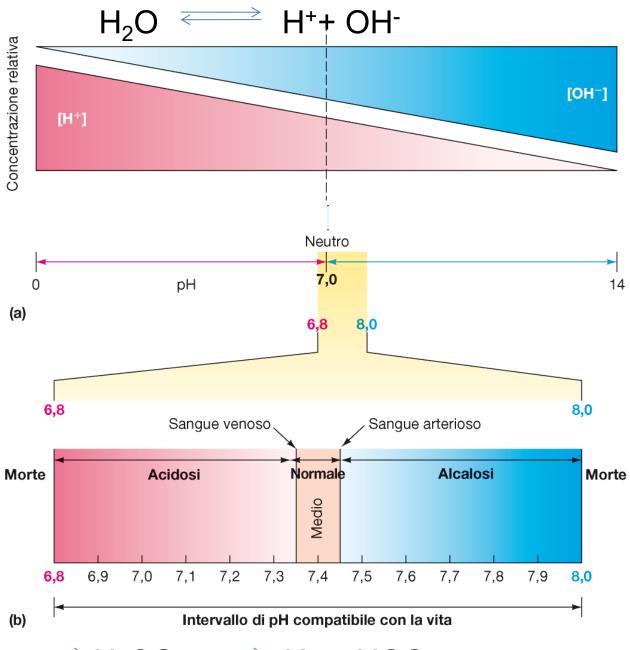

EQUILIBRI ACIDO-BASE

Prof. Flavia Trettel Farmacia Fisiologia canale A-L

EQUILIBRIO ACIDO-BASE=

REGOLAZIONE PRECISA DEGLI IONI IDROGENO LIBERI NEI LIQUIDI CORPOREI


EQUILIBRIO ACIDO-BASE= REGOLAZIONE PRECISA DEGLI IONI IDROGENO LIBERI NEI LIQUIDI CORPOREI

Base $+H^+ \longrightarrow baseH^+$

LEC
$$[H^+] = 4 \times 10^{-8} = 0,000\ 000\ 04\ Eq/L = 40\ nEq/L$$
 $pH = log_{10}\ 1/[H^+]$
 $log_{10}\ n \longrightarrow 10^x = n$
 $log_{10}\ 10 = 1$
 $log_{10}\ 100 = 2$
 $log_{10}\ 1000 = 3$
 $log_{10}\ n\ (n < 10) = x < 1$
 $log_{10}\ n\ (10 < n < 100) = 1 < x < 2$

1 unità pH = [H⁺] 10 volte diversa

pH7 = [H⁺] 10 volte minore di pH6 100 volte minore di pH5

 $H_2O + CO_2 \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^-$

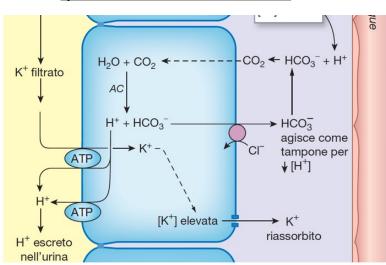
EFFETTI DELLE VARIAZIONI DEL pH OLTRE LIMITI FISIOLOGICI

7,35 < pH < 7,45

Alterazioni dell'eccitabilità delle cellule nervose e muscolari ACIDOSI: depressione del SNC Disorientamento, coma, morte

ALCALOSI: ipereccitabilità del SN

Formicolio, Scosse muscolari, spasmi nervosismo, convulsioni

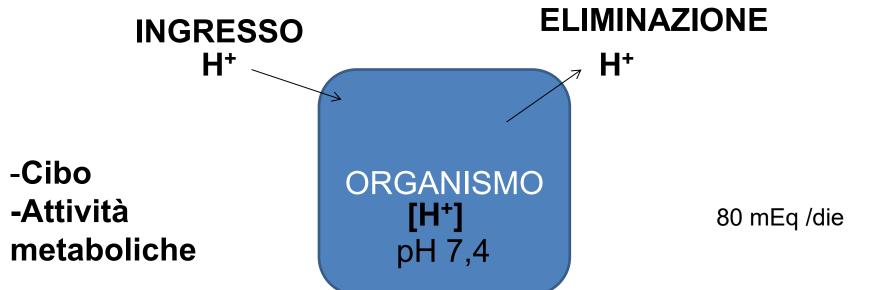

EFFETTI DELLE VARIAZIONI DEL pH OLTRE LIMITI FISIOLOGICI $_{7,35}$ < pH < $_{7,45}$

Alterazioni dell'eccitabilità delle cellule nervose e muscolari

Modificazioni dell'attività enzimatica

ACIDOSI: depressione del SNC

ALCALOSI: ipereccitabilità del SN

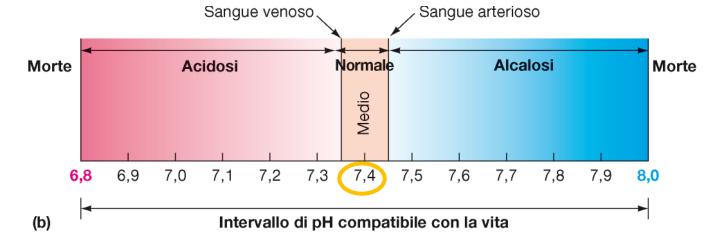


Influenzano le concentrazioni di K⁺ dell'organismo

ACIDOSI: diminuita escrezione K iperkalemia Ipereccitabilità cardiaca

ALCALOSI: <u>aumentata escrezione K</u> <u>ipokalemia</u>
Depressione eccitabilità nervosa e
muscolare

Sorgenti di ioni H+

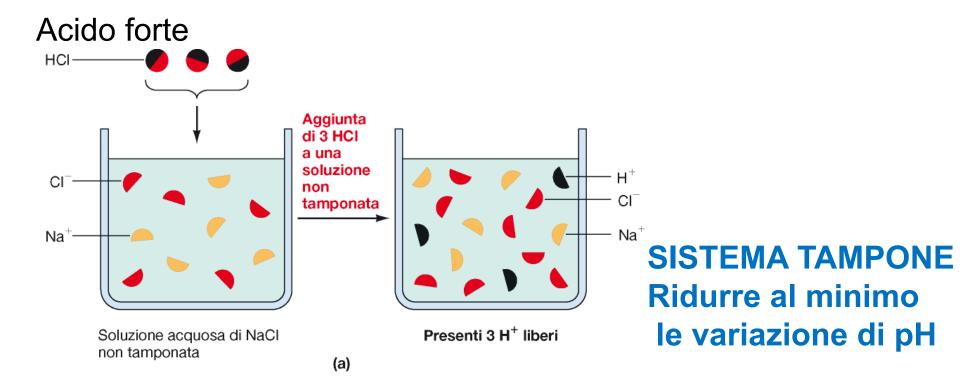

Metabolismo cellulare
$$H_2O + CO_2 \xrightarrow{CA} H_2CO_3 \xrightarrow{H^+ + HCO_3^-}$$

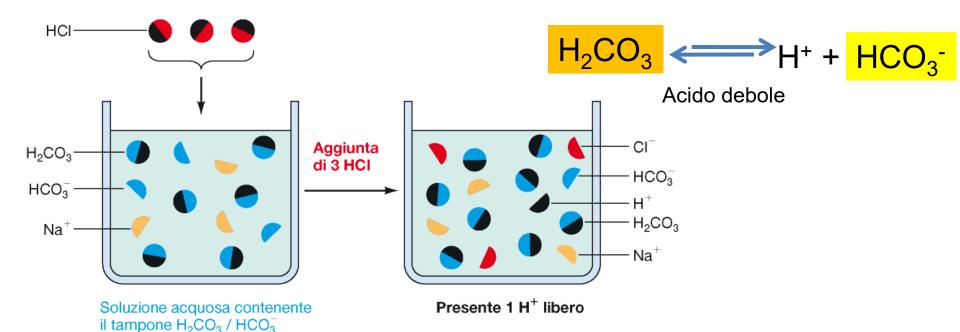
Dieta
Acidi inorganici prodotti
durante la degradazione
dei nutrienti

Acidi organici derivati dal metabolismo intermedio

proteine — Acido fosforico Acido solforico Frutta basi verdura

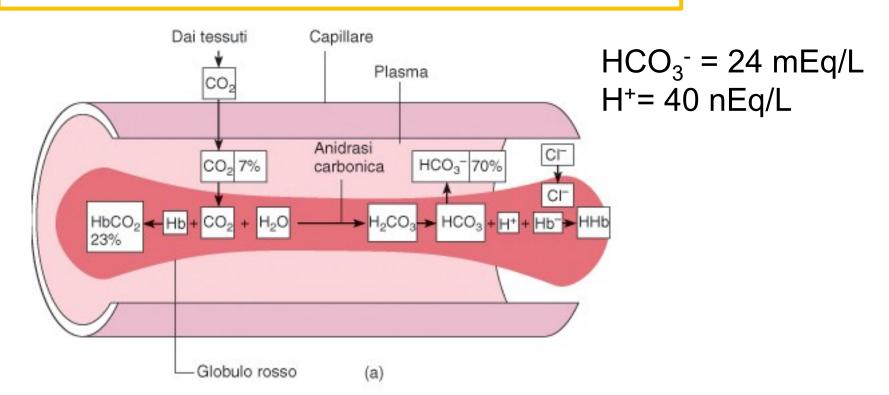
Acidi grassi dai lipidi Acido lattico dai muscoli in intensa attività

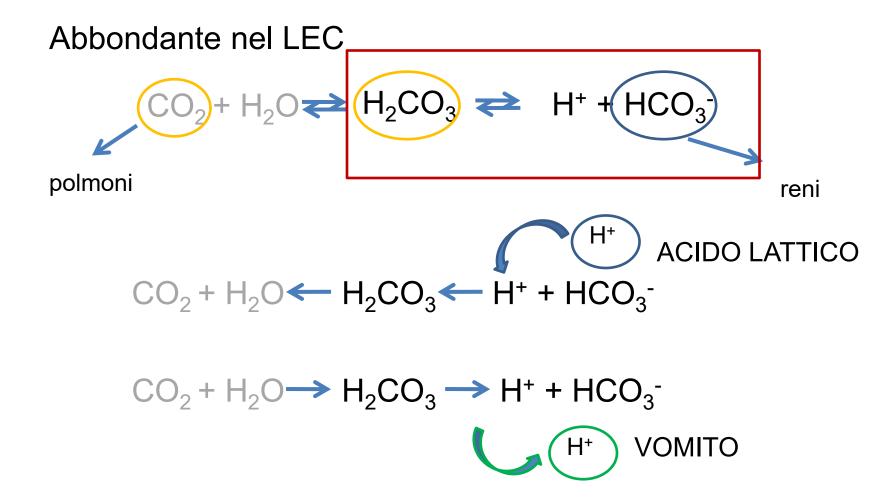

IN ECCESSO DEVONO ESSERE PRIMA RIMOSSI POI ELIMINATI PER GARANTIRE IL MANTENIMENTO DEL pH in intervalli compatibili con la vita


Sistemi
tampone liquidi
corporei

Rapidi (secondi)
Tengono l' H+ in forma legata
Fino al ristabilirsi dell'equilibrio

Minuti
Elimina CO₂ e quindi H+ dall'organismo


Sistema renale ——> Lento (ore, giorni)
Regola l'escrezione di H⁺ e riassorbimento di HCO₃⁻


Sistema Tampone	Funzioni principali	
Proteine	Tampone primario del LIC;	

Sistema Tampone	Funzioni principali	
Proteine	Tampone primario del LIC;	
Emoglobina	Tampone primario contro le variazioni dell'acido carbonico	

Sistema Tampone	Funzioni principali	
Proteine	Tampone primario del LIC;	
Emoglobina	Tampone primario contro le variazioni dell'acido carbonico	
Acido carbonico/ione bicarbonato	Tampone primario LEC contro le variazioni degli acidi non carbonici	

Sistema tampone H₂CO₃/HCO₃⁻

Non tampona variazioni di pH indotte da fluttuazioni dell' H₂CO₃

Relazione tra [H+] e le concentrazioni dei componenti di una coppia tampone

$$K = [H^{+}][HCO_{3}^{-}] / [H_{2}CO_{3}]$$
 $CO_{2}^{+} H_{2}O \rightleftharpoons H_{2}CO_{3} \rightleftharpoons H^{+} + HCO_{3}^{-}$
 $[H^{+}] = K \times [H_{2}CO_{3}] / [HCO_{3}^{-}]$
 $pH = log_{10} 1 / [H^{+}]$

pH = pK + log_{10} [HCO₃-]/ [H₂CO₃] Equazione di

Equazione di Henderson-Hasselbach

```
pH = pK + log_{10} [HCO_3^-]/[CO_2]
```

$$H_2CO_3pK = 6.1$$

 $[HCO_3^-]/[CO_2] = 20/1 \text{ nel LEC}$
 $pH = 6.1 + log_{10} (20/1) = 6.1 + 1.3 = 7.4$

[HCO₃-]/[CO₂]

Maggiore di 20= aumenta pH Minore di 20= diminuisce pH

pH [HCO₃-] regolata dai reni [CO₂] regolata dai polmoni

Sistema Tampone	Funzioni principali	
Proteine	Tampone primario del LIC; tampona anche il LEC	
Emoglobina	Tampone primario contro le variazioni dell'acido carbonico	
Acido carbonico/ione bicarbonato	Tampone primario LEC contro le variazioni degli acidi non carbonici	
Fosfato	Importante tampone urinario; Tampona anche il LIC	

Sistema tampone fosfato

Na₂HPO₄ / NaH₂PO₄

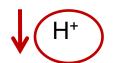
Idrogeno fosfato Sodio diidrogeno di disodio fosfato

 $Na_2HPO_4 + H \rightleftharpoons NaH_2PO_4 + Na^+$

Bassa concentrazione nel LEC
Alta concentrazione nel LIC e nelle urine

H⁺ IN ECCESSO DEVONO ESSERE PRIMA RIMOSSI POI ELIMINATI PER GARANTIRE IL MANTENIMENTO DEL pH in intervalli compatibili con la vita

SISTEMA RESPIRATORIO e regolazione pH

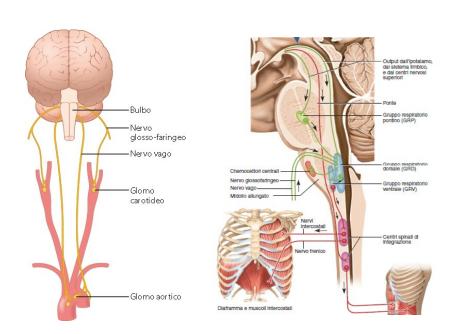

Minuti -Elimina CO₂ e quindi H₂CO₃ dall'organismo

Attività respiratoria regolata dalla [H⁺] arteriosa

Compensazione respiratoria nell'acidosi e alcalosi indotte da cause non respiratorie

Compensazioni respiratorie	Normale (pH= 7,4)	Acidosi metabolica (pH= 7,1)	Alcalosi metabolica (pH= 7,7)
Ventilazione	Normale	↑	↓
Velocità rimozione CO ₂	Normale	^	↓
Velocità formazione H ₂ CO ₃	Normale	•	↑
Velocità generazione H ⁺ a partire da CO ₂	Normale	\	↑
		↑ (H ⁺)	

$$CO_2 + H_2O + H_2CO_3 + H^+ + HCO_3^-$$

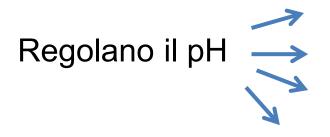

SISTEMA RESPIRATORIO e regolazione pH

Minuti -Elimina CO₂ e quindi H₂CO₃ dall'organismo

Attività respiratoria regolata dalla [H⁺] arteriosa Compensazione respiratoria nell'acidosi e alcalosi indotte da cause non respiratori

Seconda linea di difesa

Compensa solo al 50%-70%


Contrasto tra chemocettori periferici e centrali

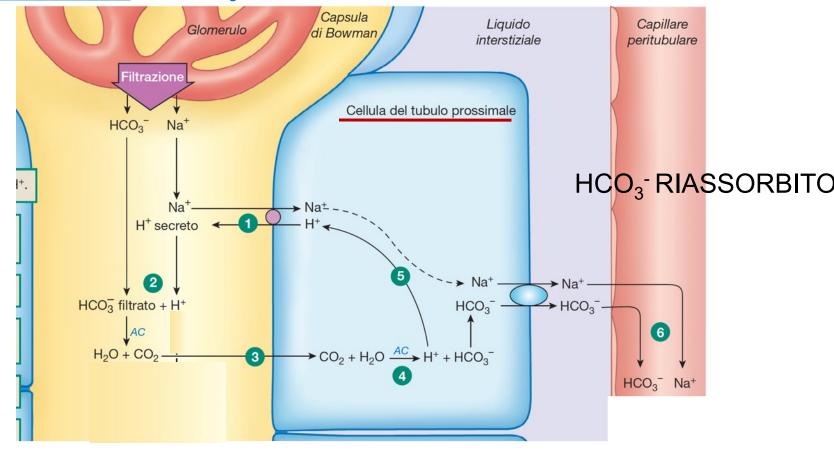
Forza motrice per compensazione ventilazione diminuisce via via che il pH torna a valori normali

SISTEMA RENALE e regolazione pH

Lento (ore, giorni) Rimuovono eccesso di acidi o basi dall'organismo

Riassorbimento di HCO₃

Escrezione di H⁺

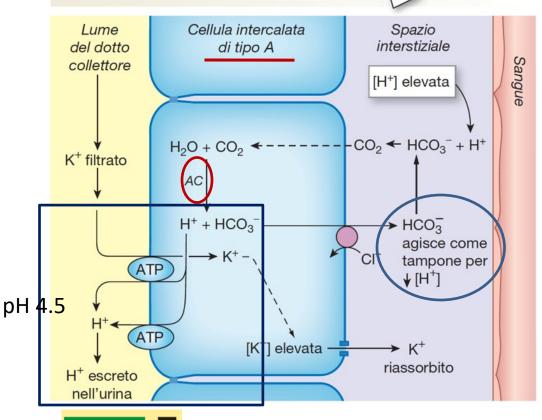

Generazione di nuovi di HCO₃-

Escrezione di ammoniaca NH₃

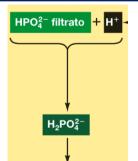
Regolazione renale della [HCO₃-] plasmatica

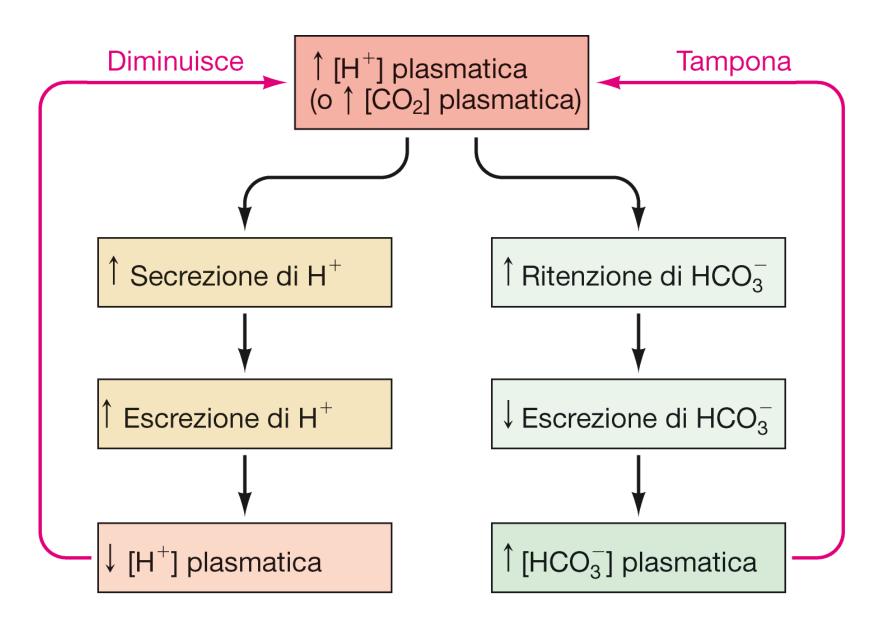
No eliminazione H+

Riassorbimento di HCO₃ Secrezione e reciclo di H⁺



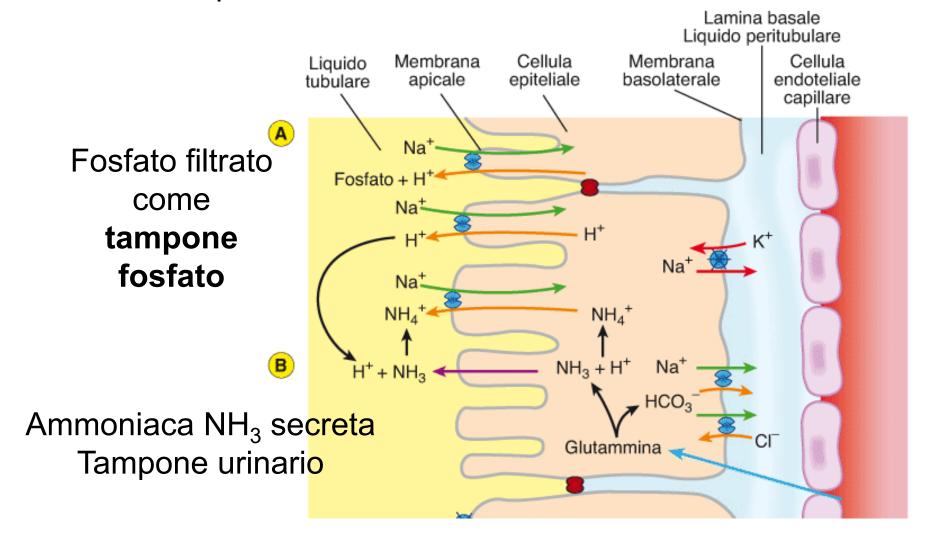
Tubulo distale


(a) Acidosi. Nell'acidosi funzionano le cellule intercalate di tipo A del dotto collettore. H⁺ è escreto; HCO₃⁻ e K⁺ sono riassorbiti.

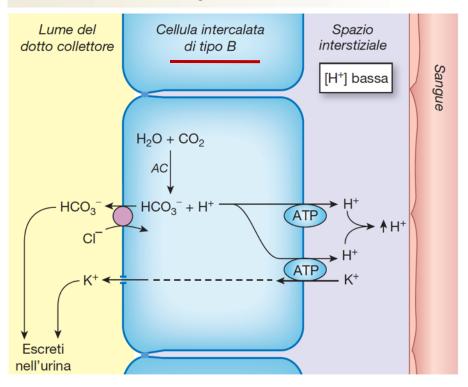

Secrezione ed escrezione di H⁺



ACIDOSI
SECREZIONE DI H⁺
contro gradiente
concentrazione
ed escrezione


Regolazione secrezione H⁺

o è riassorbito dal tubulo prossimale.


ACIDOSI Tamponamento urinario di H⁺

ALCALOSI RIASSORBIMENTO DI H⁺ ed ESCREZIONE HCO3-

Tubulo distale

(b) Alcalosi. Nell'alcalosi funzionano le cellule intercalate di tipo B del dotto collettore. HCO₃ e K⁺ sono escreti; H⁺ è riassorbito.

FIGURA 20.18 Funzione delle cellule intercalate nelle perturbazioni dell'equilibrio acido-base.