Esame di Meccanica Quantistica 14/02/2025

Esercizio 1. Si consideri il seguente potenziale unidimensionale,

$$V(x) = \begin{cases} 0 & \text{per } x < -L \\ V_{buca}(x) & \text{per } -L < x < 0 \\ V_1 & \text{per } x > 0 \end{cases},$$

con $V_{buca}(x) < 0$ e $V_1 > 0$. Si vogliono determinare le proprietà di V(x) attraverso opportuni esperimenti di scattering. Si inviano in particolare degli elettroni emessi con impulso p > 0 da una sorgente posta a $x = -\infty$. La preparazione dello stato iniziale è tale per cui la descrizione di tutti i processi di scattering considerati può essere ricavata a partire dalle autofunzioni dell'Hamiltoniana.

- a) In un primo esperimento, si pone un rilevatore di elettroni a $x=x_0\gg L$. Si osserva che per impulsi minori di un certo valore soglia p_s non vi sono conteggi nel rivelatore. Sapendo che $p_sc=50\,\mathrm{keV}$, dove c è la velocità della luce, si calcoli il valore di V_1 in keV. Si utlizzi $m_ec^2=500\,\mathrm{keV}$, dove m_e è la massa dell'elettrone.
- b) Per $V_{buca}(x) = 0$, determinare i coefficienti di riflessione R(p) e trasmissione T(p) per valori dell'impulso $p > p_s$. Disegnare il grafico di R(p) e T(p).
- c) Si consideri ora $p < p_s$ con $V_{buca}(x)$ generico. Facendo uso della corrente di densità di probabilità, si dimostri che l'onda riflessa non ha attenuazione (ovvero R=1) ma presenta in generale uno sfasamento φ rispetto all'onda incidente. Si calcoli lo sfasamento nel caso $V_{buca}(x)=0$. Lo sfasamento è definito come la differenza delle fasi delle ampiezze complesse dell'onda riflessa e dell'onda incidente.
- d) Modellizzando $V_{buca}(x) = -V_0$ con $V_0 > 0$, calcolare lo sfasamento come funzione dell'energia dell'onda incidente per $V_1 \gg E$, $V_1 \gg V_0$, ossia nel limite $V_1 \to \infty$. Si verifichi che se $V_0 = 0$ esso si riduce all'espressione calcolata in precedenza per $E/V_1 \to 0$.

Esercizio 2. La funzione d'onda spinoriale di una particella di spin 1 e massa m, libera di muoversi in una dimensione, è data da

$$\psi = Ae^{-x^2/(2\sigma^2)} \left(e^{ikx} \chi_+ + i\sqrt{2}e^{-ikx} \chi_- \right),$$

dove gli spinori normalizzati χ_{\pm} sono autofunzioni di S_z con autovalore $\pm\hbar$.

- a) Si calcoli la costante A in modo che ψ sia normalizzata. Se viene effettuata una misura di S_z su ψ , quali valori sono ottenuti e con quale probabilità?
- b) Si calcolino i valori medi $\langle \psi | x | \psi \rangle$ e $\langle \psi | p | \psi \rangle$.
- c) Il sistema evolve con Hamiltoniana

$$H = \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2 x^2 + bxS_z.$$

Se $b = m^{\alpha} \hbar^{\beta} \omega^{\gamma}$, si determinino gli esponenti α , β , γ con argomenti dimensionali. Se $\psi(t)$ è l'evoluto temporale di ψ , si calcoli $\langle \psi(t) | S_z | \psi(t) \rangle$.

d) Si esprimano le derivate temporali dei valori medi $\langle \psi(t)|x|\psi(t)\rangle$ e $\langle \psi(t)|p|\psi(t)\rangle$, in termini dei valori medi stessi. Si risolvano tali equazioni, determinando $\langle \psi(t)|x|\psi(t)\rangle$ e $\langle \psi(t)|p|\psi(t)\rangle$ al variare di t.