## Diagnosis







To detect evidence of the patient's immune response (production of antibodies) to infection

Blood, stool, urine, swab, etc.

Serum



## Indirect methods



#### **Immunologic methods**

Identification of antibodies directed towards the microbial pathogen

- Immunoenzymatic assays EIA
- Radio Immuno assays RIA
- Immunofluorescence assays IFA

## **Direct methods**

detection of the pathogenic microorganisms



Microscopic examination (bacterioscopic exam)

- Culture (isolation)
- Antigen detection
- Molecular test

## Direct methods: microscopy



Microscopy is an important first step in the examination of specimens

**WET MOUNT** Allows the observation of microbial shape, arrangement and motility

#### **STAINING**

- SIMPLE
- **DIFFERENTIAL** Allows the identification of microbial differential characteristics

Gram staining Ziehl-Neelsen staining







## Microscopy: staining

### **CLINICAL USE**

#### **Fixed specimens (Heat or chemical fixation)**

Sample evaluation (sputum-neutrophils) Number and percentage of PMN neutrophils Presence or absence of microorganisms (*bacteria – fungi - parasites*)

#### Gram stained specimens

Morphology (cocci-bacilli-coccobacilli) Arrangment ( chains-clusters-diplococci) Absolute quantity of bacteria Relative percentage of Gram pos/neg Intra- or extra-cellular localization

#### Other specific staining

Acid-fast bacteria (Ziehl Neelsen)



## Simple staining

A **BASIC DYE** binds to the acidic components of the bacterial cell wall (surface, proteins, nucleic acids)

- The basic dye is applied to the specimen for a variable time. The dye excess is washed with a water rinse.
- Observation of cell morphology and arrangment
- Identification of intracellular bacteria

Examples: Crystal violet, Basic fuchsine, Methylene blue







# Simple staining



Methylene blue

Staining bacterial cells: simple stain







## **Differential staining:** GRAM

# Pseudomonas, NEGATIVE Klebsiella, Neisseria, E. col



# POSITIVE

Coryneform bacteria Staphylococcus





# Differential staining: GRAM

### **CLINICAL USE**

# **Sample evaluation** before culture **Presumptive identification**

bacterial meningitis and pneumonia, bacteriuria, gonorrhea, pyogenic infections

#### \*Hint for the use of particular culture methods

anaerobic bacteria, fungi

#### **\***Help in the interpretation of the culture isolation

patient treated with antibiotics

#### **\***Information on the nature of the infection

Poli/mono-microbic infections

Performing a Gram stain may, in some cases, save the patient's life

## Differential staining: Ziehl-Neelsen

Some organisms, particularly mycobacteria such as *M. tuberculosis* (tubercolosis) and *M. leprae* (leprosy, Hansen's disease), which have waxy cell walls, do not readily take up the Gram stain. Special staining techniques are used which rely on the ability of such organisms to retain the stain in the presence of 'decolourizing' agents such as acid and alcohol

The Ziehl–Neelsen stain uses heat to drive the fuchsin stain into the cells

→ mycobacteria stained with fuchsin withstand decolourization with acid and alcohol and are therefore known as acidfast bacteria (AFB), whereas other bacteria lose the stain after acid and alcohol treatment



Acid-fast bacteria appear red coloured, other bacteria and cells are blue coloured



## **Differential staining:** Ziehl-Neelsen



Smear on sputum slide of a patient with pulmonary tuberculosis.

Acid-fast bacilli colored in red. Polymorphonuclear leukocytes colored in blue

## **Direct methods**

detection of the pathogenic microorganisms

Microscopic examination (bacterioscopic exam)

Culture (isolation)

- Antigen detection
- Genetic test



The microorganisms' cultivation in laboratory is a necessary condition for their study

For this purpose, the knowledge of nutritive substances and physical conditions required for growth is important





Culture media (liquid or solid) contain all the organic and inorganic substances required for the microbial growth





The chemical composition of the different culture media depends upon the nutritional needs of the cultivated microorganisms



#### MAIN COMPONENTS

| Amino-acids              | peptone                       |
|--------------------------|-------------------------------|
| Growth factors           | blood, serum, yeast extract   |
| Energy sources           | sugars, carbohydrates         |
| Buffering agents         | phosphates, citrate           |
| Minerals                 | calcium, magnesium, iron      |
| Selective agents         | Antibiotics, chemicals        |
| Indicators for pH change | Phenol red, neutral red, exc. |
| Gelling agents           | agar                          |

## Culture: media

**General-purpose media:** rich in nutrients, often enriched with horse or sheep blood, allow the growth of almost all bacterial species of medical interest

**Selective media:** promote the growth of only selected microorganisms thanks to the presence of factors that inhibit the growth of other species

**Differential media:** distinguish one microorganism type from another growing on the same medium, allowing the presumptive identification of the isolated species

**Enrichment media**: allow to increase the growth of the microorganism of interest, including some of the more **fastidious** ones, thanks to factors inhibiting the growth of contaminating species



## Culture



anaerobes

aerobes

anaerobes

anaerobes

# Culture: identification

#### Macroscopic characteristics of the colonies



## Identification species determination

#### **PRESUMPTIVE ID**

- •Microscopic features (staining, shape, arrangment)
- •Macroscopic features (appearance of the colony)

#### FINAL ID (DEFINITIVE)

biochemical
immunological
molecular

## **Biochemical ID**

#### **EVALUATION OF THE MICROBIAL METABOLIC PROPERTIES**

Sugar metabolism through the oxydative pathway (aerobic) or the fermentation pathway (anaerobic)

**Production of specific enzymes and/or metabolic products** 

"Manual" or "automatic" methods

Rapid identification (4-6 h)

## Manual Biochemical ID



#### Oxydase test

distinguish enterobacteria from non fermenting Gram negative bacteria

#### Catalase test $2H_2O_2 \rightarrow 2H_2O + O_2$

POS: Stafilococci NEG: Streptococci





Bacitracin sensitivity test



#### Coagulase Test

POS: Staphylococcus aureus NEG: Staphylococcus epidermidis

# Manual ID

API (bioMérieux) Identification System



Sugar fermentation and metabolization of other substrates (urease, indole, etc) are detected by a pH indicator producing a colorimetric reaction



# Automatic ID:

#### (Biomerieux System)

The system involves the use of a card containing a series of wells (approximately 30) containing biochemical (ID) or antibiotic (AST) substrates in dehydrated form. Two types of cards:

- for identification (ID)
- for antibiogram (AST)

Gram-positives (GP) Gram-negatives (GN) Yeasts (YST) Bacillus spp. (BCL) Anaerobi, *Corynebacterium* (ANC) *Neisseria, Haemophilus* (NH)





## **ID MALDI-TOF**







#### **Mass spectrometry**

#### Microbial identificaton is achieved through the production of mass spectra

The mass spectra generated are analyzed by dedicated software and compared with stored profiles of known species, genus or family to allow the microbial identification

1946 species can be identified

## **Direct methods**

detection of the pathogenic microorganisms



- Microscopic examination (bacterioscopic exam)
- Culture (isolation)
- Antigen detection
- Molecular test

#### **SEROLOGICAL REACTIONS**

Immuno-Precipitacion Agglutination Complement fixation Neutralization



The reaction can be observed at macroscopic level

Do not allow the identification of the Ab classes

Immunoenzymatic assay Immunofluorescence Immunoblotting Radioimmunoassay Chemiluminescent immunoassay



Use of Ag (or Ab) bound to an «indicator»

Allow the identification of the Ab classes

# Antigen test

Detection of soluble carbohydrate antigens by agglutination of antibodycoated latex particles or red blood cells

- Legionella in urine
- *C. difficile* in stools
- Group A *Streptococcus* in throat swabs
- Streptococcus pneumoniae in CSF and urine
- *Haemophilus influenzae* type B in CSF and urine
- *Cryptococcus neoformans* in CSF and urine



Figure 32.9 When a specimen of cerebrospinal fluid (CSF) containing bacteria (e.g. *Haemophilus influenzae*) is mixed with a suspension of latex particles coated with specific antibody (e.g. *H. influenzae* anticapsular antibodies), the interaction between antigen and antibody causes an immediate agglutination of particles, which is visible to the naked eye.





Latex agglutination tests can be taken by collecting a sample containing the specific antigen, or antibody, which is later mixed with an antibody, or antigen, which is coated on latex beads in serial dilutions with normal saline. If the suspected substance is present, the latex beads will clump together. This clumping is called agglutination.

Positive agglutination test

#### Detection of soluble antigens by LATEX AGGLUTINATION → meningitis

- used when no bacterial cells are observed during microscopy examination, even in the presence of numerous neutrophil leukocytes. Bacteria may have been lysed by the presence of proteolytic enzymes produced by neutrophils
- especially useful when the patient has received antibiotics and organisms may appear morphologically unidentifiable in the CSF and fail to grow in culture



The main bacterial pathogens causing meningitis are tested:

- N. meningitidis
- S. pneumoniae
- S. agalactiae
- H. influenzae

#### Urinary Antigens of Legionella and Pneumococcus

Rapid diagnosis is allowed

Positivity is detected from only 1 day to many months after the onset of symptoms

Immunochromatographic test

Urinary antigen positivity is sufficient for the microbiological case definition

Sensitivity 70-100 % Specificity 100%

Not all serotypes are detected





## Diagnosis

