RNA-Seq

What is RNA-seq?

RNA-seq is essentially massively parallel sequencing of RNA (or, in fact, the
corresponding cDNA) and has heralded the second technical revolution
in transcriptomics.

It is based on next-generation sequencing (NGS) platforms that were initially
developed for high-throughput sequencing of genomic DNA.

Typically, all the RNA molecules in a sample are reverse transcribed into cDNA,
and depending on the platform to be used, the cDNA molecules may
(amplification-based sequencing) or may not (single-molecule sequencing
(SMS)) be amplified before deep sequencing.

After the sequencing reaction has taken place, the obtained sequence
stretches (reads) are mapped onto a reference genome to deduce the
structure and/or expression state of any given transcript in the sample.
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RNA-Seq

The method
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OVERVEW OF RNA-Seq EXPERIMENT

Examples of experimental design:

H Treatment effect:

HH Tissue comparison:
s Cell Differentiation:
H Gene function:

Un-Treated Treated
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OVERVEW OF RNA-Seq EXPERIMENT

RNA-Seq leads you to Identify snd quantify RNAs that are
present in your samples

e Qualitative e Quantitative

Examples of RNA-Seq analysis:

Differential Expression Analysis (DEA):
e mRNAs (poly-A selection)
e RNAs (total RNAs - Ribominus)
e circRNAs
e small RNAs

Alternative Splicing
Alternative Poly-Adenylation

RNA enrichment in Precipitates or Pull-Down
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EXPERIMENTAL DESIGN

Defining the technical details

Choice of sequencing depth

If we want to measure the expression of known genes, depth can be relatively
low (e.g. 20 M reads for polyA+). If we want to discover new genes and
transcripts, depth must be higher (e.g. 60 M for polyA+, 120 for total RNA).

Length and pairing of reads

Theoretically speaking, read length should be > 20 bp (they usually are longer
than 35 bp). PE reads are usually better (except for small RNA-Seq and Ribo-
Seq), but they are more expensive.

Strandedness
It is usually better to have a directional (stranded) sequencing: it costs slightly
more, but it is able to discriminate between antisense RNAs.

R ———
I X

Anti-X |
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RNA-Seq: LIBRARY PREPARATION

SE

cDNA
adaptor adaptor
Single End Paired End
: —_— —
sequenced in SE
A
‘ \ PE
II - II’%—J III II|
': Gew / ’ #———Sequenced in PE
/ / i 20

L ATGCTGTACTA AACTGTCTTAA... ...ATGCTGTACTA

Readl Read2 Read1l
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DATA ANALYSIS

H General RNA-Seq pipeline for Differential Expression
Condition A Condition B
Samplel Sample2 ..N Samplel Sample2 ...N

n
For each sample..
Read QC = o O = — -
| ReaiQc = 20a® Z5Za %
- =
“mg =2fE2E T az=o
Adapter Trimming (Optional) = 0o o oo
Splice-aware mapping to genome
et
ount reads associated with genes -~ Doo——a o
9 O —O000—oonn

cos | e
= 0O 0O O0Oo— Oo|

O OCO—oOoo o—oog
Identify differentially expressed genes Genome |

|

Can be compared also multiple conditions and also samples from many time points..
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DATA ANALYSIS

Data format

Usually, the format of the file containing the

sequence of the reads is FASTQ. m—
It is composed of four-lines blocks: %
- the first line begins with @ and contains the

ID of the read and optional information.

- the second line is the sequence

- the third line begins with a '+' character and is

optionally followed by the same sequence identifier

(and any description) again

Example

- the fourth line encodes the quality values for the QEASS4_6_R1_2_1_413_324

sequence in Line 2.

For paired end reads, there are two FASTQ files +
(forward and reverse).

TTGGCAGGCCAAGGCCGATGGATCA

53355533555375355575553;83

GTTGCTTCTGGCGTGGGTGGGGGGG
+EAS54_6_R1_2_1_443_348
355553533339:755.73393333
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DATA ANALYSIS

FASTQ format

@SEQILMNO3:128:HASCBADXX:1:1101:1186:2089 2:N:0:GTCGTA
NNNNNNGTTAAGATTATTGTCATTGGCTAACTAAGCGCTACCAAGTACAAGTACAAATGC
+
############0#0<BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB<<<<KLLLLLLLLLLLKL
@SEQILMNO3:128:HABCBADXX:1:1101:1193:2104 2:N:0:GTCGTA
CTATCTTCGTAACCCAAAATAAATAAACTAACTCTATTTCTTGTGTTAGGCAGGGTATTCC
+

BBBFFFFFFEFFFFIIIIIIIIIIIIITITITIIIIIITITITITIFB 7O 7 BEFFIIIIIIIITIIITFFFFFFFFFF<BBFFF
@SEQILMNO3:128:HASCBADXX:1:1101:1227:2106 2:N:0:GTCGTA.
GGGGAGCATGACGGCCCACATCGGCGAAAACCCACTCTGGTGGGGTGAACCGGTATCCAN

+
BBBFFFFFFFFFFIIIIIIIIIIIIIIIFFFFFFBBFFFBBFBFFBBFF<BBFFO<BBFFBFBFFFFFB

A read is an inferred sequence of
the fragment/molecule analyzed

GENE EXPRESSION REGULATION IN EUKARYOTES — LM-GBM a.a. 2023-2024
Universita La Sapienza di Roma



DATA ANALYSIS

PHRED quality score

The quality score of a base, also known as a Phred or
Q score, is an integer value representing the estimated
probability of an error, i.e. that the base is incorrect. p 9

Q=-10log,, P

A high quality score implies that a base call is more reliable and less
likely to be incorrect. For example, for base calls with a quality score
of Q40, one base call in 10,000 is predicted to be incorrect. For base
calls with a quality score of Q30, one base call in 1,000 is predicted
to be incorrect. Table 1 shows the relationship between the base call
quality scores and their corresponding error probabilities.

Phred Quality Score

10
20
30
40

Probability of
. Base call accuracy
incorrect base call
1in 10 90%
1in 100 99%
1in 1000 99.9%
1in 10,000 99.99%
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DATA ANALYSIS

FastQC
FastQC is a quality control tool for high

throughput sequence data. —
— e

File Help
bad_sequence.txt | good_sequence_short. txt

Basic Statistics

Quality scores across all bases (Illumina >v1.3 encoding)

A :z ﬁﬁﬁﬁ FLAB IR e LIE IR
il

Per sequence quality scores 20

28
26

Per base sequence content

Per base GC content
er base GC conten 24 q

Per sequence GC content |22 r 41 1|
20

Per base N content

Sequence Length Distribution|16

Sequence Duplication Levels

Overrepresented sequences (10

OOO00OO00LO

Kmer Content

ATHT

1 3 S Z 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Paosition in read {bp)

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help
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RNA-Seq: SEQUENCING REACTION

-+
+
-

At tatatatat

Terminator and

Add 4 Fl-  s— Incorpora_ted === fluorescent dye
NTP’s + FI-NTP|is

Pol ] d are cleaved from
olymerase image the FI-NTP

X36-75
-

READ LENGTH = Number of reaction cycles
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DATA ANALYSIS

Phasing means that the blocker of a nucleotide is not correctly removed after signal detection. In the next cycle no
new nucleotide can bind on this DNA fragment and the old nucleotide is detected one more time whereby the
fluorescence signal of this old nucleotide (probably) differs from the synchronous signal of the other nucleotides.
From now on this DNA fragment will be 1 cycle behind the rest (out of phase), polluting the light signal that the
sequencer's camera has to read.

A similar effect occurs if a nucleotide has a defect terminator cap (prephasing).

In this case two nucleotides can bind in one cycle whereby the fragment will be
1 cycle before the rest.

These errors occur with a low probability.

phasing
A. A. A. A. ® e A. o
f f 1 1 ? ¢ ¢ c.:

| , |

;A!' : #‘ !

eIt . g

i 4: ! g

i

| | : signal more and more. The signal gets more and more asynchronous. And since

i the light signal is used to calculate quality scores the asynchronous signal results in
a decreasing sequence quality score.

But over time (with increasing read length) they add up and pollute the light
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DATA ANALYSIS: PREPROCESSING

Issues that can be addressed during pre-processing phase

If the read is longer than the insert (e.g. in Small RNA-Seq), its sequence
will also contain part of the 3" adapter. This
unwanted sequence must be removed. S, g

If the overall quality of the read is low, it must be removed. A trimming is useful
if quality decreases too much towards the end of the read.

Sometimes the read terminates with ambiguous (N) bases which must be
removed.

Some of the most common preprocessing tool are FASTX-Toolkit, Cutadapt,
Trimmomatic, Prinseq.
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DATA ANALYSIS: ALIGNMENT

Read alignment

After pre-processing, we can align reads to
a reference sequence.

A 4

Read Mapping Map Report
BWA BFAST,  —>| " Readsand

- to align a read means finding the region of the gaaaaas

genome to which it belongs. NENR—  —
- if the genome sequence of the organism is

known, reads can be aligned to it.

- other approaches have to be used if the genome

sequence is not known (de novo transcriptome assembly).

The accurate and fast alignment of millions of reads is not a simple task: many
programs have been developed to address this issue.
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DATA ANALYSIS: ALIGNMENT

Read alignment

After pre-processing, we can align reads to
a reference sequence.

[
L]

T TCCTACAGTCATAGTC
TCCTACAGTCATAGTC
Reads TCCTACAGTCATAGTCGAT.
CCTACAGTCATAGTCGATATT
T TCATAGTCGATATTT
Genome T TCCTACAGTCATAGTC
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DATA ANALYSIS: ALIGNMENT

Main alighment strategies

RNA-Seq reads

= o 3 (— =
— N . — = =
=2 = DD:] — ED L) =
e Reference availble = — * Reference not availble
 — = EE E &
Align reads to Assemble transcripts
genome de novo
o . e C |
OO D 0—8 OoO;,
—- e o L ]
] — s v | oo s e | |

stranscriptome | Genome

Assemble transcripts
from spliced alignments

=] More abundant
C—a—{ ]

(e ==ll] ] Less abundant

|

|
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DATA ANALYSIS: ALIGNMENT

—) Gene
I
Genome
pre-mRNA
mRNA
Short reads
Genome *BWA
Alignment § [ — - - T [ eBowtie2
Gene N
Versus —
Genome eSTAR
Splice-Aware 8 - _—_ — — oHISAT2
Alignment @ - -
Gene (o) P Hat2

Splice-aware alignment
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DATA ANALYSIS: ALIGNMENT

Alignment tools

|
|

BWA, Soap2 and Bowtie2 are based on the Burrows-Wheeler Transform, an

indexing technique which allows to have reduced time required for the
alignment compared to older tools like Maq (the alignment of 20M reads
is done in few hours).

Table 3:

Selected mapping and alignment tools for massively parallel sequencing data

Aligner

Illumina
platform

ELAND
Bowtie

Novoalign

SOAP
MrFAST
SOLID platform
Corona-lite
SHRIMP
454 Platform
Newbler
SSAHA2
BWA-SW
Multi-platform
BFAST
BWA
Maq

Description

Vendor-provided aligner for Illumina data
Ultrafast, memory-efficient short-read aligner for Illumina data

A sensitive aligner for Illumina data that uses the Needleman-Wunsch
algorithm

Short oligo analysis package for alignment of Illumina data
A mapper that allows alignments to multiple locations for CNV detection

Vendor-provided aligner for SOLID data
Efficient Smith-Waterman mapper with colorspace correction

Vendor-provided aligner and assembler for 454 data
SAM-friendly sequence search and alignment by hashing program
SAM-friendly Smith-Waterman implementation of BWA for long reads

BLAT-like fast aligner for Illumina and SOLID data
Burrows-Wheeler aligner for Illumina, SOLID, and 454 data

A widely used mapping tool for Illumina and SOLID; now deprecated by BWA
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URL

http://www.illumina.com
http://bowtie-bio.sourceforge.net
http://www.novocraft.com

http://soap.genomics.org.cn/
http://mrfast.sourceforge.net/

http://solidsoftwaretools.com
http://compbio.cs.toronto.edu/shrimp/

http://www.454.com
http://www.sanger.ac.uk/resources/software
http://bio-bwa.sourceforge.net

http://bfast.sourceforge.net
http://bio-bwa.sourceforge.net
http://maq.sourceforge.net



DATA ANALYSIS: ALIGNMENT

Spliced aligners

The algorithms discussed so far are not able to align reads on splicing
junctions, unless we use the transcriptome sequence as a reference.

There are several programs that are able to perform spliced alignments:
Tophat2, STAR, Hisat2 ,Gsnap, MapSplice, PALMapper, ReadsMap etc.

Tophat uses Bowtie as an alignment “engine”. The algorithm can be divided
into two main steps:

- Reads are aligned to the reference genome.

- Reads that cannot be aligned directly to the reference are aligned to possible
splicing junctions.
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DATA ANALYSIS: ALIGNMENT

Main alignment programs

Table 1 | Selected list of RNA-seq analysis programs

Class Category Package Notes Uses Input
Read mapping
Unspliced Seed methods Short-read mapping package Smith-Waterman extension Aligning reads to a Reads and reference
aligners® (SHRiMP)41 reference transcriptome transcriptome
Stampy?? Probabilistic model
Burrows-Wheeler Bowtie?
transform methods BWA%4 Incorporates quality scores
Spliced aligners  Exon-first methods MapSplice®? Works with multiple unspliced Aligning reads to a Reads and reference
SpliceMap®® aligners reference genome. Allows  genome
TopHat®! Uses Bowtie alignments for the id_entiﬁcat?on of
novel splice junctions
Seed-extend methods ~ GSNAP®? Can use SNP databases
QPALMA54 Smith-Waterman for large gaps
Star Superfast

Gaber etal., 2011, Nature Methods 8:469
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DATA ANALYSIS: ALIGNMENT

Alignment output

After alignment, mapped and unmapped reads
are usually exported in SAM/BAM format.

A 4

- SAM format specification (Sequence . ReadMapping | apRepor
Alignment Map, oo o s
http://samtools.sourceforge.net/SAM1.pdf)

describes a generic format for the storing of reads

sequence and their alignment on a reference.

- BAM is the binary equivalent of SAM.
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http://samtools.sourceforge.net/SAM1.pdf

DATA ANALYSIS: ALIGNMENT

SAM file structure
ad A generic SAM/BAM file is composed of two

parts:

- header reports general information. I |
{ Coeeter —

- body reports information about reads. Each line Bowie o o M

describes a read (aligned or not): alignment position,
sequence, quality etc.

@HD VN:1.0 SO:coordinate
@sQ SN:chr20 LN:64444167
@PG ID:TopHat VN:2.0.14 CL:/srv/dna_tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea
lign-edit-dist 2 -i 50 -I 5000 --max-coverage-intron 5000 -M -o out /data/user446/mapping tophat/index/chr
20 /data/user446/mapping tophat/L6 18 GTGAAA L0O7 Rl 001.fastq
HWI-ST1145:74:C101DACXX:7:1102:4284:73714 16 chr20 190930 3 106M * 0 0
CCGTGTTTAAAGGTGGATGCGGTCACCTTCCCAGCTAGGCTTAGGGATTCTTAGTTGGCCTAGGAAATCCAGCTAGTCCTGTCTCTCAGTCCCCCCTCT
C BBDCCDDCCDDDDCDDDDDDCDCCCDBC?DDDDDDDDDDDDDDDCCDCDDDDDDDDDDCCCCEDDDC?DDDDDDDDDDDDDDDDDDDDDBDHFFFFDC@@
AS:i:-15 XM:i:3 X0:i:0 XG:i:0 MD:Z:55C20C13A9 NM:i:3 NH:i:2 CC:7:= (CP:i:55352714 HI:i:0
HWI-ST1145:74:C101DACXX:7:1114:2759:41961 16 chr20 193953 50 106M * 0 0
TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA
G DCDDDDEDDDDDDDCDDDDDDDCCCDDDCDDDDDEEC>DFFFEJJJIIIGIIIIIHGBHHGIIIIIIIIGIIIIIIIIIIHIIIIIIHHHHHFFFFFCCC
AS:i:-16 XM:i:3 X0:i:0 XG:i:0 MD:Z:60G16T18T3 NM:i:3 NH:i:1
HWI-ST1145:74:C101DACXX:7:1204:14760:4030 16 chr20 270877 50 106M * 0 0
GGCTTTATTGGTAAAAAAGGAATAGCAGATTTAATCAGAAATTCCCACCTGGCCCAGCAGCACCAACCAGAAAGAAGGGAAGAAGACAGGAAAAAACCA
C DDDDDDDDDCCDDDDDDDDDDEEEEEEEFFFEFFEGHHHHFGDIJIHIJIJIJIIIITIIGGFIIIHIIIIIIIIIIIGHHFAHGFHIHFGGHFFFDD@BB

AShi =11 XM:1:2 X0:1:0 XG:1:0 MD:Z:0A85G13 NM:i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1210:11167:8699 0 chr20 271218 50 50M4700N50M * 0
0 GTGGCTCTTCCACAGGAATGTTGAGGATGACATCCATGTCTGGGGTGCACTTGGGTCTCCGAAGCAGAACATCCTCAAATATGACCTCTCG
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DATA ANALYSIS: ALIGNMENT

BAM file visualization

IGV
IGV is a standalone program which allows a highly interactive visualization
of BAM files (and other genomic annotation formats).

[
[0

822 bp
21,969,300 bp 21,970,000 bp 21,970,100 bp 21,970,200 bp 21,970,300 bp 21,970,400 bp
| | | | | | | | | | | | |

MLLT10
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DATA ANALYSIS: ALIGNMENT

BAM file visualization

Genome Browser (UCSC)

Visualization is less interactive, but many supplementary tracks are available.

position/search ' chrz:250,000-265,000

‘gene

Jump clear ) size 15,001 bp. ( configure

S kb}
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|
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T Y

E—EIEE—E I —
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1

_] Gap
ReFSeq Genes
J NARS ¢ | i8 i4 ines i | SS6._SEES & SEsscss Eecess Sesest oo ssrsr ]
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Chicken mRNAs from GenBank
89 < - ——s CR396197 mm——
AJ7268276 ————FH - —

OpOSSUM -ll [ 1)
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Ze| | — .:::::.::::.::::.
I SNFs from Beijing Genomics Institute
il B6I snPs| | (I [T Ll I
Repeating Elements by RepeatMasker
J RepeatMasker || | | | | | ] | | ||
move start Click on a feature for details. Click or drag in the base position track to zoom in. move end
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GENE EXPRESSION REGULATION IN EUKARYOTES — LM-GBM a.a. 2022-2023
Universita La Sapienza di Roma



DATA ANALYSIS: ALIGNMENT

How to assign reads to genes:

read
gene_A
RNA-Seq reads
= o =3 = = — gene A
- 80 o83 i = (- - gene_A -
0o 8o == = =
- — DI:I[:]I:D OO O
O oog © (580 gene A
e o o o B gene A === gene_A =
read read
gene A | 0 gene_A
- 8] s [ O
O0—OoOoOo0—40 OO, =
0——0 —0
= - - i | = e
= oo O0—iCo0os . _
= O 0—O| oo oe— OO gene_
= s e e e e e e
lGenome —
gene_A ambiguous
gene_B
e htseq count _
ene A i
e featureCount gene - ambiguous
e STAR

After reads mapping, gene annotation (gtf) where used in order to quantify the
expression of each gene in each sample
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DATA ANALYSIS: ALIGNMENT

How to assign reads to genes:

Each column is a sample

Count matrix

GENE ID KD.2 KD.3 OE.1 OE.2 OE.3 IR.1 IR.2 IR.3
1/2-SBSRNA4 57 41 64 55 38 45 31 39
A1BG 71 40 100 81 a1 77 58 40
A1BG-AS1 256 177 220 189 107 213 172 126
A1CF 0 1 1 0 0 (i} 0 0
O A2LD1 146 81 138 125 52 91 80 50
C A2M 10 9 2 5 2 9 8
O A2ML1 3 2 6 5 2 2 0
(@)) A2MP1 0 0 2 1 3 0 2 1
A4GALT 56 37 107 118 65 49 52 37
© A4GNT 0 0 0 0 1 0 0 0
(¢p) AAO6 0 0 0 0 0 0 0 0
"= AAAL 0 0 1 0 0 0 0 0
; AAAS 2288 1363 1753 1727 835 1672 1389 1121
@) AACS 1586 923 951 967 484 938 771 635
— AACSP1 1 1 3 0 1 1 1 3
c AADAC 0 0 0 0 0 0 0 0
AADACL2 0 0 0 0 0 0 0 0
8 AADACL3 0 0 0 0 0 0 0 0
LL] AADACL4 0 0 1 1 0 [} 0 0
AADAT 856 539 593 576 359 567 521 416
AAGAB 4648 2550 2648 2356 1481 3265 2790 2118
AAK1 2310 1384 1869 1602 980 1675 1614 1108
AAMP 5198 3081 3179 3137 1721 4061 3304 2623
AANAT 7 7 12 12 4 6 2 7
AARS 5570  3323| 4782 4580 2473| 3953 3339 2666

aAane,n aars ~mnm Anne nene A an ~nann ~nmra «rem
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DATA ANALYSIS: QUANTIFICATION OF GENE EXPRESSION

Measures of gene expression

Known exons/gene
- “The number of read counts mapping to the |

biological feature of interest (gene, transcript, — —
exon etc.) is considered to be linearly related to —— =" =

the abundance of the target feature.” — -
(Tarazona, 2011)

- The raw number of reads mapping on a gene (read count)
requires a normalization.
Why?
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DATA ANALYSIS: QUANTIFICATION OF GENE EXPRESSION

Why normalization is required before DE analyis?

¢ Sequencing Depth

[~ IT-II'-——————I--IIII-- [ TEEEE ] [ ] "uEn momrd B - - - - - -5 O GO DODE BOE------ - 00 5

Sample A Reads Sample B Reads
Eonpooszihd oE
N [y et e oY N 1 1 LT WO T
CCHHIF— Geex — 1 CHHI— S 1+—11

g st
o R o -
oL . HE
I GeneV 11 [ S
oo -----q BE ol
iy o b
DODODaDonag 0O GONODODNDG GOoananana oo O -0 0O oA -y ll‘lll-n BEDG BOBD gy | go BSOS SOGr-----3 08 gn pEna

the number of reads mapped on a gene depends on sequencing depth: to
normalize for the total number of mapped reads is important to compare the

expression levels of the same gene obtained from two different sequencing
experiments.
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DATA ANALYSIS: QUANTIFICATION OF GENE EXPRESSION

Why normalization is required before DE analyis?

e Gene length

Sample A Reads
" "
T SEEEEEE - T
sl T SR L
pa popope® @000 Opppopopopa b @ | ooa oa
M F— Genex —— 1
o .'.:::::::'L'"':'E. .
e g ol
-..'.'l """" .IIIII=.I=.I- ------- o Ba
- GeneV ]

longer genes will have a greater number of reads mapped on them compared
to equally expressed shorter genes: to normalize for gene length is important

to compare the expression of distinct genes.
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DATA ANALYSIS: QUANTIFICATION OF GENE EXPRESSION

Measures of gene expression: RPKM

s - RPKM stands for “Reads per Kilobase of exon per Million mapped reads”

C
RPKM =1y

»C : Number of mappable reads on a feature (eg.
transcript, exon, etc.)

»L: Length of feature (in kb)
»N: Total number of mappable reads (in millions)

Gene A 600 bases

RPKM ]),/":( 6*b 3.33
_— = —_—— = = Sample 1
le 1 —
AN C=12 C=24 N=6M
Sample 2 el — — . Sample 2
C=19 C=28 N=8M
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DATA ANALYSIS: QUANTIFICATION OF GENE EXPRESSION

Measures of gene expression: FPKM

- FPKM stands for “Fragments per Kilobase of exon per Million mapped
fragments”

-The unit used for quantification is no longer the single read, but the fragment.
In single-end sequencing, each read represents a fragment, so FPKM = RPKM.
In paired-end sequencing, each fragment is represented by a read pair: this
way, each read pair is not counted twice.

RPKM = 1 RPKM=2
FPKM=1
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DATA ANALYSIS: QUANTIFICATION OF GENE EXPRESSION

Normalization method Description Accounted factors Recommendations for use

gene count comparisons
between replicates of the
same samplegroup; NOT
for within sample
comparisons or DE
analysis

counts scaled by total

number of reads sequencing depth

CPM (counts per million)

gene count comparisons
within a sample or
between samples of the
same sample group; NOT
for DE analysis

counts per length of
transcript (kb) per million
reads mapped

sequencing depth and
gene length

TPM (transcripts per
kilobase million)

gene count comparisons
between genes within a
sample; NOT for between
sample comparisons or
DE analysis

RPKM/FPKM(reads/fragm

ents p'er kilobase of exon similar to TPM sequencing depth and
per million gene length
reads/fragments mapped)

counts divided by sample-

specific size factors

determined by median sequencing depth and
ratio of gene counts RNA composition
relative to geometric

mean per gene

gene count comparisons
between samples and
for DE analysis; NOT for
within sample
comparisons

DESeq2’s median of ratios

gene count comparisons
between and within
samples and for DE
analysis

uses a weighted trimmed
EdgeR’s trimmed mean of mean of the log
M values (TMM) expression ratios between
samples

sequencing depth, RNA
composition, and gene
length
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DATA ANALYSIS: DE NOVO DISCOVERY

Tools for de novo discovery of transcripts

- genome-guided programs use the alignment of reads to the genome to
assemble novel transcripts and genes.

- genome-independent programs use the overlap between reads to assemble
transcripts; alignment to the genome is not required. They are thus useful in
the absence of a reference genome, but also to find transcripts coming from
genes which underwent structural variations (indels, fusions etc.). These
programs are usually slower.

Transcriptome reconstruction

Genome-guided  Exon identification G.Mor.Se Assembles exons Identifying novel transcripts Alignments to
reconstruction  Genome-guided Scripture?® Reports all isoforms using a known reference reference genome
assembly Cufflinks?® Reports a minimal set of isoforms 9€"°Me
Genome- Genome-independent Velvet®1 Reports all isoforms Identifying novel genes and Reads
independent assembly TransABySS56 transcript isoforms without
reconstruction . . a known reference genome
Trinity
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DATA ANALYSIS: DIFFERENTIAL EXPRESSION ANALYSIS

What is differential expression (DE) analysis?

DE analysis allows to find genes (or other genomic features like transcripts and
exons) that are expressed at significantly different levels between two groups
of samples (conditions): patients treated with drugs VS controls, healthy VS sick
individuals , different tissues and different differentiation states. There could
also be more than two conditions (e.g. time series).

For each analyzed gene, the result will be:

- Fold Change (FC): the ratio of the average expression of gene in condition A to
the average expression in condition B. log2 transformed fold changes are nicer
to work with because the transform is symmetric for reciprocals (positive
values for up-regulation, negative for down-regulation).

- P-value: it measures the statistical significance of the observed differential
expression. The lower the p-value, the higher the probability that the gene
underwent a significant deregulation. Goes from 0 to 1, usual cutoff is 0.05. It
is often normalized to account for multiple testing.
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DATA ANALYSIS: DIFFERENTIAL EXPRESSION ANALYSIS

FC vs p-value

High absolute FC values are not necessarily

20 - significant
associated with significant P-values, especially Cond.BVSCond. A - =
when the expression of the gene is highly
variable. 15 -
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DATA ANALYSIS: DIFFERENTIAL EXPRESSION ANALYSIS

Visualization Open source

Data science R Platform agnostic

Computational
statistics

Some Tools for DE analysis:

tool input language
e EdgeR Count-matrix R
e imma-voom  Count-matrix R
e DEseq2 Count-matrix R
e Cuffdiff BAM files python
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DATA ANALYSIS: DIFFERENTIAL EXPRESSION ANALYSIS

e Benchmark of DE genes analysis tools:

DESeq - Conservative with default settings. Becomes more conservative when outliers are introduced.

- Generally low TPR.

- Poor FDR control with 2 samples/condition, good FDR control for larger sample sizes, also with outliers.

- Medium computational time requirement, increases slightly with sample size.

edgeR - Slightly liberal for small sample sizes with default settings. Becomes more liberal when outliers are introduced.

- Generally high TPR.

- Poor FDR control in many cases, worse with outliers.

- Medium computational time requirement, largely independent of sample size.

NBPSeq - Liberal for all sample sizes. Becomes more liberal when outliers are introduced.

- Medium TPR.

- Poor FDR control, worse with outliers. Often truly non-DE genes are among those with smallest p-values.

- Medium computational time requirement, increases slightly with sample size.

TSPM - Overall highly sample-size dependent performance.

- Liberal for small sample sizes, largely unaffected by outliers.

- Very poor FDR control for small sample sizes, improves rapidly with increasing sample size. Largely unaffected by outliers.

- When all genes are overdispersed, many truly non-DE genes are among the ones with smallest p-values. Remedied when the counts for some genes are Poisson
distributed.

- Medium computational time requirement, largely independent of sample size.

voom / - Good type | error control, becomes more conservative when outliers are introduced.
vst

- Low power for small sample sizes. Medium TPR for larger sample sizes.

- Good FDR control except for simulation study B‘b‘m Largely unaffected by introduction of outliers.

- Computationally fast.
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DATA ANALYSIS: FUNCTIONAL ENRICHMENT ANALYSIS

Extracting biological meaning from DE gene lists

search for a statistic

Group of genes

Once we have obtained a list of differentially expressed genes, we would like to
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And now what ?
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DATA ANALYSIS: FUNCTIONAL ENRICHMENT ANALYSIS

Extracting biological meaning from DE gene lists

What do we need to perform a functional enrichment analysis?

- A list of “interesting” genes.

- A background gene list, representing the “universe” of possible genes that

could be called as significantly regulated in the experiment. This list should

contain only genes that are “called” as expressed (to avoid biological bias) in
the experiment.

- Functional categories into which we can classify genes.

- A test which is able to tell what categories are significantly over or under-
represented in our list compared to background.
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DATA ANALYSIS: FUNCTIONAL ENRICHMENT ANALYSIS

Extracting biological meaning from DE gene lists

GO category Expressed Genes

. = Cell cycle genes — N
N -

Differentially Expressed Genes

—

80% 10%
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DATA ANALYSIS: FUNCTIONAL ENRICHMENT ANALYSIS

Example of functional categories: Gene Ontology.
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DATA ANALYSIS: FUNCTIONAL ENRICHMENT ANALYSIS

Example of functional categories: Kegg pathway.
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KEGG PATHWAY is a collection
of manually

drawn pathway maps
representing our knowledge of
the molecular interaction,
reaction and relation networks
for: 1. Metabolism

1. Metabolism

2. Genetic Information

Processing

3. Environmental Information

Processing

4. Cellular Processes

.

5. Organismal Systems
6. Human Diseases
7. Drug Development
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DATA ANALYSIS: FUNCTIONAL ENRICHMENT ANALYSIS

Example of online functional annotation tools.

‘ WEB-based GEne SeT Analysis Toolkit

WebGestalt Translating gene lists into biological insights...

3 ‘ﬁ; DAVID Bioinformatics Resources 6.8
: D R Laboratory of Human Retrovirology and Immunoinformatics (LHRI)

Gene Ontology enRIchment anaLysis and visuaLizAtion tool
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