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Functional elements are physically
connected to each other
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The relationship between genome structure
and function
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The activity of the regulatory elements of the
genome is related to the TF programme and
the epigenetic programme in the cell nucleus.
Together, the sequence, order and activity of
these regulatory elements instruct the
processes underlying higher- order chromatin
structures. CTCF- binding boundary elements
demarcate the boundaries of cohesin
mediated loop extrusion and thereby control
the positions of TAD borders; active gene
promoters might act in a similar way. Within
TADs, the process of loop extrusion brings
enhancers and promoters into close physical
proximity; this may facilitate specific
enhancer—promoter interactions, which are
stabilized by affinity between their bound TFs
and cofactors. Dependent on their chromatin
state, regions of euchromatin and
heterochromatin form spatially separated
compartments via a process of phase
separation.



Chromosome conformation capture
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Chromosome Conformation Capture
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Connessioni tra i DHS e il promotore del gene PAH
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Timeline and comparison of major chromosome
conformation capture techniques.
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3C, 4C, BC and Hi-C datasets
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Hi-C: A comprehensive technique to capture the
conformation of genomes

A crosslink and isolate B digest and biotin fill in C ligation and DNA isolation

v o {

E Pulldown, adaptor ligation

D biotin removal and size fractionation and deep sequencing




Hi-C: A comprehensive technique to capture the

conformation of genomes
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The relationship between the linear order of
the regulatory elements and the organization of
the genome.

In a hypothetical region of the genome, an active
enhancer activates an upstream gene in the middle
topologically associating domain (TAD). b | Deletion of
the downstream boundary of the middle TAD (red cross)
causes two TADs to merge; the active enhancer now
also activates the downstream gene. ¢ | Insertion of a
new boundary element within the middle TAD causes
the formation of an extra TAD, with the active enhancer
and the upstream gene now located in two separate
TADs. The enhancer can no longer interact with and
activate the upstream gene promoter. d | Inversion of
the region highlighted by the dashed box repositions the
active enhancer in a new TAD. It can no longer interact
with the upstream gene promoter, but instead activates
the downstream promoter. Note that in each scenario
the changes in activity within the domains alter their
long-range compartmentalization. CTCF, CCCTC-binding
factor.



Master Transcriptional Regulators

The set of genes that are transcribed largely defines the cell. The gene
expression program of a specific cell type includes RNA species from genes
that are active in most cells (housekeeping genes) and genes that are active
predominantly in one or a limited number of cell types (cell-type-specific

genes).

Transcription factors that have dominant roles in the control of specific cell
states are capable of reprogramming cell states when ectopically expressed

in various cell types.
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Transcription factors

« Transcription factors can be separated into two classes based on their
regulatory responsibilities: control of initiation versus control of
elongation. This distinction is not absolute, as some transcription
factors may contribute to control of both initiation and elongation.

* Transcription factors typically bind cofactors, which are protein
complexes that contribute to activation (coactivators) and repression
(corepressors).

* These coactivators include histone modifiers (e.g. HAT) and the
Mediator complex, among others.



Transcription factors form a vast network

In addition to contributing to the annotation of functional DNA elements,
the ENCODE project has enabled analysis of the connections between
these linear elements, such as the interaction network among
transcription factors and long-range chromatin interactions.

The analysis of target sites for 119 A AO ® A.
transcription factors examined by A &

the ENCODE project using ChIP-seq
has revealed the presence of a
hierarchical interaction network. At
the top of the pyramid are the most
powerful ftranscription factors, while
further down are factors that are
more regulated than regulatory.

*[www.regulatorynetworks.org](http:/
/www.regulatorynetworks.org)*: links
between  specific  transcription
factors in certain cell types



Connection networks among transcription factors
show high cell specificity

(A)
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475 transcription factors in 6 connection networks of different cell types.



Connection networks among transcription factors
show high cell specificity

(B) Network di livello successivo
relativo a cellule ematopoietiche
e a fattori di pluripotenza
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Transcriptional control by RNA pol II pausing

Whereas traditional models focused solely on the events that brought RNA
Pol II to a gene promoter to initiate RNA synthesis, emerging evidence points

to the pausing of Pol II during early elongation as a widespread regulatory
mechanism in higher eukaryotes.

ChIP-seq RNA pol

— Paused, expressed (~30% of all genes)
— Paused, unexpressed (<1% of all genes)
— Non-paused, expressed (~45% of all genes)

— Non-paused, unexpressed (~25% of all genes)

Pol Il signal

£ /\

TSS Poly(A)

Nature Reviews | Genetics



Transcriptional control by RNA pol II pausing

Once the recruited RNA Pol II molecules initiate transcription, they generally
transcribe a short distance, typically 20-80 bp, and then pause. This process is
controlled by the factors DSIF and NELF, which are physically associated with the
paused RNA Pol II. The paused polymerases may transit to active elongation through

pause release, or may ultimately terminate transcription with release of the small
RNA species.

Pause release and subsequent elongation occur through recruitment and activation of
positive transcription elongation factor b (P-TEFb), which phosphorylates the Ser2
of paused polymerase and its associated pause control factors.

Transcription factors may stimulate P-TEFb-mediated release of RNA polymerase II
from these pause sites and thus contribute to the control of transcription elongation
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O Phosphorylation

@ Methylation

P-TEFb %
+1 nucleosome 6/\ )
GTFs —\ A Acetylation
Ser2

Core promoter NELF
elements




Establishment and release of paused Pol 11

a. Promoter opening often involves binding of transcription factor (TF) that brings in
chromatin remodellers to remove nucleosomes from around the TSS and to render
the promoter accessible for recruitment of the transcription machinery.

b. Pre-initiation complex formation involves
the recruitment of a set of general transcription
factors and Pol II. This step precedes the
initiation of RNA synthesis. c. Pol II pausing
occurs shortly after transcription initiation and
involves the association of pausing factors
DSIF and NELF. The paused Pol II is
phosphorylated on its CTD domain. d. Pause
release is triggered by the recruitment of the P-
TEFb kinase, either directly or indirectly by a
transcription factor (TF2). P-TEFb kinase
phosphorylates the DSIF-NELF complex to
release paused Pol II. e. Phosphorylation of
DSIF-NELF dissociates NELF from the
elongation complex and transforms DSIF into
a positive elongation factor that associates with
Pol II throughout the gene.
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Model for function of NELF poised and paused states during early

transcription elongation

Promoter proximal pausing is a general feature of transcription elongation affecting virtually all genes and is
important for retaining open chromatin at gene promoters and for regulating rapid gene expression in
response to environmental and developmental cues. Pausing is the consequence of both the underlying DNA
sequence and the function of DSIF and NELF. Additional factors, such as cap-binding
complex, histone chaperone FACT, and BRD4, can play a role in pause regulation
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Resolution of these non-productive states by Pol Il is greatly stimulated by the association
of transcription factor (TF) IIS with the transcription elongation complex. TFIIS binds near

the Pol Il active site and stabilizes a Mg2+ ion, which supports cleavage of extruded RNA by
Pol Il and restoration of the active site to a state compatible with elongation.
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7SK RNA regulated p-TEFD activity

7SK RNA forms the core of a small nuclear ribonucleoprotein (snRNP) complex that
minimally contains P-TEFb, and the proteins HEXIM1/2 and LARP7, which control

the activity of P-TEFb and stabilize 7SK RNA. The P-TEFb kinase is inactive when
present in the 7SK snRNP complex and becomes active when it dissociates from the

complex.
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