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TEOREMA 6.3 (DELLE ITERAZIONI SUCCESSIVE (C.E. PICARD & E.L. LINDELOF)) Sia A C R2 un insieme aperto con (tg,up) € Aef ¢ C(A,R). Sianory,r; >0
due costanti reali tali che il rettangolo R = [to —ry, tg + 1] x [ug =9, ug +ry] sia contenuto nellaperto A e che esista L > O tale che

[f(t, u)—f(t, w)| < Lju—w|

perognite [to—ry,to+rleu,w e [ug—ry,ug+ryl
Posto M = maxg [f(t, u)|, esiste € > O tale che il problema di Cauchy (6.1) possiede ununica soluzione u € C'[tg —¢,tg + €], con € = min{r;, r/M}.
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TEOREMA 6.2 (T.H. GRONWALL) Siano c una costante reale non negativa e u,v: (a,b) — R due funzioni continue e non negative tali che

v(t) <c+ vte (ab)

t
j u(s)v(s)ds
to

Allora

t
v(t) < celV®)l dove Ut tg) = j u(s)ds
to
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TEOREMA 14. Supponiamo che f € c'n Lipjoc,2(A R) e siall : (T+, T*) — R una soluzione massimale di (7.1). Se non é vero che T* = +o00 allora

(7.2)

' 1
tl"%**['”(t)“m

= +00
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TEOREMA 6.5 Consideriamo il problema di Cauchy (6.1) e sia la funzione f definitain A = (a,b) x R C R2, supponiamo inoltre che per ogni compatto K C (a, b)
esistano due costanti ¢; = ¢;(K), coni=1,2, tali che

[f(t,u)] <ci+calu]  perognite Keperogniue R

Allora la soluzione é prolungabile ad una soluzione definita in tutto (a, b) (si noti che non é richiesto che l'intervallo (a, b) sia limitatol).

TEOREMA 6.6 Sia u una soluzione massimale di (6.1) definita su (a, b). Per ogni compatto K C A C R2 esiste § = 4(K) > O tale che perognit & (a+4d,b=4) il
punto (t, u(t)) non appartiene a K.

TEOREMA 6.7 Sia u una soluzione del problema di Cauchy (6.1) e sia la funzione f ¢ C'(A) conA=(a,b) x R C R?, supponiamo che esista ¢ > O tale che
lut) <c per ogni t

allora la soluzione é prolungabile ad una soluzione definita in tutto (a, b).
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