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Esercizio 11. Calcolare i seguenti limiti

5 7ln(1 + x2)x x4
lim X1%2 lim —( 1) 2 1

lim 5 5

x—0 X1X2 x—0 X2(X1 +X2)

x—0 2 2
A [xl +3x5

VX1X2

lim 5 >
x—0 1+ 2x7 +3x5
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ESERCIZIO 4. Si consideri lo spazio vettoriale C°[0, 7] e le norme || - ||;, con i = 1, 2, +co, definite in modo che, per
f e C°[0, 7], valga

1Al =j If(s)lds ||f||z=U |f<s)|2ds] Il = max |F(s)
0 0 s€[0,7]

i. si mostri che esistono due costanti C1, C> > O tali che

Il < Cillfle € Iflz< Callflle  perognife C°[0,7]
ii*. esistono delle costanti K1, K> > 0 in modo che

Ifllo < Killfll;  perognifec®l0,n] e i=1,2?

iii*. esiste Cq > O tale che ||f]|l; < Col|fll>-
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ESERCIZIO 2. Siprovi che l'insieme A = {f € C°[0,1]: f(x) > 0 per ogni x € [0, 1]} éaperto in ( co10,1111- ||c,,), poi

si scriva lespressione di A°.




<[] < ¥ ) 10 9eBEF) e NE-gho <T

N (8-l - <T
-‘/ . \: ¢ \ R A

P X

= = - K> %
1 A
la®-L\ < © . 2]

u

(]
Q
-
o
AN
S
A~

v Ve

ESERCIZIO 5. Nello spazio C°[-1, 1] si provi che, per k = 1,2,3,..., si ha

. .. L - . : '
i. le funzioni f,(x) = e **" costituiscono una successione di Cauchy rispetto a || - |,
i ! i - 2 M . .

ii. le funzioni f,(x) = e™**" non sono una successione di Cauchy rispetto a || - ||s

iii. le funzioni f,(x) = e /¥ costituiscono una successione di Cauchy rispetto a || - || oo
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ESERCIZIO 15. Stabilire se le seguenti funzioni sono continue, derivabili, differenziabili o di classe C* in IB?’ R
3_.3

X1 =X

22,3 x#0 2.2 .2
flxy,z)=x"+y“+z g(XLXz»Xa):{ X2 +x3+2x3 h(xy, x2,X3) = X{ + x5 - X3

x=0
Calcolare le equazioni cartesiane del piano tangente al grafico di f in (1,1, 2), del piano tangente al grafico di g in
(1,0,1) e del piano tangente al grafico di hin (0,0, 0).
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ESERCIZIO 14. Data

foy) =] [(x=12+(y-17]

{ b=y (xy) #(1,1)
0 (x,y)=(1,1)

studiare la continuitq, la derivabilita e la differenziabilita di f al variare del parametro a € R.

X
X= At COS() e (o)r\ K o _oX

Qo lqeC®(@ 00 20 0 o '/§0-

Al 32X

123\
~&-(3)) -
7 (&) =0
C
(o oY — 0= LG
~—o*t
W R0 D 3<%
> comdinz n IRY .
N\ ‘\’\ \ . .U: ‘ ‘ ] 1‘

1 O S (TN
= < -] wassd
A Se o4
q! 3 ! r <A
qQ
. \,:\-\ . . _
) ® )

Rene  SCtewAn) (LA + A1), )

Ww—=0 CN}{.\N?Y’Z




oy (ﬂ‘m\ Wle(w\"W'lL = l/;m &(ﬂhs@_@s@i&(&%ﬁ‘r.@—
0 S

W0 NS>

v ’ > o ob- =4

2 o<A U ol ?(eQMi diveSaro

o)

b ‘Q@“’n/‘*“ﬁ~ [Cﬁﬂ\ﬂ’cﬁﬁ) (W))W i

W0 N

EEE— = A CN\-NL\“ =\ z@‘& =0
W0 WL ™o e




