
p(A) - 1 - p(AIB] - 

3 8  =s. P W  = 1 

2 MODUS TOLENS 
(REDUCTIO AD ABSURDUM) 

IF A THEN B p(BIA) - 1 
NOT 0 

=3 NOT A 
- 

3 PLAUSIBLE REASONING 

B 
IFATHENB p(BIA) = 1 

+ A MORTLIKELY *P(A I 6)  2 P(A) 

a IS UNLIKELY 
EXCEPT WHEN A IS TRUE 

B IS TRUE 
+ A  IS MUCH MORE LIKELY 

p(6) IS SMALL 
p(B I A) IS SIZEABLE 

*p(A I B) > p(A) 

Fig. 11. The fundamental principles of logic seen as special cases of 
Bayes’ theorem. 

with thousands of mice. A hundred is not enough to tell 
us where the true fraction is in that range. It is enough, 
however, to tell us where it is not. If none of them get 
sick, for example, we have high confidence that the true 
frequency is not in the lo-’ range. But it’s not enough 
to tell us where it is. So unless we have some other 
evidence, this is the curve we have to carry forward into 
our decision process. 

6. BAYES’ THEOREM 

So, coming back to our set of triplets, Eq. (l), we’re 
expressing our state of knowledge about the frequency 
and damage, using probability curves. Probability curves 
are the language of uncertainty. Since the truth is, we 
always have uncertainty, we say that speaking in prob- 
ability curves is telling the truth. Since knowing that 
truth is vital to the decision process, the risk analyst 
should always provide his input to the decision in the 
form of probability curves. 

The next question is: Where do we get these 
curves? The answer is shown in Fig. 9; we get them 
from the evidence. Or you could better say, from the 
absence of evidence. If there was lots of evidence the 
curves would become spikes. These curves are deter- 
mined by, dictated by, the evidence. But how are they 
dictated by the evidence? Answer; by Bayes’ theorem. 
We list each item of relevant evidence and then process 
them, one by one, through Bayes’ theorem. We call this 
the “evidence-based” approach. Initially, the curve is 
very fat, but as we add evidence items it homes in on 
the right answer. 

OK, so what is Bayes’ theorem? Bayes’ theorem is 
the fundamental law of logical inference, i.e., the fun- 
damental principle governing the process of evaluating 
evidence. This is what it looks like (see Fig. 10). “A” 
represents some hypothesis or proposition we’re inter- 
ested in. “E” represents the evidence we have relevant 
to this proposition. On the left side is our posterior prob- 
ability, p(AIE), i.e., our degree of confidence that A is 
true after we learn evidence E. On the right is p(A), our 
probability prior to learning E. 

6.1. Bayes’ Theorem as the Definition of Logic 

So the theorem tells us how much our confidence 
changes when we learn a new piece of evidence. This 
theorem has also been very controversial. What’s the 
controversy? Many statisticians take the position that 
this theorem is formally true, like any other theorem in 
probability theory, but it’s not much good for anything. 
To a Bayesian, this is not just another theorem. It’s the 
fundamental law governing the evaluation of evidence. 

To an extremist Bayesian, like myself, it goes 
deeper than that. It’s not only the fundamental principle 
of logical inference, it’s the very definition of logic it- 
self. It’s what we mean by logical, rational thinking. 

In support of this extreme assertion, I refer you to 
Fig. 11, which shows that the fundamental principles of 
logic, the so called modus ponens and modus tolens, are 
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The Words of Risk Analysis 413 

t 

Fig. 12. The anatomy of a decision--the role of QRA and Bayes’ theorem. 

It just means that it doesn’t conform. It doesn’t say that 
logical thinking is necessarily better than any other kind. 
Indeed, we all know that sometimes it isn’t. 

7.OBJECTIVE/SUBJECTIVE PROBABILITY 

Fig. 13. Scenario so viewed as a trajectory in the state space of the 
system. 

special cases of Bayes’ theorem. To me, this justifies 
adopting Bayes’ theorem as the definition of logical 
thinking. 

I find often that people react with surprise to the 
idea that the word “logical” needs to be defined. They 
seem to take the attitude that the supreme court justice 
took about pornography, saying “I can’t define it, but I 
know it when I see it.” 

Note that this definition does not contain any value 
judgment. It’s just a definition. If a particular piece of 
thinking conforms to this rule we call it logical. Other- 
wise we call it illogical, irrational, or incoherent. But 
that doesn’t mean that it’s necessarily “bad” or stupid. 

Now with that introduction to Bayes’ theorem, let’s 
come back to the issue of defining probability (Table I). 
A Bayesian says probability means “confidence.” But 
confidence exists only in our minds and is, therefore, 
subjective. The statistical school of thought objects to 
this, saying “that’s unscientific. We don’t want subjec- 
tivity, we want an objective science.” So they rejected 
the whole Bayesian way of thinking, scornfully. The 
Bayesians answered with attacks of their own, and the 
battle has swung back and forth for two centuries. 

But it’s a misunderstanding. The whole two hun- 
dred years has been a miscommunication, caused by 
fuzziness in the words. Words like “confidence,” and 
“belief’ have a personal dimension to them. Are you a 
confident person; are you a believer, an optimist, a pes- 
simist? Further down the list the words don’t have that 
dimension. “Plausibility” and “credibility” are prop- 
erties of the evidence, not of the person. A true Bayesian 
uses probability in that sense. Probability is that degree 
of credibility or confidence dictated by the evidence, 

 15396924, 1997, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1539-6924.1997.tb00881.x by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



414 

A 

Kaplan 

Initiating 
Event (IE) 

> 

A 

ES1 
ES2 

i - 
Fig. 15. Scenario tree emerging from the initiating event. 

A 

I 
Fig. 16. Branches from two different trees can end at the same end 

state. 

through Bayes’ theorem. There’s no personality in it, no 
“opinion.” 

The neatest statement of this point of view was 
given by Ed Jaynes as follows(7): 

Probability theory is an extension of logic, which describes the 
inductive reasoning of an idealized being who represents de- 
grees of plausibility by real numbers. The numerical value of 
any probability (AIB) will in general depend not only on A and 
B, but also on the entire background of other propositions that 
this being is taking into account. A probability assignment is 
“subjective” in the sense that it describes a state of knowledge 

u 
Fig. 17. “Incoming” scenario tree. 

Mid State) 

ES 
(End State) 

> 
Fig. 18. Idout tree 

rather than any property of the “real” world; but is completely 
“objective” in the sense that it is independent of the person- 
ality of the user; two beings faced with the same total back- 
ground of knowledge must assign the same probabilities. 

-E. T. Jaynes 

The key point here is that while probability is “subjec- 
tive” in that it measures something internal, namely de- 
gree of confidence, it can be defined to be entirely 
“objective,” so that degree is determined totally by the 
evidence, and not by the personality or mood. And the 
way it is determined is through Bayes’ theorem. So one 
could call this “objective/subjective” probability, if you 
like, or I like best the term “evidence-based’’ probability. 

8. EVIDENCE-BASED DECISION MAKING 

This idea of “objectifying” the so called subjective 
probability, has major implications. it resolves the his- 
torical controversies, and it shows us the how to put Risk 
Analysis on a totally solid conceptual foundation. It 
opens the way to what we can call “evidence-based” 
risk assessment and “evidence-based” decision-making. 
In regulatory and public decision making it shows us 
how, quantitatively, to 

“Let the Evidence Speak!” 

not the opinions, personalities, moods, politics, posi- 
tions, special interests, or wishful thinlung! 
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The Words of Risk Analysis 415 

CommunicrUon 

t 

I OutcomosEvrlwUon I 

Finding 

F I E  T m s  

AFD 

Fig. 19. How it all fits together. 

By the way, this point of view guides us on how 
to deal with experts.@) It tells us we should never ask an 
expert for his opinion. What we want from an expert is, 
his experience, his information, his evidence. 

It also guides us on how to deal with a group of 
experts. We must first convert the question to a quanti- 
tative form, e.g., “What is the numerical value of this 
parameter F?” We then ask the experts “What evidence 
do we have relevant to this question?” As they answer 
we write down, and enumerate, a list of all the relevant 
evidence items available. We write down exactly what 
happened as distinct from our interpretations of what 

happened. We work over this list with the group until 
we obtain what we can call the “consensus body of ev- 
idence.” At this point we apply Bayes’ theorem to the 
list, item by item, at the end of which we have a con- 
sensus probability curve expressing what we collectively 
know about the value of F. 

8.1. Structure of a Decision 

Let’s look at the structure of a decision problem 
(Fig. 12). At the point of decision we have to choose 
one of a set of available options. Each option brings with 
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416 Kaplan 

it costs, benefits and risks. Our knowledge of these at 
the point of decision is quantified in the form of prob- 
ability curves. How do we calculate these curves? That 
is what QRA (quantitative risk assessment) is for. How 
does QRA do it? It does it by taking the whole body of 
evidence, the list of evidence items, and processing them 
through Bayes’ theorem. So when the curves are ob- 
tained this way we call it “evidence-based” QRA, and 
when the decisions are made based on those curves, we 
call it “evidence-based’ ’ decision making. 

8.2. Regulation 

A decision problem also involves value judgments, 
represented in Fig. 12 by the utility functions. When it’s 
a public decision, different parties will naturally have 
different utility functions, depending on how their inter- 
ests are affected. So we, the public, employ regulatory 
agents to represent us in making sure that the decisions 
that get made reflect the interests of the community as 
a whole. 

Regulators have a tough job. But they make it even 
more difficult, by trying to regulate using a “speed 
limit” concept. “Thou shalt have no more than so many 
ppms, or curies, etc.” They then suffer and agonize over 
where to set this speed limit. They try to set it at such 
a level that the decision maker is forced to make the best 
decision for the community as a whole. Difficult to do. 
Worse, they attempt to set the limit without explicitly, 
and quantitatively, doing the decision analysis. That’s 
next to impossible. No wonder they suffer. We are ask- 
ing the wrong question. The question is not, “HOW 
much risk is acceptable?” The question is, “What is the 
best decision option?” 

We need to get more of this decision theoretic point 
of view into regulation. 

Now actually (Fig. 15), from each initiating event, 
a whole treeful of scenarios emerges, depending on what 
happens next. This is called a “scenario tree.” 

Depending on how we define things, branches from 
two different trees can end up at the same end state (Fig. 
16). That suggests that we could draw trees coming in 
to the end states of interest as in Fig. 17. This could be 
called an “incoming” scenario tree, also known as a 
“fault tree.” The outgoing trees are also known as 
‘ ‘event trees.’ ’ 

So this suggests two ways of finding scenarios. 
Method 1 is: find the IEs and draw the outgoing tree 
from each. Method 2 is: identify the end states of interest 
and draw the incoming trees to each. 

There are also other methods; for example, identi- 
fying “middle states” from which we then draw both 
incoming and outgoing trees (Fig. 18). 

9.1. Connection with TRIZ 

In connection with finding scenarios, I’d like to in- 
troduce you to another new word. It’s TRIZ, and it’s an 
acronym for the Russian words meaning “Theory of the 
Solution of Inventive Problems.” The Russians have 
been working on this theory for 50 years. It’s a rather 
well developed thing.c9) What’s of interest to us here is 
that there is a subsection of this theory, called Antici- 
patory Failure Determination (AFD), that applies to the 
problem of finding the scenarios. 

It’s interesting how they do it. Where QRA asks 
the question “What can go wrong?” The AFD people 
give this question an interesting twist. They ask, “If I 
wanted to make something go wrong, how could I do 
it?” In rephrasing the question this way they turn it into 
an inventive problem, and thus make available the whole 
apparatus of their theory, whch is quite impressive. So 
I think that TRIZ has something significant to offer Risk 
Analysis. 

9. FINDING THE SCENARIOS 
10. PULLING IT ALL TOGETHER 

Returning to Eq. (I) ,  we’ve talked about the last 
two parts of the triplet, but we haven’t said anything 
about how to iind the scenarios. Finding scenarios is part 
science and a large part art. Some useful ideas can be 
given, however. One is to think of So as a trajectory in 
the state space of the system (Fig. 13). Any risk scenario, 
Si, must then be viewed as a departure from So (Fig. 14). 
There must therefore be a point of departure at which 
some “Initiating Event (ZE)” happens. That starts the 
scenario and it goes until it ends at an “End State. (ES)” 

Finally, I’d like to pull the pieces together in Fig. 
19. The reason we do risk assessment is we have deci- 
sions to make. According to Decision Theory, to make 
a decision we need three things, a set of options from 
which to choose, an evaluation of the outcomes of each 
option, and a value judgment on each outcome. The role 
of QRA is to calculate those outcomes. And since we 
will always have uncertainty in the outcomes, we should, 
to tell the truth, quantify that uncertainty in the form of 
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probability curves. For these curves to be worthy of 
trust, i.e., useful in a decision analysis, they should be 
based on the entire body of evidence available, evaluated 
through Bayes’ theorem. 

Now, Decision Theory is concerned with selecting 
the best option out of a given set. It says nothing about 
how we get those options in the first place. This is the 
creative part of the problem. Here tools like TRIZ can 
be helpful to invent new and better options. They can 
also be helpful, as we said before, in “inventing” sce- 
narios that we may not have thought of otherwise. 

Finally, making the decision is not the end of the 
job. It’s necessary to get the decision accepted and im- 
plemented. For that we need the support of the people 
affected by it. That means risk communication, and de- 
cision communication. For that to take place, it’s crucial 
that we have words that we all understand and use in 
the same way. That is what this talk has been about. So 
thank you again for the opportunity to speak to you, and 
I hope it’s been useful. 
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