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LE EQUAZIONI DIMAXWELL

Il punto di partenza del nostro viaggio è costituito da quattro famose equazioni: le equazioni di Maxwell. Per il momento scrivere

legge di Gauss per il campo elettrico ÐÎ(E) =
QT
ε0

legge di Gauss per il campo magnetico ÐÎ(B) = 0

legge di Faraday-Neumann ÈL(E) = –
ÉÐS(B)

Ét

legge di Ampère-Maxwell ÈL(B) = µ0
"
iT + ε0

ÉÐS(E)
Ét

#

Le precedenti relazioni vanno lette nel seguente modo:Î⊆ � 3 è una superficie chiusa nello spazio, il simboloÐ indica il flusso del campo (elettrico omagne-
tico) attraverso tale superficie, QT è la somma algebrica delle cariche racchiuse all’interno diÎ ed ε0 è la costante dielettrica del vuoto. È indica la circuitazione
del campo (elettrico o magnetico) lungo la linea chiusa L ⊆ � 3, S è una qualsiasi superficie dello spazio avente L come bordo, iT è la somma algebria delle
intensità di corrente concatenate con L e µ0 è la permeabilità magnetica del vuoto. Il simbolo É indica la variazione della quantità che segue la lettera greca.
Questo sistema di quattro equazioni racchiude in sé le leggi fondamentali dell’elettromagnetismo e sono una delle conquiste scientifiche più importanti del
genere umano, almeno fino alla fine del XIX secolo. Eppure la loro scrittura in questa forma presenta alcune criticità, in particolare nel calcolo dei flussi e delle
circuitazioni, la cui definizione operativa non è di facile uso. Lo scopo recondito di questo corso è quello di rendere in grado il lettore e la lettrice di saper
riscrivere in formamatematicamente migliore le equazioni di Maxwell, di apprezzarne pienamente il significato e, soprattutto, di essere in grado di manipolare
attivamente le equazioni, al fine di calcolare quantità rivelanti, dedurre informazioni o previsioni utili.
È bennoto chenessun testo in commercio risponde a tutte le esigenzedel docente, e questo è ancor più vero per un testo vorrebbepresentare esaurientemente
i principali argomenti dell’analisi vettorialemoderna, venire incontro alle esigenze delle studentesse e degli studenti, riuscire a proporre un percorso ragionavole
e calibrato per le ore a disposizione che risultano sempre inferiori alle necessità sia ideali che reali...
Queste note sono il risultato più recente di lunghe riflessioni su cosa (e come!) presentare agli studenti di ”Analisi Vettoriale” del corso di laurea triennale in
Fisica dell’Università di Roma La Sapienza, su come integrare la teoria con esercizi che stimolino la riflessione in modo da facilitare l’assimilazione di concetti,
idee, tecniche e che facciano lavorare i discenti senza scoraggiare o stancare eccessivamente.
Ogni capitolo richiama definizioni, teoremi (alcuni dei quali con dimostrazione) e tutti gli strumenti necessari per la risoluzione dei relativi esercizi, anche se la
presentazione è ridotta all’essenziale. Gli esercizi e i problemi presentati illustrano e ampliano la teoria esposta e sono completamente svolti, nella speranza che
stimolino una rilettura dei precedenti risultati di teoria affrontati portando ad una rielaborazione consapevole e sicura. Pensiamo infatti che la teoria dovrebbe
proporre strumenti per la risoluzione di problemi (o, più banalmente, di esercizi) e che questi dovrebbero proiettare luce sul significato dei teoremi e sul modo
corretto di interpretarli e memorizzarli.
Gli argomenti di queste note sono cos̀ı organizzati.
Il promo capitolo espone alcuni concetti relativi agli spazi normati e ad alcune questioni di carattere topologico o metrico, con particolare interesse allo spazio
euclideo � n.
Il secondo capitolo contiene un’introduzione al calcolo differenziale per funzioni di più variabili a valori reali e vettoriali, con particolare enfasi ai concetti di
curve e superfici dello spazio. Il calcolo differenziale viene poi applicato al problema della ricerca di massimi e minimi liberi e vincolati.
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La misura e l’integrale di Lebesgue in � n è un argomento che è irrinunciabile per il corso di laurea in Fisica, a causa dei successivi corsi in cui si introducono
i rudimenti della meccanica quantistica, e costituisce il contenuto del terzo capitolo. Vengono sviluppati le idee di misura, di integrazione e provati i classici
risultati di passaggio al limite sotto il segno di integrale. Infine viene introdotta la definizione degli spazi di Lebesgue.
Il calcolo integrale è l’argomento principale del quarto capitolo. Nella prima parte vengono definiti gli integrali curvilinei di funzioni e di campi vettoriali e
vengono affrontate le questioni legate all’esistenza del potenziale di un campo vettoriale e all’esattezza delle forme differenziali lineari. Nella seconda parte
viene esposta la teoria dell’integrale secondo Lebesgue con applicazioni al calcolo di aree, volumi, masse, baricentri e momenti d’inerzia di solidi. Nell’ultima
parte del capitolo si considerano integrali superficiali di funzioni e di campi vettoriali con applicazioni al calcolo del flusso di un campo vettoriale attraverso una
superficie.
Il quinto capitolo tratta dei teoremi fondamentali del calcolo integrale e differenziale per i campi vettoriali ossia il teorema della divergenza e il teorema del
rotore, prima considerati nel piano e poi nello spazio. Al termine del capitolo è possibile trovare alcuni approfondimenti teorici che solitamente non compaiono
nei testi di analisi vettoriale.
Il sesto (ed ultimo) capitolo riporta i principali risultati relativi alla teoria di base delle equazioni differenziali ordinarie. Vengono discussi in dettaglio alcuni esempi
con lo scopo di rivisitare parte della teoria o accennare a qualche risultato più avanzato. Nell’ultima parte del capitolo vengono proposti alcuni risultati classici
relativi all’equazione di Poisson.
Desideriamo infine ringraziare tutti gli aspiranti fisici che hanno segnalato refusi, presentato soluzioni originali ai quesiti proposti, discusso e fatto domande:
continuate cos̀ı!
23 gennaio 2025
��
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1 RICHIAMI DI TOPOLOGIA E GEOMETRIA

Tutte le disquisizioni che faremo nel corso delle pagine successive si svolgeranno in alcuni ambienti che godono di interessanti e cruciali proprietà, quindi è
doveroso iniziare rammentando alcuni concetti che sono alla base dell’analisi in più dimensioni.

1.1 spazi vettoriali

DEFINIZIONE 1.1 Uno spazio vettoriale reale è un insieme non vuoto V, i cui elementi sono detti vettori, su cui sono definite due operazioni

addizionetravettori perogniv,w ∈ Vesisteu ∈ Vtalecheu = (v + v),
moltiplicazioneperscalare perogniλ ∈ � eogniv ∈ Vesistev ∈ Vtalechev = λw.

Tali operazioni godono di varie proprietà
i. l’addizione è associativa, cioè per ogni u,v,w ∈ V vale (u + v) +w = u + (v +w),
ii. l’addizione è commutativa, cioè per ogni u,v ∈ V vale u + v = v + u,
iii. esisteO ∈ V tale cheO+w = w, per ogniw ∈ V,
iv. per ogniw ∈ V vale 1w = w e0w = O,
v. per ogni u,w ∈ V e per ogni λ ∈ � , abbiamo λ(u +w) = λu +λw,
vi. per ogni v ∈ V e per ogni λ,µ ∈ � , segue (λ +µ)v = λv +µv,
vii. per ogni v ∈ V e per ogni λ,µ ∈ � , vale che (λµ)v = λ(µv).

Si osservi che la definizione resta valida se sostituiamo il campo reale � con il campo complesso � . Gli spazi vettoriali sono stati i protagonisti dei corsi di
geometria del primo anno, per cui non ci dilungheremo su di essi, tranne per un paio di esempi che torneranno utili.
Come primo esempio proponiamo lo spazio vettoriale che più frequentemente incontreremo, cioè

� n := {x = (x1, ...,xn) : xi ∈ � coni = 1, ...,n} sex,y ∈ � n allora w := (x + y) = (x1, ...,xn) + (y1, ...,yn) = (x1 + y1, ...,xn + yn)
sex ∈ � neλ ∈ � allora w := λx = λ(x1, ...,xn) = (λx1, ...,λxn)

chiameremo indifferentemente gli elementi di � n vettori o punti, il perché sarà chiaro più avanti. Ricordiamo che dim(� n) = n.
Un altro esempio notevole è il seguente: dato [a,b]⊆ � intervallo chiuso e limitato, definiamo lo spazio delle funzione continue e due operazioni come segue

C0[a,b] := {f : [a,b]−→ � : fcontinuain[a,b]} sef,g ∈ C0[a,b] allora (f + g)(x) := f(x) + g(x)perognix ∈ [a,b]
sef ∈ C0[a,b]eλ ∈ � allora (λf)(x) := λf(x)perognix ∈ [a,b]

È abbastanza facile verificare che C0[a,b] soddisfa la definizione di spazio vettoriale, ed è anche interessante provare che dim(C0[a,b]) = +∞ (è sufficiente
mostrare che i monomi del tipo xn sono linearmente indipendenti). Incontreremo altri spazi vettoriali più avanti, nel proseguio del nostro percorso.
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DEFINIZIONE 1.2 Sia V uno spazio vettoriale, una funzione ∥ · ∥V : V−→ � si dice norma se
i. ∥v∥V ≥ 0 per ogni v ∈ V e ∥v∥V = 0 se e solo se v = O (positività),
ii. ∥λw∥V = |λ|∥w∥V per ogniw ∈ V e λ ∈ � (1-omogeneità),
iii. ∥v +w∥V ≤ ∥w∥V + ∥v∥V per ogni v,w ∈ V (disuguaglianza triangolare).

È possibile dotare lo spazio vettoriale � n di molte norme, i casi più noti sono

∥x∥1 := |x1| + ... + |xn| =
n¼

i=1
|xi|

∥x∥2 := ∥x∥ =
q
x21 + ... + x

2
n =



n¼

i=1
|xi|2




1/2

∥x∥∞ := max
i=1,...,n

|xi|

perx ∈ � n

la norma ∥ · ∥2 è detta norma euclidea ed è la norma standard (almeno per noi) in � n, spesso verrà indicata senza alcun pedice, cioè scriveremo ∥x∥ invece di
∥x∥2. La norma ∥ · ∥1 è invece nota come norma del tassista o di Manhatthan.
Lo spazio delle funzioni continue C0[a,b] è usualmente equipaggiato con la seguente norma

∥f∥∞ := max
x∈[a,b]

|f(x)| perf ∈ C0[a,b]

DEFINIZIONE 1.3 Sia V uno spazio vettoriale su � , una funzione (·|·)V : V×V−→ � si dice prodotto scalare se
i. (w|v)V = (v|w)V per ogni v,w ∈ V (simmetria),
ii. (λw|v)V = (w|λv)V = λ(w|v)V per ogni v,w ∈ V e λ ∈ � (omogeneità),
iii. (w + u|v)V = (w|v)V + (u|v)V per ogni v,w,u ∈ V (linearità),
iv. (w|w)V ≥ 0 per ogniw ∈ V e (w|w)V = 0 se e solo sew = O (positività).

L’esempio principale di spazio dotato di prodotto scalare è � n che possiamo dotare del prodotto scalare euclideo

(x|y)� n := x · y =
n¼

i=1
xiyi x,y ∈ � n

nelle prossime pagine proveremo ad illustrare alcuni risultati essenziali riguardo agli spazi metrici e agli spazi normati. Altri prodotti scalari notevoli in � n sono
le funzioni del tipo

(x|y)M := x · [My] =
n¼

i,j=1
mijxiyj doveM =

�
mij

�
i,j=1,...,n ∈Mn,n(� )

è possibile provare che tale applicazione definisce effettivamente un prodotto scalare se e soltanto se la matrice M è simmetrica e definta positiva.
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OSSERVAZIONE 1.4 Si noti che un qualsiasi prodotto scalare induce sempre una norma sullo spazio vettoriale, grazie alla seguente espressione

∥x∥s := [(x|x)]1/2

in particolare è possibile verificare che

∥x∥ = ∥x∥2 =
h
(x|x)n�

i1/2 =
h
(x|x)In

i1/2 doveIn =
�
δij

�
i,j=1,...,n =

(
1 i = j
0 i , j

OSSERVAZIONE 1.5 È sempre possibile introdurre un concetto di lunghezza (o distanza tra punti) avendo a disposizione una norma ed uno spazio vettoriale.
Pensando i vettori anche come punti di uno spazio geometrico possiamo introdurre la seguente definizione

dV(u,w) := ∥u –w∥V perogniu,w ∈ V

è immediato verificare che le proprietà della norma, implicano le seguenti proprietà per la distanza dV
i. dV(u,w)≥ 0 per ogni u,w ∈ V e dV(u,w) = 0 se e solo se u = w (positività),
ii. dV(u,w) = dV(w,u) per ogni u,w ∈ V (simmetria),
iii. dV(v,w)≤ dV(v,u) + dV(u,w) per ogni v,u,w ∈ V (disuguaglianza triangolare).
Tali proprietà esprimono le caratteristiche a cui, generalmente, si pensa parlando di distanze o lunghezze e, come vedremo tra poco, sono alla base di una
definzione più matematica di tale concetto

1.2 spazi metrici

Abbiamo visto nelle pagine precedenti che, avedo una norma, è possibile introdurre un concetto di distanza tra due punti o, se si preferisce, di lunghezza di un
segmento di estremi dati. Proviamo a generalizzare questo concetto, per isolarne le caratteristiche salienti.

DEFINIZIONE 1.6 Uno spaziometrico è una coppia (X,d) doveX è un insieme non vuoto (i cui elementi saranno chiamati punti) e d : X×X−→ � è una funzione
chiamata distanza (o anche metrica) che soddisfa le seguenti richieste:
i. d(x,y)≥ 0 per ogni x,y ∈ X e d(x,y) = 0 se e solo se x = y (positività) ,
ii. d(x,y) = d(y,x) per ogni x,y ∈ X (simmetria),
iii. d(x,y)≤ d(x,z) + d(z,y) per ogni x,y,z ∈ X (disuguaglianza triangolare).

Il primo esempio di spazio metrico che abbiamo incontrato è l’insieme dei numeri reali con la distanza indotta dal modulo: d(x,y) := |x – y|: le verifiche delle
proprietà i. ii. e iii. sono abbastanza facili. Analogamente anche (� n,∥ · ∥) è uno spazio metrico, ma su questa affermazione torneremo più avanti. Si noti che
è sempre possibile definire distanze diverse su un qualsiasi spazio, infatti abbiamo già visto che è possibile dotare � n di più norme, e (conseguentemente) di
più distanze.
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Un esempio un po’ bizzarro, e per alcuni versi degenere, è il seguente: sia X , ∅ un insieme arbitrario e definiamo

dD(x,y) =
(
1 sex , y
0 sex = y

È facile verificare che dD è una metrica. Le proprietà i. e ii. sono chiaramente verificate e per quanto riguarda la iii. abbiamo che se x = y non c’è nulla da
dimostrare. Se x , y, basta provare che dD(x,z) + dD(z,y) ≥ 1 per ogni x, y e z nello spazio X, con x , y, fatto questo che risulta essere vero, essendo almeno
uno tra i valori dD(x,z) e dD(y,z) uguale a 1 (non possono essere entrambi nulli, perché si avrebbe x = z e z = y per la i., da cui x = y). La distanza dD si chiama
distanza discreta.

OSSERVAZIONE 1.7 (METRICA INDOTTA) Un’osservazione utile, per quanto elementare, è che ogni sottoinsieme E di uno spazio metrico (X,d) è a sua volta uno
spazio metrico con la metrica indotta dalla restrizione della distanza alle coppie di E. Cioè, se poniamo dE : E×E−→ � definita dE(x,y) := d(x,y), allora (E,dE)
è uno spazio metrico.
Per esempio, ogni sottoinsieme di � può essere considerato uno spazio metrico con la metrica indotta dal modulo.

Nei primi corsi di analisi matematica è usuale introdurre l’insieme dei numeri reali � e i suoi assiomi. Adesso vogliamo concentrarci sulla proprietà di com-
pletezza: questa proprietà caratterizza l’insieme dei numeri reali rendendoli differenti, in qualche senso, dall’insieme dei numeri razionali � . Tale assioma si
è rivelato indispensabile per dimostrare tutti i principali risultati del primo corso di analisi, quali il teorema dei valori intermedi, il teorema di Weierstrass, il
teorema fondamentale del calcolo integrale... Le implicazioni dell’affermazione che � è completo nell’analisi matematica rendono necessaria una riflessione e
una rivisitazione del significato di completezza, perché vorremmo estendere tale concetto ad altri spazi. La definizione di completezza può essere formulata
tramite vari assiomi, per esempio

ASSIOMA 1.8 (PROPRIETÀ DI ARCHIMEDE) Per ogni coppia di numeri reali a> 0 e b≥ 0 esisteN ∈ � tale cheNa> b.

ASSIOMA 1.9 (DI G.F.L.P. CANTOR) Sia [ak,bk]⊆ � , per ogni k ∈ � , un intervallo non vuoto, tale che [ak+1,bk+1]⊆ [ak,bk] per ogni k ∈ � , allora
\

k∈�
[ak,bk] , ∅

Il limite principale della formulazione della completezza di� (enunciata tramite l’assioma degli intervalli incapsulati) risiede nel fatto che si basa sulla particolare
struttura unidimensionale � . Tuttavia, le implicazioni che la proprietà di completezza ha in � sono chiaramente condivise da altri insiemi, quali per esempio
il campo dei numeri complessi � o lo spazio euclideo � 3 (o, più in generale, � n). Ma cosa vuol dire esattamente che � o � 3 sono spazi completi? Di seguito
diamo una formulazione equivalente della proprietà di completezza di � , che è basata sul concetto di successione e che è facilmente estendibile a situazioni
ben più generali, quali � , � n e tante altre ancora, cioè spazi vettoriali o metrici in cui non ha senso parlare di intervalli.
Una successione di numeri reali è una funzione a valori reali di dominio � , quindi a : � −→ � (per cui a(k), per k ∈ � , sono i valori della successione).
Generalmente una successione può essere indicata con una scrittura del tipo {ak}k∈� , o anche {a(k)}k∈� , e talvolta scriveremo {ak} ⊆ � per indicare che i
valori della funzione a sono assunti nei numeri reali.
Ricordiamo la definizione di successione convergente e di sottosuccessione.
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DEFINIZIONE 1.10 Una successione {ak} è convergente se esiste p ∈ � per cui vale

perogniε> 0 esisteN(ε) ∈ � tale che |ak – p|≤ ε perognik≥ N(ε)

In questo caso si scrive

ak −→ p oppure lim
k−→+∞

ak = p

DEFINIZIONE 1.11 Data una successione di numeri reali {ak} e una successione di numeri naturali strettamente crescente k(0) < k(1) < k(2)..., la successione
a′ = {ak(i)}i∈� si chiama sottosuccessione di {ak}k∈� e si scrive a′ ⊆ a.

In altre parole, una sottosuccessione a′ ⊆ a è la composizione della funzione a con una funzione strettamente crescente k : � −→ � ,

a′ = a ◦ k cioè a′ = (ak(0),ak(1),ak(2), ...)

È noto che una successione è convergente se e solo se tutte le sue sottosuccessioni convergono (sempre allo stesso limite), inoltre un fatto significativo
riguarda le successioni limitate, per le quali esiste sempre una sottosuccessione convergente, come mostriamo nella prossima proposizione. Ricordiamo che
una successione {ak} si dice limitata se lo è come funzione, ossia se esiste M> 0 tale che |ak|≤M per ogni k ∈ � .

TEOREMA 1.12 (DI B.P.J.N. BOLZANO E K.T.W.WEIERSTRASS) Ogni successione di numeri reali limitata possiede una sottosuccessione convergente.

DIMOSTRAZIONE. Sia {ak} una successione limitata e sia M > 0 tale che –M ≤ ak ≤ M per ogni k ∈ � . Applichiamo il cosiddetto metodo di bisezione: sia
[a0,b0] = [–M,M] e consideriamo la seguente proprietà (P) per gli intervalli chiusi e limitati I

(P) ak ∈ I perinfinitiindicik

Chiaramente (P) vale per [a0,b0]. A partire da [a0,b0] si definisce una successione di intervalli chiusi incapsulati in modo ricorsivo procedendo secondo il
seguente algoritmo di bisezione: si divide l’intervallo [an,bn] in due metà, I– := [an, (an + bn)/2] e I+ := [(an + bn)/2,bn] e, se I– soddisfa la proprietà (P), allora si
pone [an+1,bn+1] := I–; altrimenti, necessariamente I+ contiene infiniti termini della successione, cioè soddisfa la proprietà (P), e si pone [an+1,bn+1] := I+.
La procedura di bisezione produce una successione di intervalli incapsulati [an,bn] tali che la proprietà (P) vale per ogni intervallo [an,bn]. In particolare, dato
che ci sono infiniti termini della successione in ogni intervallo [an,bn], possiamo trovare una successione crescente di indici k(0) = 0 < k(1) < k(2)... tale che
ak(n) ∈ [an,bn] per ogni n.
Sia λ =

T
n∈� [an,bn], si noti che tale reale esiste, per l’assioma di Cantor, ed è unico per la proprietà archimedea dei reali. Allora la sottosuccessione {ak(n)}

converge a λ perché per ogni n si ha che

|ak(n) –λ|≤ bn – an =
b0 – a0
2n

da cui la conclusione segue dal teorema del confronto per successioni.
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DEFINIZIONE 1.13 (SUCCESSIONE DI CAUCHY) (ak)⊆ � è una successione di Cauchy se per ogni ε> 0 esiste un indice K = K(ε) ∈ � tale che

|ak+j – ak|≤ ε perognik≥ Keperognij ∈ �

Il primo risultato che vogliamo mostrare è

PROPOSIZIONE 1.14 (CONVERGENZA DELLE SUCCESSIONI DI CAUCHY) In � una successione è di Cauchy se e solo se è convergente.

DIMOSTRAZIONE. Supponiamo che {ak} ⊆ � sia una successione convergente e sia p ∈ � il suo limite. Dalla definizione di limite sappiamo che per ogni
ε> 0 esiste N(ε) ∈ � tale che

|ak – p|≤ ε perognik≥ N(ε)

Allora possiamo scrivere

|ak+j – ak| = |ak+j – p + p – ak|≤ |ak+j – p| + |p – ak|≤ 2ε perognik≥ N(ε), j ∈ �

La disuguaglianza ottenuta prova che {ak} è di Cauchy (con K(ε) = N(ε/2).
Viceversa, sia {ak} una successione di Cauchy; allora dalla definizione abbiamo che esiste K0 tale che

|ak+j – ak|≤ 1 perognik≥ K0
In particolare, la successione {ak} è limitata in quanto

|ak|≤ |a0| + ... + |aK0 | + 1 perognik ∈ �

Per la Proposizione 1.12 esiste una sottosuccessione convergente {ak(n)} ad un punto p ∈ � . Per concludere il ragionamento è sufficiente provare che tutta la
successione {ak} converge a tale limite. Sia ε > 0; per definizione di limite (per {ak(n)}) e di successione di Cauchy (per {ak}) esistono due indici naturali K1 e
K2 tali che

|ak(n) – p|≤ ε perognik(n)> K1
|ak+j – ak|≤ ε perognik> K2, j ∈ �

Allora, per ogni k≥max{K1,K2}, sia n tale che k(n)> k e stimiamo come segue

|ak – p|≤ |ak – ak(n)| + |ak(n) – p|≤ 2ε

L’arbitrarietà di ε ci permette di affermare che ak −→ p, concludendo la dimostrazione.

TEOREMA 1.15 (ESISTENZA DELL’ESTREMO SUPERIORE) L’assioma di convergenza delle successioni di Cauchy e la proprietà archimedea implicano l’esistenza
dell’estremo superiore di insiemi non vuoti e superiormente limitati.

11



�� ��

DIMOSTRAZIONE. Sia E ⊆ � un insieme non vuoto e superiormente limitato. La dimostrazione procede tramite il cosiddetto metodo di bisezione: o esiste
max(E) (nel qual caso la dimostrazione è conclusa), oppure esistono due successioni di reali {an} e {bn} tali che an non è un maggiorante di E e bn è un
maggiorante di E per ogni n ∈ � , inoltre il metodo di bisezione garantisce che {an} sia crescente e {bn} decrescente. In particolare, le successioni {an} e {bn}
sono successioni di Cauchy, perché risulta che

|an+j – an|, |bn+j – bn|≤ bn – an =
b0 – a0
2n perognij ∈ �

quindi l’ipotesi che le successioni di Cauchy sono convergenti permette di affermare che {an} e {bn} sono convergenti. Inoltre, dato che bn –an = (b0 –a0)/2n,
per la proprietà di Archimede si ha che

lim
n−→∞an = lim

n−→∞bn

Chiamiamo µ tale limite: la dimostrazione si conclude provando che µ = sup(E). Per definizione di maggiorante abbiamo che

x≤ bn perognix ∈ E

e, passando al limite, otteniamo

x≤ µ perognix ∈ E

il che prova che µ è un maggiorante. Inoltre, per costruzione an non è un maggiorante, per cui per ogni n esiste xn ∈ E tale che an < xn. In particolare, non può
esistere un maggiorante λ con λ< µ, infatti, si ha che

lim
n−→∞an = lim

n−→∞xn = lim
n−→∞bn = µ

e, dato che an < xn ≤ λ< µ per ogni n, deduciamo la contraddizione

0< µ –λ≤ lim
n−→∞(bn – an) = 0

TEOREMA 1.16 (REGOLARITÀ DELLE SUCCESSIONI MONOTONE) Ogni successione monotona e limitata è una successione di Cauchy.

DIMOSTRAZIONE. ......
È un fatto notevole che la completezza dei numeri reali possa essere caratterizzata dalla convergenza delle successioni di Cauchy e dalla proprietà di Archimede,
cioè che scegliere come assioma Cantor o Cauchy è, sostanzialmente, indifferente in � , come potremo affermare dopo aver provato il seguente enunciato.

TEOREMA 1.17 (CARATTERIZZAZIONE DELLA PROPRIETÀ DI COMPLETEZZA) L’assioma di convergenza delle successioni di Cauchy implica il principio degli
intervalli incapsulati di Cantor.
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DIMOSTRAZIONE. Consideriamo una successione di intervalli incapsulati, cioè di intervalli chiusi e limitati tali che [an,bn]⊇ [an+1,bn+1] per ogni n ∈ � , e osser-
viamo che le successioni {an} e {bn} sono successioni di Cauchy, perché sono successioni limitate emonotone, quindi convergenti per il teorema precedente.
Allora abbiamo che

an −→ a∞ ≤ b∞←− bn

A questo punto segue che

∅ , [a∞,b∞]⊆ [an,bn] perognin ∈ �

il che conclude la prova.

Alla luce delle considerazioni fatte sulla completezza di � è naturale definire uno spazio metrico completo come uno spazio in cui ogni successione di Cauchy
è convergente. Come abbiamo già osservato questa definizione sarà indipendente dall’ordinamento dei reali e non necessità di alcuna struttura legata agli
spazi vettoriali: di fatto è essenzialmente una definizione di caarttere metrico, che necessita solo della proprietà di Archimede dei reali, per poter parlare di
successioni infinitesime in erre e della definizione di distanza.
A questo scopo premettiamo alcune definizioni e osservazioni sulle successioni negli spazi normati.

DEFINIZIONE 1.18 i. Sia (X,∥ · ∥X) uno spazio normato. Una successione di punti in X è una funzione a : � −→ X, solitamente denotata con {ak}⊆ X.
ii. Una successione {ak}⊆ X si dice convergente se esiste un punto p ∈ X tale che

lim
k−→∞

∥ak – p∥X = 0

iii. Una successione {ak}⊆ X si dice di Cauchy se per ogni ε> 0 esiste K(ε) ∈ � tale che

∥ak+j – ak∥X < ε perognik≥ K(ε)eperognij ∈ �

OSSERVAZIONE 1.19 I limiti delle successioni sono sempre unici, infatti se avessimo che ak −→ p e ak −→ q, allora per la disuguaglianza triangolare avremmo
che

∥p –q∥ ≤ ∥p – ak∥ + ∥ak – q∥ perognik ∈ �

da cui

∥p –q∥ ≤ lim
k−→∞

�∥p – ak∥ + ∥ak – q∥
� = 0

il che implica p = q.

OSSERVAZIONE 1.20 Dal punto ii. della definizione precedente segue che per ogni ε> 0 esiste un naturale N(ε) tale che

∥ak – p∥ ≤ ε perognik≥ N(ε)
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Allora, per ogni k≥ N(ε) e per ogni j ∈ � , per la disuguaglianza triangolare si ha che

∥ak – ak+j∥ ≤ ∥ak – p∥ + ∥p – ak+j∥ ≤ 2ε

cioè {ak} è di Cauchy.
Sottolineiamo esplicitamente che il viceversa non è sempre vero: per esempio, in (� ,∥ · ∥2) non è vero che ogni successione di Cauchy è convergente.

La convergenza delle successioni di Cauchy è un criterio che può essere usato per definire il concetto di completezza in uno spazio metrico generale, come
proponiamo nella successiva definizione.

DEFINIZIONE 1.21 Uno spazio normato (X,∥ · ∥X) si dice completo se ogni sua successione di Cauchy è convergente.

1.3 spazi normati completi

Gli esempi considerati fino ad ora, ossia � n e gli spazi di funzioni continue C0[a,b], possiedono una struttura di spazi vettoriali: i loro punti sono anche vettori,
e possono essere sommati tra di loro e moltiplicati per uno scalare. Questa è una classe importante di spazi metrici, per i quali (come abbiamo osservato) la
metrica usuale è indotta da una norma, che gioca l’analogo ruolo della lunghezza o del modulo di un vettore.

DEFINIZIONE 1.22 Uno spazio normato è una coppia di oggetti (X,∥ · ∥X), dove X uno spazio vettoriale reale e ∥ · ∥X : X−→ � è una norma.

Abbiamo già osservato che uno spazio normato è anche uno spazio metrico introducendo la seguente funzione distanza

dX(x,y) = ∥x – y∥X
Infatti, tale applicazione è non negativa e nulla solo se x = y per la definizione di norma (positività), inoltre la simmetria segue dall’omogeneità della funzione,

dX(x,y) = ∥x – y∥X = ∥ – (y – x)∥X = | – 1|∥y – x∥X = ∥y – x∥X = dX(y,x)

Infine la disuguaglianza triangolare discende dalla terza proprietà

dX(x,y) = ∥x – y∥X = ∥x – z + z – y∥X ≤ ∥x – z∥X + ∥z – y∥X = dX(x,z) + dX(z,y)

È anche utile osservare che valgono le seguenti disuguaglianze

∥x∥X = ∥x – y + y∥X ≤ ∥x – y∥X + ∥y∥X e ∥y∥X = ∥y – x + x∥X ≤ ∥y – x∥X + ∥x∥X
da cui possiamo dedurre che

����∥x∥X – ∥y∥X
����≤ ∥x – y∥X
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In altri termini, la funzione norma è continua rispetto alla metrica dX e, più precisamente, è lipschitziana con costante di Lipschitz 1. In uno spazio normato
faremo sempre riferimento alla distanza indotta dalla norma, a meno che non sia specificato diversamente.

DEFINIZIONE 1.23 Gli spazi normati completi (rispetto alla metrica indotta dalla norma) sono detti spazi di Banach.

DEFINIZIONE 1.24 Dato uno spazio vettorialeX e due norme ∥ ·∥a e ∥ ·∥b definite di esso, diremo che le due norme sono equivalenti se esistono due reali positivi
0< c∗ < c∗ tali che

c∗∥u∥a ≤ ∥u∥b ≤ c∗∥u∥a perogniu ∈ X

Se si interpreta il concetto di norma come una sorta di funzione lunghezza associata ad ogni vettore dello spazio X, il fatto che le due norme siano equivalenti
significa che le due misurazioni danno sempre risultati confrontabili, in particolare il fatto più importante è che successioni di Cauchy rispetto alla distanza
indotta da una norma sono successioni di Cauchy anche rispetto alla distanza indotta dall’altra norma. Quindi (X,∥ ·∥a) è completo se e soltanto se è completo
(X,∥ · ∥b).
Questo principio è stato utilizzato nella dimostrazione della completezza di (� n,d1) e (� n,d∞): infatti, entrambe le metriche sono indotte da una norma e
sono equivalenti alla norma euclidea.
Questa conclusione non è fortuita ma deriva dal fatto che tutte le norme in uno spazio finito dimensionale sono equivalenti. Per provare ciò, iniziamo con
alcune osservazioni generali sulle norme in spazi finito dimensionali.

OSSERVAZIONE 1.25 (NORME IN � n) Sia ∥ ·∥∗ una generica norma in � n e si consideri la metrica euclidea ∥ ·∥2 = ∥ ·∥ in � n (ossia la metrica indotta dal prodotto
scalare euclide). Allora si osserva quanto segue.
i. Sia {e1, ...,en} la base canonica di � n, per ogni x = (x1, ...,xn) ∈ � n si ha che

∥x∥∗ = ∥x1e1 + ... + xnen∥∗ ≤ |x1|∥e1∥∗ + ... + |xn|∥en∥∗ ≤
q
x21 + · · · + x2n

q
∥e1∥2∗ + ... + ∥en∥2∗ = C∗∥x∥2

dove C∗ =
q
∥e1∥2∗ + ... + ∥en∥2∗, e dove si è usata la proprietà triangolare delle norme nella prima disuguaglianza e Cauchy-Schwartz nella seconda.

ii. Ne segue che tutte le norme in � n sono funzioni continue per la topologia indotta dalla metrica euclidea: infatti, dai calcoli precedenti si evince che

|∥x∥∗ – ∥y∥∗|≤ ∥x – y∥∗ ≤ C∗∥x – y∥2

da cui la continuità.

TEOREMA 1.26 (EQUIVALENZA DELLE NORME IN SPAZI FINITO DIMENSIONALI) Tutte le norme in uno spazio finito dimensionale sono equivalenti: in formule, se
∥ · ∥a e ∥ · ∥b sono due norme in � n, allora esistono costanti0< c∗ < c∗ tali che

c∗∥x∥a ≤ ∥x∥b ≤ c∗∥x∥a perognix ∈ � n
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DIMOSTRAZIONE. È sufficiente dimostrare che tutte le norme sono equivalenti ad una norma data, per esempio alla norma euclidea ∥ · ∥2, perché quella tra
norme è una relazione di equivalenza. Infatti, se esistono costanti 0< c(a)∗ < c(a)∗ e 0< c(b)∗ < c(b)∗ tali che

c(a)∗∥x∥a ≤ ∥x∥2 ≤ c(a)∗∥x∥a, c(b)∗∥x∥b ≤ ∥x∥2 ≤ c(b)∗∥x∥a perognix ∈ � n

allora si deduce che le due norme ∥ · ∥a e ∥ · ∥b sono equivalenti, perché

c(a)∗
c(b)∗ ∥x∥a ≤ ∥x∥b ≤

c(a)∗
c(b)∗

∥x∥b perognix ∈ � n

Basta quindi dimostrare l’equivalenza di una norma generica ∥ · ∥∗ con ∥ · ∥2. A questo proposito, ricordiamo due fatti importanti
i. la sfera di raggio 1, Sn–1 = ∂B(O, 1) = {x ∈ � n : ∥x∥2 = 1}, è un sottoinsieme compatto di (� n,∥ · ∥2) (perché chiuso e limitato),
ii. la norma ∥ · ∥∗ è una funzione continua in (� n,∥ · ∥2).
Allora, per il Teorema di Weierstrass la funzione ∥ · ∥∗ assume massimo e minimo in Sn–1: vale a dire, esistono costanti 0< c∗ ≤ C∗ < +∞ tali che

c∗ ≤ ∥z∥∗ ≤ C∗ perogniz ∈ Sn–1

Preso quindi un generico punto x , 0, si ha che x/∥x∥2 ∈ Sn–1 e applicando la disuguaglianza appena mostrata a z = x/∥x∥2 deduciamo che

c∗ ≤ ∥z∥∗ =
∥x∥∗
∥x∥2

≤ C∗

da cui segue l’equivalenza delle norme.

OSSERVAZIONE 1.27 (CONVESSITÀ DELLA NORMA) La proprietà triangolare della Definizione 1.22 implica che una norma è una funzione convessa, infatti pos-
siamo scrivere

∥λx + (1 –λ)y∥ ≤ ∥λx∥ + ∥(1 –λ)y∥ = λ∥x∥ + (1 –λ)∥y∥ perognix,y ∈ X,λ ∈ [0, 1]

È un fatto generale che le funzioni convesse in � n sono continue (più precisamente localmente lipschitziane).

Consideriamo ora uno spazio vettoriale H equipaggiato con un prodotto scalare (·|·)H, allora possiamo associare al prodotto scalare una funzione ∥ ·∥H : H−→
[0,+∞) definita come segue

∥x∥H =
p
(x|x)H x ∈ H

dal teorema che segue discende, tra molti altre proprietà, che ∥ · ∥H è una norma.
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TEOREMA 1.28 SiaH uno spazio munito di prodotto scalare (·|·)H. Allora valgono i seguenti fatti:
i. disuguaglianza di Cauchy-Schwartz

|(u|w)H|≤ ∥u∥H∥w∥H perogniu,w ∈ H

ii. disuguaglianza triangolare

∥u +w∥H ≤ ∥u∥H + ∥w∥H perogniu,w ∈ H

iii. identità del parallelogrammo

∥u +w∥2H + ∥u –w∥2H = 2
�
∥u∥2H + ∥w∥2H

�
perogniu,w ∈ H

DIMOSTRAZIONE. i. Consideriamo la seguente funzione di una variabile reale

φ(t) := (u + tw|u + tw)H = ∥u + tw∥2H t ∈ �

osserviamo subito che, essendo una norma al quadrato, la funzione produce solo valori non negativi, inoltre la simmetria e la linearità del prodotto scalare ci
permettono di scrivere che

0≤ φ(t) = ∥u + tw∥22 = ∥u∥2H + 2t(u|w)H + t2∥w∥2H
La funzione φ è una funzione quadratica convessa (possiamo anche dire che il suo grafico è una parabola con la concavità verso l’alto) e il suo minimo assoluto
è l’ordinata del vertice, dunque abbiamo che

0≤min
t∈�
φ(t) = φ


–
(u|w)H
∥w∥2H


 = ∥u∥2H –

2(u|w)H
∥w∥2H

(u|w)H +
(u|w)2H
∥w∥4H

∥w∥2H =
∥u∥2H∥w∥2H – (u|w)2H

∥w∥2H
e la non negatività del numeratore implica la disuguaglianza di Cauchy-Schwartz.
ii. Usiamo la disuguaglianza di Cauchy-Schwartz dimostrata in i. per ottenere che

∥u + v∥2H = (u + v|u + v)H = (u|u)H + 2(u|v)H + (v|v)H = ∥u∥2H + 2(u|v)H + ∥v∥2H ≤ ∥u∥2H + 2∥u∥H∥w∥H + ∥v∥2H = (∥u∥H + ∥w∥H)
2

iii. Per verifica diretta, scrivendo per esteso il primo membro dell’identità, si ha che

∥u + v∥2H + ∥u – v∥2H = (u + v|u + v)H + (u – v|u – v)H = (u|u)H + 2(u|v)H + (v|v)H + (u|u)H – 2(u|v)H + (v|v)H = 2(u|u)H + 2(v|v)H = 2
�
∥u∥2H + ∥v∥2H

�

DEFINIZIONE 1.29 Uno spazio vettoriale munito di prodotto scalare (H, (·|·)H) e completo rispetto alla metrica indotta si chiama spazio di Hilbert.
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ESEMPIO 1.30 Lo spazio euclideo � n con l’usuale prodotto scalare

x · y =
n¼

k=1
xkyk

è uno spazio di Hilbert. Approfondiremo il suo studio nelle prossime pagine.

Ci sono spazi di Banach che non sono spazi di Hilbert, cioè norme che non sono generate da prodotti scalari, e noi ne abbiamo già incontrato qualcuno, come
mostra la seguente osservazione.

OSSERVAZIONE 1.31 (� n,∥ ·∥1) e (� n,∥ ·∥∞) non sono spazi di Hilbert. È sufficientemostrare che non vale la proprietà del parallelogramma: considerati i vettori
(1,0,0, ...,0) e (0, 1,0, ...,0), abbiamo

∥u + v∥21 + ∥u – v∥21 = 22 + 22 = 8 , 4 = 2(1 + 1) = 2
�
∥u∥21 + ∥v∥21

�

∥u + v∥2∞ + ∥u – v∥2∞ = 12 + 12 = 2 , 4 = 2(1 + 1) = 2
�
∥u∥2∞ + ∥v∥2∞

�

1.4 lo spazio � n

In questa pagina e nelle successive introduciamo alcuni esempi fondamentali di spazi metrici completi. Il primo che analizziamo è quello degli spazi euclidei,
il piano, lo spazio o più in generale lo spazio a n dimensioni. � n è l’insieme delle n-ple di numeri reali, detti anche vettori,

� n := {x = (x1, ...,xn) : x1, ...,xn ∈ � }

Ricordiamo che in questo spazio è definito il prodotto scalare euclideo

x · y = (x|y)� n :=
n¼

i=1
xiyi perognix,y ∈ � n

e che la norma o il modulo di un vettore x è il numero

∥x∥ = ∥x∥2 =

vt n¼

i=1
x2i oppure ∥x∥22 = x · x

La distanza euclidea tra due punti di � n è definita dal modulo della loro differenza

d2(x,y) := ∥x – y∥2 =


n¼

i=1
(xi – yi)2




1/2

perognix = (x1, ...,xn),y = (y1, ...,yn) ∈ � n
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in sostanza la distanza euclidea d2 è quella per cui vale il teorema di Pitagora generalizzato a uno spazio di n dimensioni.
Come abbiamo visto nel caso del piano euclideo, la dimostrazione che d2 costituisca di fatto unametrica non è del tutto evidente, a questo scopo, dimostriamo
un’importante disuguaglianza (che ritroverete in svariati altri contesti nel corso dei vostri studi).

TEOREMA 1.32 (DISUGUAGLIANZA DI A.L. CAUCHY & K.H.A. SCHWARTZ) Dati due punti p = (p1, ...,pn) e q = (q1, ...,qn) ∈ � n, si ha

(1.1)
n¼

i=1
|piqi|≤

1
2

n¼

i=1

�
p2i + q

2
i
�
= 12

h
∥p∥22 + ∥q∥

2
2
i

(1.2)
n¼

i=1
|piqi|≤



n¼

i=1
p2i




1/2 
n¼

i=1
q2i




1/2

= ∥p∥2∥q∥2

DIMOSTRAZIONE. La prima formula si ottiene sommando rispetto all’indice i = 1, ...,n le disuguaglianze

|piqi|≤
1
2
�
p2i + q

2
i
�

evidentemente vere essendo equivalenti alla disuguaglianza (|pi| – |qi|)2 ≥ 0. Abbiamo già dimostrato la disuguaglianza di Cauchy-Schwartz nel paragra-
fo precedente, ma riportiamo una seconda prova, visto l’importanza della disuguaglianza. Cominciamo osservando che è vera se (p1, ...,pn) = (0, ...,0) o se
(q1, ...,qn) = (0, ...,0). Negli altri casi applichiamo la (1.1) ai vettori u = (u1, ...,un) e w = (w1, ...,wn) definiti da

ui =
pi
|p| e wi =

qi
|q| i = 1, ...,n

Per definizione si ha che
´n
i=1 u2i =

´n
i=1 w2i = 1, per cui da (1.1) otteniamo

n¼

i=1

|piqi|
|p||q| =

n¼

i=1
|uiwi|≤ 1

che è la tesi di (1.2).
La quantità che compare al membro sinistro della disuguaglianza di Cauchy-Schwarz è il prodotto scalare tra due vettori di � n:

p ·q :=
n¼

i=1
piqi p,q ∈ � n

Per cui in maniera compatta possiamo scrivere le disuguaglianze (1.1) e (1.2) nella forma

|p ·q|≤ ∥p∥ · ∥q∥ ≤ 1
2
�
∥p∥2 + ∥q∥2

�
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Utilizzando la disuguaglianza di Cauchy-Schwartz, è possibile verificare che ∥ ·∥2 è una norma. La positività e l’omogeneità non richiedono una dimostrazione,
mentre, per la disuguaglianza triangolare, possiamo procedere come segue: siano x = (x1, ...,xn), y = (y1, ...,yn) e z = (z1, ...,zn) tre punti di � n e scriviamo

(1.3) ∥x – y∥22 =
n¼

i=1
(xi – yi)2 =

n¼

i=1
(xi – zi + zi – yi)2 =

n¼

i=1

h
(xi – zi)2 + 2(xi – zi)(zi – yi) + (zi – yi)2

i
= ∥x – z∥22 + ∥z – y∥

2
2 + 2

n¼

i=1
(xi – zi)(zi – yi)

Applicando la disuguaglianza di Cauchy-Schwartz al terzo addendo, si ha

n¼

i=1
(xi – zi)(zi – yi)≤



n¼

i=1
(xi – zi)2




1/2 
n¼

i=1
(zi – yi)2




1/2

= ∥x – z 2|∥z – y∥2

che unita a (1.3) dà

∥x – y∥22 ≤ ∥x – z∥
2
2 + ∥z – y∥

2
2 + 2∥x – z∥2∥z – y∥2 =

�∥x – z∥2 + ∥z – y∥2
�2

che è la disuguaglianza triangolare, a meno di una estrazione di radice quadrata.

PROPOSIZIONE 1.33 (� n,∥ · ∥2) è uno spazio di Hilbert.

DIMOSTRAZIONE. Sia {xk}⊆ � n una successione di Cauchy, ossia, per ogni ε> 0 esiste un indice K = K(ε) ∈ � tale che

∥xk – xk+j∥2 =


n¼

i=1

�
xik – x

i
k+j

�2



1/2

≤ ε perognik≥ Keperognij ∈ �

dove abbiamo usato la convenzione di scrivere in apice le componenti dei punti di � n per non confonderle con l’indice della successione: x = (x1, ...,xn) ∈ � n,
per cui in particolare si ha xk = (x1k, ...,x

n
k ) ∈ � n.

Allora, se fissiamo un indice i0 ∈ {1, ...,n}, la successione formata da tutte le componenti i0-esime dei punti xk, {xi0k } (k è l’indice della successione), è una
successione di Cauchy, in quanto

|xi0k – x
i0
k+j|≤



n¼

i=1

h
xik – x

i
k+j

i2



1/2

= ∥xk – xk+j∥2 ≤ ε perognik≥ Keperognij ∈ �

Usando la completezza di � , possiamo affermare che esiste xi0∞ ∈ � tale che

lim
k−→∞

xi0k = xi0∞ perognii0 = 1, ...,n

Abbiamo quindi trovato il candidato limite x∞ = (x1∞, ...,xn∞) ∈ � n.
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Per completare la dimostrazione mostriamo che ∥xk – x∞∥ converge a zero: infatti, si ha che

lim
k−→∞

∥xk – x∞∥2 = lim
k−→∞



n¼

i=1

h
xik – x

i
∞

i2



1/2

=


n¼

i=1
lim

k−→∞

h
xik – x

i
∞

i2



1/2

= 0

1.5 lo spazio C0[a,b]

Uno degli esempi di spazio metrico completo più rilevanti in questo corso è quello delle funzioni continue definite in un intervallo [a,b] ⊆ � con la norma
uniforme.

DEFINIZIONE 1.34 Sia [a,b]⊆ � un intervallo chiuso e limitato, definiamo lo spazio delle funzione continue

C0[a,b] = {f : [a,b]−→ � : fcontinua}

equipaggiato con la norma uniforme

∥f∥∞ := max
x∈[a,b]

{|f(x)|} perognif ∈ C0[a,b]

La definizione di metrica uniforme è ben posta perché negli intervalli [a,b] chiusi e limitati ogni funzione continua per il teorema di Weierstrass ha massimo:
in particolare, dato che |f| è una funzione continua, perché composizione di funzioni continue, maxx∈[a,b] |f(x)| esiste.
Come al solito, è necessario verificare che effettivamente ∥·∥∞ soddisfa le proprietà di una norma. La verifica della positività e della simmetria sono immediate
e ci concentriamo sulla disuguaglianza triangolare. Date f,g,h ∈ C0[a,b], sia x0 ∈ [a,b] un punto di massimo per il modulo della differenza tra f e g, allora

∥f – g∥∞ = max
x∈[a,b]

{|f(x) – g(x)|} = |f(x0) – g(x0)|

Allora, utilizzando la disuguaglianza triangolare in � , otteniamo che

∥f – g∥∞ = |f(x0) – g(x0)|≤ |f(x0) – h(x0)| + |h(x0) – g(x0)|≤ sup
x∈[a,b]

{|f(x) – h(x)|} + sup
x∈[a,b]

{|h(x) – g(x)|} = ∥f – h∥∞ + ∥h – g∥∞

Non è un caso il fatto che usato lo stesso simbolo per le metriche ∥ ·∥∞ in � n e in C0[a,b]: l’analogia risiede nella definizione della distanza comemassimo dei
valori, dove nel primo caso il massimo è preso sulle coordinate, mentre nel secondo al variare del punto x nell’intervallo [a,b], quasi che i punti dell’intervallo
fossero le infinite coordinate del punto f ∈ C0[a,b].
Quello che segue è uno dei risultati più importanti di tutto il corso.
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TEOREMA 1.35 Sia [a,b] un intervallo chiuso e limitato. Allora, lo spazio metrico
�
C0[a,b],∥ · ∥∞

�
è completo, ossia tutte le sue successioni di Cauchy sono

convergenti.

DIMOSTRAZIONE. Sia {fk}⊆ C0[a,b] una successione di Cauchy: cioè,

perogniε> 0esisteK = K(ε) ∈ � taleche ∥fk – fk+j∥∞ = max
x∈[a,b]

|fk(x) – fk+j(x)|≤ εperognik≥ K(ε)ej ∈ �

Per ogni x0 ∈ [a,b], quindi, vale che

|fk(x0) – fk+j(x0)|≤ sup
x∈I
|fk(x) – fk+j(x)|≤ ε perognik≥ K(ε)ej ∈ �

Ne segue che per ogni x0 ∈ [a,b] la successione di numeri reali {fk(x0)}⊆ � è di Cauchy. Per la completezza di � , esiste Lx0 ∈ � tale che

lim
k−→∞

fk(x0) = Lx0

Il candidato limite è quindi la funzione f∞ : x0 7−→ Lx0 . Dimostriamo adesso che f∞ appartiene allo spazio C0[a,b]. A tal proposito fissiamo un punto generico
z0 ∈ [a,b] e dimostriamo la continuità di f∞ in z0 (dall’arbitrarietà di z0 seguirà la continuità di f∞ su tutto [a,b]).
Sia ε> 0 e K = K(ε) ∈ � come nella definizione di successione di Cauchy, dalla continuità di fK, si ha che esiste δ = δ(ε)> 0 tale che |fK(z0)– fK(x)|≤ ε per ogni
|z0 – x|≤ δ. Allora, possiamo concludere che per ogni x ∈ [a,b] con |z0 – x|≤ δ vale

|f∞(z0) – f∞(x)|≤ |f∞(z0) – fK(z0)| + |fK(z0) – fK(x)| + |fK(x) – f∞(x)| = lim
j−→∞

���fK+j(z0) – fK(z0)
��� + |fK(z0) – fK(x)| + lim

j−→∞

���fK+j(x) – fK(x)
���

≤ limsup
j−→∞

∥fK+j – fK∥∞ + |fK(z0) – fK(x)| + limsup
j−→∞

∥fK+j, fK∥∞ ≤ 3ε

dove abbiamo usato la condizione di successione di Cauchy per {fk} e la continuità di fK in z0. In particolare, data l’arbitrarietà di ε > 0, segue la continuità di
f∞. Infine, mostriamo che fk converge a f∞ rispetto alla norma ∥ ·∥∞: per ogni ε> 0 sia K(ε) come nella definizione di successione di Cauchy e, per ogni k ∈ � ,
sia xk ∈ [a,b] tale che

∥f∞ – fk∥∞ = max
x∈[a,b]

|f∞(x) – fk(x)|≤ |f∞(xk) – fk(xk)|

Allora si ha che per ogni k≥ K(ε)

∥f∞ – fk∥∞ = |f∞(xM) – fk(xM)|≤ |f∞(xM) – fk+j(xM)| + |fk+j(xM) – fk(xM)|≤ |f∞(xM) – fk+j(xM)| + ∥fk+j – fk∥∞ ≤ ε + ε = 2ε

a patto che k sia abbastanza grande. Dall’arbitrarietà di ε possiamo concludere che ∥f∞ – fk∥∞ −→ 0.

OSSERVAZIONE 1.36 Infine, ritorniamo sull’ipotesi di chiusura e limitatezza dell’intervallo [a,b]. Se consideriamo un intervallo I non chiuso e limitato, le funzioni
continue su I non sarebbero necessariamente limitate (si pensi, per esempio, alla funzione 1/x per x ∈ (0,+∞)) per cui la norma uniforme ∥ · ∥∞ potrebbe non
essere definita, nel senso che il massimo non solo non esiste, ma addirittura l’estremo superiore sia +∞.
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Lo spazio giusto da considerare è quindi quello delle funzioni continue e limitate definite su un intervallo I⊆ �

C0b (I) = {f : I−→ � : fcontinuaelimitata}

con la norma uniforme

∥f – g∥∞ := sup
x∈I
{|f(x) – g(x)|} perognif,g ∈ C0b (I)

Il pedice b nella notazione C0b (I) viene dall’inglese e sta per bounded (che vuol dire limitato). Se l’intervallo I = [a,b] è chiuso e limitato, allora per il teorema di
Weierstrass tutte le funzioni continue in [a,b] ammettono massimo e minimo, e quindi sono limitate, per cui C0b ([a,b]) non è altro che il più familiare insieme
delle funzioni continue C0[a,b] e l’estremo superiore nella definizione di ∥ · ∥∞ è in realtà un massimo.

Generalizzando le dimostrazione fatte prima, è possibile verificare che (C0b (I),∥ · ∥∞) è uno spazio di Banach.

TEOREMA 1.37 Sia I⊆ � un intervallo, allora, lo spazio normato (C0b (I),∥ · ∥∞) è uno spazio di Banach.

1.6 funzioni continue e lipschitziane

Di fondamentale importanza è la nozione di funzioni continue tra spazi metrici, e avranno un ruolo rilevante nel resto del corso. La definizione di funzione
continua è del tutto analoga a quella introdotta per le funzioni di variabile reale.

DEFINIZIONE 1.38 (FUNZIONI CONTINUE) Siano (X,∥ ·∥X), (Y,∥ ·∥Y) due spazi normati e sia x0 ∈ X. Una funzione f : X−→ Y si dice continua in x0 se per ogni
ε> 0 esiste δ = δ(ε,x0)> 0 tale che

(1.4) ∥f(x) – f(x0)∥Y < ε perognix ∈ Xtaleche ∥x – x0∥X < δ

Una funzione continua in tutti i punti di X si dirà semplicemente continua.

Il seguente teorema mostra come la nozione di continuità sia equivalente alla continuità per successioni (anche detta continuità sequenziale).

TEOREMA 1.39 Siano (X,∥ · ∥X), (Y,∥ · ∥Y) due spazi normati e f : X−→ Y una funzione. I seguenti enunciati sono equivalenti:
i. f è continua;
ii. per ogni successione convergente {xk}⊆ X, con xk −→ x∞, si ha che f(xk)−→ f(x∞).
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DIMOSTRAZIONE. [i implica ii] Sia xk −→ x∞. Per la continuità di f, per ogni ε> 0 esiste δ > 0 tale che (1.4) vale. Inoltre, dato che xk −→ x∞, esiste un intero
N0(ε) tale che ∥xk – x∞∥X < δ per ogni k≥ N0(ε). In particolare, dalla continuità di f segue che

∥xk – x∞∥X < δ implica ∥f(xk) – f(x∞)∥Y < ε perognik≥ N0(ε)

Dall’arbitrarietà di ε> 0 si conclude che f(xk)−→ f(x∞).
[ii implica i] Supponiamo per assurdo che f non sia continua: allora esiste un punto x0 e un numero ε> 0 tali che, per ogni δ della forma δ = 1/k, esiste almeno
un punto xk ∈ B(x0, 1/k) = {p ∈ X : ∥x0 – p∥X < 1/k} tale che ∥f(xk) – f(x0)∥Y > ε. Chiaramente xk −→ x0, ma f(xk) ̸−→ f(x0), contraddicendo ii.

Tra gli esempi più significativi di funzioni continue ci sono le isometrie tra spazi normati.

DEFINIZIONE 1.40 (ISOMETRIA) Una funzione f : (X,∥ · ∥X)−→ (Y,∥ · ∥Y) è una isometria se f è suriettiva e

∥x – y∥X = ∥f(x) – f(y)∥Y perognix,y ∈ X

Si noti che le isometrie sono necessariamente funzioni iniettive (f(x) = f(y) implica che ∥x – y∥X = 0, ossia x = y per le proprietà della norma), cioè sono delle
biezioni. In particolare, f–1 : (Y,dY)−→ (X,dX) è anch’essa una isometria.
Le isometrie sono funzioni continue: per ogni ε> 0 basta prendere δ = ε per verificare la continuità.
Due spazi metrici tra i quali esista una isometria sono del tutto equivalenti dal punto di vista delle proprietà degli spazi normati (potremmo anche dire: della
geometria degli spazi normati).

DEFINIZIONE 1.41 Una funzione f : (X,∥ · ∥x)−→ (Y,∥ · ∥Y) tra due spazi normati si dice lipschitziana se esiste una costante L≥ 0 tale che

∥f(x) – f(y)∥Y ≤ L∥x – y∥X perognix,y ∈ X

È facile verificare che le funzioni lipschitziane sono continue: nella definizione di continuità, per ogni ε> 0 basta scegliere δ = ε/L. Il numero

[f]Lip := sup
x,y∈X

∥f(x) – f(y)∥Y
∥x – y∥X

rappresenta la più piccola costante L per cui vale la maggiorazione nella definizione. Una classe particolare di funzioni continue da uno spazio in se stesso sono
le contrazioni, ovvero funzioni lipschitziane di costante di Lipschitz strettamente minore di 1, cos̀ı dette perché di fatto “contraggono” tutte le distanze tra le
coppie di punti.

1.7 topologia di � n
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Sebbene uno spaziometrico sia univocamente descritto dalla suametrica, alcune sue proprietà vengono espresse inmaniera più efficace guardando opportuni
sottoinsiemi dello spazio stesso, come accade, per esempio, con la nozione di continuità, come vedremo a breve. Con questo intento, introduciamo la nozione
di topologia di uno spazio metrico e definiamo alcuni concetti che hanno a che fare con la geometria dei sottoinsiemi degli spazi metrici.
Consideriamo (� n,∥ · ∥), sia p ∈ � n un punto dello spazio e r> 0 un reale positivo, denotiamo con B(p, r) la palla di centro p e raggio r> 0 cioè l’insieme

B(p, r) := �x ∈ � n : ∥p – x∥< r	

Si noti che per definizione la palla B(p, r) non è mai vuota, perché contiene sempre (almeno) il suo centro p.

DEFINIZIONE 1.42 (INSIEMI APERTI E CHIUSI) i. Un insieme A⊆ � n si dice aperto se per ogni x0 ∈ A esiste r> 0 tale che B(x0, r)⊆ A.
ii. Un insieme C⊆ X si dice chiuso se il suo complementare Cc = � n \C è aperto.
La famiglia degli insiemi aperti, cioè τ = {A⊆ X : Aaperto}, si chiama topologia dello spazio � n.

L’insieme vuoto e l’intero spazio � n sono insiemi aperti e chiusi per definizione. Infatti, la definizione di aperto è banalmente verificata per A = ∅ perché non
esiste nessun x0 ∈ ∅ e, analogamente, è verificata per A = � n perché ogni palla B(x0, r) è per definizione un sottoinsieme di � n. Dato che ∅c = � n e anche che
[� n]c = ∅, ne deriva che sono anche chiusi.

DEFINIZIONE 1.43 (PUNTI INTERNI) Sia A⊆ � n. Un punto x0 ∈ A si dice interno ad A se esiste r> 0 tale che B(x0, r)⊆ A.

Quindi, un sottoinsieme A⊆ � n è aperto se tutti i suoi punti sono punti interni.

OSSERVAZIONE 1.44 Un insieme che non è aperto non è necessariamente chiuso: la negazione dell’affermazione A è aperto è la seguente:

A non è aperto se e solo se esiste x0 ∈ Achenonsiaunpuntointerno

Se x0 ∈ A non è un punto interno, allora esiste una successione decrescente ed infinitesima {rk}⊆ (0,+∞), tale che per ogni rk esiste un punto xk < A tale che
∥xk – x0∥< rk. L’affermazione è equivalente a dire che

A non è aperto se e solo se esiste una successione {xk}⊆ Ac = � n \Atalechexk −→ x0 ∈ A

DEFINIZIONE 1.45 (PUNTI DI BORDO) Sia E⊆ � n, il bordo di E (si denota ∂E) è l’insieme dei punti x0 ∈ � n tali che per ogni r> 0 la palla aperta di centro x0
e raggio r interseca sia E che il complementare di E, in formule

x0 ∈ ∂E seesolose perognir> 0 B(x0, r)∩ E , ∅ e B(x0, r)∩ Ec , ∅

In altri termini un punto è di bordo se non è interno a E⊆ � n (il che implica che ogni palla B(x0, r) interseca il complementare di E, cioè B(x0, r)∩Ec , 0) e non
è interno al complementare di E (cioè ogni palla B(x0, r) interseca anche E, che vuol dire B(x0, r)∩ E , ∅).
Un punto di bordo può appartenere omeno all’insieme stesso: quando tutti punti di bordo appartengono, allora l’insieme è chiuso, come prova la proposizione
che segue.
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PROPOSIZIONE 1.46 Un sottoinsieme E⊆ (� n,∥ · ∥) è chiuso se e solo se ∂E⊆ E.

DIMOSTRAZIONE. Se E è chiuso, allora Ec è aperto e tutti i punti di Ec sono interni, per cui ∂E (che è costituito da punti che non sono interni né per E né per
Ec) deve essere necessariamente contenuto in E. Viceversa, se ∂E ⊆ E, allora tutti i punti di Ec sono interni: infatti, se esistesse un punto x ∈ Ec non interno,
allora per ogni r > 0 si avrebbe che B(x, r)∩ Ec , ∅, perché questa intersezione contiene x, e contemporaneamente B(x, r)∩ E , ∅ perché il punto per ipotesi
non è interno al complementare; in altri termini x ∈ ∂E, contro l’ipotesi che ∂E⊆ E.

ESEMPIO 1.47 i. Ogni palla B(p, r) è aperta: ogni punto x0 ∈ B(p, r) è interno a B(p, r). Infatti, se s = r – d(p,x0), allora s > 0 perché d(p,x0) < r e inoltre
B(x0,s)⊆ B(p, r) perché

z ∈ B(x0,s) significa d(x0,z)< s dacui d(p,z)≤ d(p,x0) + d(x0,z)< d(p,x0) + s = r

Per questa ragione gli insiemi B(p, r) sono anche chiamati palle aperte.
ii. Gli insiemi {x ∈ � n : d(p,x)≤ r} sono chiusi e sono dette palle chiuse. La verifica di questa affermazione è analoga a quanto visto in i.
iii. Consideriamo � con la metrica usuale d(x,y) = |x – y| e siano a,b ∈ � , a< b. Si verifica facilmente che gli intervalli (a,b) sono aperti, gli intervalli [a,b] sono
chiusi; gli intervalli (a,b] e [a,b) non sono né aperti né chiusi.

Proviamo alcune proprietà basilari degli insiemi aperti e chiusi.

PROPOSIZIONE 1.48 Sia Ë un insieme di indici generico e sia {Aλ}λ∈Ë una famiglia di aperti. Allora,∪λ∈Ë Aλ è aperto. Se {Cλ}λ∈Ë è una famiglia arbitraria
di chiusi, allora ∩λ∈Ë Cλ è chiuso.

DIMOSTRAZIONE. Riguardo alla prima affermazione, osserviamo subito che, se p ∈ ∪λAλ, allora esiste (almeno) un aperto Aλ0 , per un certo λ0 ∈ Ë tale che
p ∈ Aλ0 . Dato che Aλ0 è aperto, per definizione esiste B(p, r)⊆ Aλ0 ⊆ ∪λ∈Ë Aλ, il che prova che un’unione arbitraria di aperti è aperta.
Per quanto riguarda la seconda affermazione, è sufficiente concentrarsi sugli insiemi complementari: ricordiamo che per definizione Ccλ sono insiemi aperti,
per cui per quanto appena dimostrato ∪λ∈Ë Ccλ = A è aperto. D’altronde dalle leggi di De Morgan possiamo concludere che ∩λ∈Ë Cλ =

h
∪λ∈Ë Ccλ

ic = Ac è un
chiuso.

PROPOSIZIONE 1.49 L’intersezione di una famiglia finita di aperti è aperta e l’unione di una famiglia finita di chiusi è chiusa.

DIMOSTRAZIONE. Consideriamo A1, ...,AN insiemi aperti in � n e p ∈ A1 ∩ ...∩ AN. Poiché tutti gli Ai sono aperti, esiste ri > 0 tale che B(p, ri) ⊆ Ai per ogni i.
Quindi, posto r = min{r1, ..., rN} ed osservato che tale valore è positivo perché il minore di N valori positivi, possiamo affermare che B(p, r) ⊆ A1 ∩ ... ∩ AN, e
quindi l’intersezione finita di aperti è aperta.
Come per il teorema precedente, la conclusione per i chiusi si deduce dalla precedente passando ai complementari: (C1 ∪ ...∪CN)c = Cc1 ∩ ...∩CcN è aperto, da
cui segue che C1 ∪ ...∪CN è chiuso.
Gli insiemi chiusi di uno spazio metrico sono caratterizzati dalla proprietà di contenere tutti i limiti delle successioni convergenti contenute nell’insieme.
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TEOREMA 1.50 (CHIUSURA PER SUCCESSIONI) Sono condizioni equivalenti:
i. C⊆ � n è chiuso,
ii. ogni successione convergente {xk}⊆ C ha limite in C, o meglio C ∋ xk −→ x∞ allora x∞ ∈ C.

DIMOSTRAZIONE. [i. implica ii.] Supponiamo che C sia chiuso e consideriamo una successione {xk} ⊆ C convergente ad un punto x∞. Se x∞ ∈ Cc, dato che
Cc è aperto, esiste r> 0 tale che B(x∞, r)⊆ Cc. Dalla definizione di successione convergente (scegliendo ε = r/2) sappiamo che esiste un indice K = K(r/2) ∈ �
tale che

∥xk – x∞∥ ≤
r
2 perognik≥ K

Questo significa che xk ∈ B(x∞, r)⊆ Cc per ogni k≥ K, il che è assurdo visto per ipotesi {xk}⊆ C. Questo dimostra che l’ipotesi x∞ ∈ Cc è contraddittoria, per
cui di fatto C contiene il punto limite x∞.
[ii. implica i.] Come spiegato precedentemente, se Cc non è aperto, esiste q ∈ Cc e xk ∈ (Cc)c = C con ∥q–xk∥ ≤ 1/k. In particolare, {xk}⊆ C converge a q ∈ Cc,
contraddicendo ii, ne deriva che Cc deve essere aperto, cioè C chiuso.

Cerchiamo ora di rileggere il concetto di continuità alla luce dei concetti topologici introdotti nelle ultime pagine.

TEOREMA 1.51 Siano (X,∥ · ∥X) e (Y,∥ · ∥Y) due spazi metrici e f : X−→ Y una funzione. Allora, sono fatti equivalenti:
i. f è continua,
ii. per ogni aperto A⊆ Y si ha che la controimmagine di A, f–1(A) := {x ∈ X : f(x) ∈ A}, è aperto in X.

DIMOSTRAZIONE. [i. implica ii.] Supponiamo per assurdo che esista un sottoinsieme aperto A ⊆ Y tale che f–1(A) ⊆ X non sia aperto. Questo vuol dire che
esiste un punto x∞ ∈ f–1(A) e una successione {xk} ⊆

�
f–1(A)

�c tale che xk −→ x∞. Dalla continuità sequenziale si ha che f(xk) −→ f(x∞). Inoltre, dato che A
è aperto, esiste ε > 0 tale che B(f(x∞),ε) ⊆ A. Ne segue che esiste N0(ε) ∈ � per cui ∥f(xk) – f(x∞)∥Y < ε, cioè f(xk) ∈ B(f(x∞),ε) ⊆ A, per ogni k ≥ N0(ε). In
particolare, xk = f–1(f(xk)) ∈ f–1(A), in contraddizone con la scelta xk ∈

�
f–1(A)

�c.
[ii. implica i.] Sia ε> 0 e x0 ∈ X. Si ricordi che la palla B(f(x0),ε) è un sottoinsieme aperto. Per ii. si ha che f–1(B(f(x0),ε))⊆ X è aperto, per cui esiste δ > 0 tale
che B(x0,δ)⊆ f–1(B(f(x0),ε)). In altri termini, per ogni x ∈ X tale che ∥x–x0∥X < δ si ha che f(x) ∈ B(f(x0),ε), cioè ∥f(x)–f(x0)∥Y < ε. Questo prova la continuità
di f in un generico punto x0, da cui segue i.

In queste pagine ci interessiamo di una tra le proprietà più importanti degli spazi metrici e dei suoi sottoinsiemi, nota con il termine di compattezza. Iniziamo
col dare le definizioni pertinenti al concetto di compattezza.
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DEFINIZIONE 1.52 Sia (X,∥ · ∥) uno spazio normato. Un sottoinsieme K⊆ X si dice
i. compatto se da ogni ricoprimento aperto di X si può estrarre un sottoricoprimento finito: cioè, se data una famiglia arbitraria di aperti {Aλ}λ∈Ë tali che
K⊂ ∪λ∈Ë Aλ, esiste un certo numeroN ∈ � di elementi della famiglia Aλ1 , ...,AλN tali che K⊆ Aλ1 ∪ ...∪AλN ,
ii. compatto per successioni (o sequenzialmente compatto) se da ogni successione {xk}⊆ K si può estrarre una sottosuccessione convergente con limite appar-
tenente a K,
iii. totalmente limitato se per ogni r> 0 esistonoN ∈ � edN punti {p1, ...,pN}⊆ K tali che

K⊆ B(p1, r)∪ ...∪B(pN, r)

iv. completo se è completo per la metrica restrizione (K,∥ · ∥K): ossia ogni successione di Cauchy {xk}⊆ K ha limite in K.

OSSERVAZIONE 1.53 i. Un insieme compatto per successioni è automaticamente completo. Infatti, se K è compatto per successione, allora ogni successione di
Cauchy {xk}⊆ K deve possedere una sottosuccessione convergente in K, ma se una successione di Cauchy ha una sottosuccessione convergente, allora tutta
la successione ammette limite, per cui K è completo.
ii. La nozione di totale limitatezza può essere formulata equivalentemente come segue: chiamiamo diametro di un insieme A⊆ X il numero

diam(A) = sup
p,q∈A

∥p –q∥X

allora K è totalmente limitato se per ogni r> 0 esiste un numero N ∈ � di insiemi D1, ...,DN con diametro minore di r tali che

K⊆
N[

l=1
Dl

iii. Chiaramente, se un insieme è totalmente limitato, allora è limitato.

ESEMPIO 1.54 Facciamo alcuni esempi elementari al fine di illustrare i concetti introdotti.
i. (� , | · |) è completo ma non è totalmente limitato (visto che non è limitato); non è compatto per successioni (per esempio, xk = k non ha sottosuccessioni
convergenti).
ii. ((0, 1), | · |) è totalmente limitato, ma non è completo, inoltre non è compatto per successioni (per esempio, xk = 1/k è una successione di Cauchy che non ha
limite in (0, 1)).
iii. ([0, 1], | · |) è completo, totalmente limitato e compatto per successioni, (grazie al teorema di Bolzano eWeierstrass) ogni successione limitata ammette una
sottosuccessione convergente e, dato che [0, 1] è chiuso, il limite appartiene a [0, 1]).
iv. (� ,dD) è limitato (ma non totalmente limitato), completo ma non è compatto per successioni: infatti xk = 1/k non ha sottosuccessioni convergenti.

Mostriamo quali implicazioni sussistono tra le diverse nozioni introdotte nella Definizione 1.52.

PROPOSIZIONE 1.55 Sia (X,∥ · ∥) uno spazio di Banach e sia E⊆ X. Allora (E,∥ · ∥) è completo se e solo se E è chiuso in (X,∥ · ∥).
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DIMOSTRAZIONE. Se E è completo, allora ogni successione convergente in E, essendo una successione di Cauchy, ha limite in E: cioè E contiene tutti i suoi
punti di accumulazione e quindi è chiuso (si noti che per questa implicazione non abbiamo utilizzato la completezza di X!).
Viceversa, se E è chiuso, allora ogni successione di Cauchy in E è convergente in X (grazie alla completezza di X): ma dato che E è chiuso, si ha che il limite
appartiene ad E, da cui abbiamo la completezza di E.

PROPOSIZIONE 1.56 Sia (X,∥ · ∥) uno spazio normato e K⊆ X un insieme compatto. Allora K è chiuso e totalmente limitato.

DIMOSTRAZIONE. Cominciamo con il mostrare che A = Kc è aperto. Fissiamo x0 ∈ A e, per ogni y ∈ K, sia dy := ∥y – x0∥/3. Si noti che dy > 0 e inoltre
B(x0,dy)∩B(y,dy) = ∅ per ogni y ∈ K.
Chiaramente K⊆ ∪y∈KB(y,dy) è un ricoprimento di aperti, e siccome K è compatto esiste un insieme finito di punti {y1, ...,yN} tali che

K⊆
[

i=1,...,N
B(yi,dyi )

Ponendo r = min{dy1 , ...,dyN}, abbiamocheB(yi,dyi )∩B(x0, r) = ∅per ogni i = 1, ...,N. In particolare, K∩B(x0, r)⊆
SN
i=1 B(yi,dyi )∩B(x0, r) = ∅, ossia B(x0, r)⊆ A = Kc.

Ogni punto x0 ∈ A è quindi un punto interno a A, cioè A è aperto. Ne segue che K = Ac è chiuso e per la proposizione precedente K è completo.
Per provare che K è totalmente limitato, fissiamo r > 0 e notiamo che naturalmente {B(x, r)}x∈K è un ricoprimento aperto di K, da cui è possibile estrarre un
sottoricoprimento finito, cioè

K⊆
[

i=1,...,N
B(xi, r)

per opportuni punti {x1, ...,xN}⊆ K, il che prova che K è totalmente limitato.

PROPOSIZIONE 1.57 I sottoinsiemi chiusi di insiemi compatti sono compatti.

DIMOSTRAZIONE. Sia (X,d) uno spaziometrico e siano C⊆ K⊆ (X,d), con K compatto e C chiuso: vogliamomostrare che allora C è compatto. A questo scopo
consideriamo {Aλ}λ∈Ë un ricoprimento aperto di C. Per ipotesi Cc è aperto e, dato che C ⊆ K, si ha che la famiglia {Cc,Aλ}λ∈Ë costituisce un ricoprimento
aperto di K.
Per la compettezza di K esiste un sottoricoprimento finito, cui possiamo aggiungere l’aperto Cc se non fosse già preso in considerazione: cioè K ⊆ Cc ∪Aλ1 ∪
...∪AλN . Dato che C⊆ K e C∩Cc = ∅, ne segue che C⊆ Aλ1 ∪ ...∪AλN cioè C ammette un sottoricoprimento finito e quindi è compatto.

COROLLARIO 1.58 Siano (X,∥ · ∥) uno spazio normato, K⊂ X compatto e C⊆ X chiuso. Allora C∩K è compatto.

DIMOSTRAZIONE. Per la proposizione 1.56 si ha che K è chiuso. Allora K ∩ C è un chiuso contenuto in K, per cui il corollario segue quindi dalla proposione
precedente.
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PROPOSIZIONE 1.59 Siano (X,∥ · ∥) uno spazio normato, Z⊆ K⊆ X, con K compatto e Z infinito. Allora, esiste un punto di accumulazione di Z in K.

DIMOSTRAZIONE. Se nessun punto di K è un punto di accumulazione per Z, allora per ogni x ∈ K esiste rx > 0 tale che Z∩ (B(x, rx) \ {x}) = ∅. Poiché Z⊆ K⊆
∪x∈KB(x, rx) e K è compatto, esiste un sottoricoprimento finito Z⊆ K⊆ ∪i=1,...,NB(xi, rxi ). In particolare, ne segue che

Z⊆ ∪i=1,...,NB(xi, rxi )∩ Z⊂ {x1, ...,xN}

perché B(xi, rxi )∩ Z⊆ {xi} per ogni i = 1, ...,N, contraddicendo l’ipotesi che Z abbia infiniti elementi.

COROLLARIO 1.60 Ogni insieme compatto è sequenzialmente compatto.

DIMOSTRAZIONE. Sia K un compatto e {xk}⊆ K una successione. Se l’immagine della successione Z = {xk : k ∈ � } ha un numero finito di elementi, allora ne
deve esistere almeno uno che si ripete per infiniti indici e che costituisce una sottosuccessione costante, quindi convergente.
Se Z ha infiniti elementi, per la proposizione precedente Z possiede almeno un punto x∞ di accumulazione e quindi esiste una sottosuccessione convergente.

Abbiamo mostrato che un insieme compatto è necessariamente completo e totalmente limitato da un lato, e compatto per successsioni dall’altro. Queste in
realtà sono condizioni equivalenti alla compattezza negli spazi metrici.

TEOREMA 1.61 (CARATTERIZZAZIONE DEGLI INSIEMI COMPATTI) Dato uno spazio normato (X,d) e K⊆ X, sono equivalenti le seguenti affermazioni:
i. K è sequenzialmente compatto,
ii. K è completo e totalmente limitato,
iii. K è compatto.

DIMOSTRAZIONE. [i. implica ii.] Per quanto osservato in § 1.53-i, ogni insieme sequenzialmente compatto è completo. Per cui dobbiamo solo provare che K è
totalmente limitato. Se cos̀ı non fosse, esisterebbe r> 0 tale che nessuna famiglia finita di palle di raggio r è un ricoprimento di K. In particolare, fissato x1 ∈ K
arbitrariamente, si ha che B(x1, r) non ricopre K, e quindi esiste x2 ∈ K tale che ∥x1 – x2∥ ≥ r. Poiché neanche B(x1, r)∪B(x2, r) ricopre K, deve esistere un punto
x3 ∈ K tale che ∥xi – x3∥ ≥ r per i = 1,2. Ripetendo il ragionamento otteniamo una successione (xk)⊆ K tale che

∥xi – xk∥ ≥ r perognii,k ∈ �

Da una tale successione non è possibile estrarre alcuna sottosuccessione convergente, e questo contraddice l’ipotesi che K sia sequenzialmente compatto.
[ii. implica iii.] Sia K completo e totalmente limitato e supponiamo per assurdo che esista un ricoprimento apertoA = {Aλ}λ∈Ë da cui non è possibile estrarre
un sottoricoprimento finito. Essendo K totalmente limitato, esiste un numero finito di insiemi C1, ...,CN con la proprietà che

K⊆
N[

k=1
Ck e diam(Ck)< 1 perognik = 1, ...,N
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Se fosse possibile ricoprire ognuno degli Ck con un numero finito di aperti della famiglia A, unendo questi ricoprimenti avremmo trovato una famiglia finita
di aperti di A che ricopre K. Questo significa che esiste almeno un insieme Ck1 che non può essere ricoperto con un numero finito di aperti. Poniamo Ck1 = X1
e osserviamo che X1 è totalmente limitato, perché X lo è. Possiamo quindi ripetere il ragionamento precedente con un numero finito di insiemi di diametro
minore di 1/2, trovando un sottoinsieme X2 ⊆ X1 che non può essere ricoperto con un numero finito di elementi di A e ha diametro minore di 1/2. Iterando il
procedimento troveremo una successione {XK} di sottoinsiemi di K tali che

X1 ⊇ X2 ⊇ ... e diam(Xk)< 1/k

e nessuno degli insiemi Xk può essere ricoperto con un numero finito di aperti di A. Per ogni indice k ∈ � sia xk un punto di Xk e osserviamo che, dato che
Xn ⊆ Xk per ogni n≥ k, allora

∥xn – xk∥ ≤ diam(Xk)< 1/k perognik< n

Quindi la successione (xk) è di Cauchy e, poiché per ipotesi K è completo, esiste x∞ ∈ K tale che xk −→ x∞ ∈ K.
Notiamo che Xk ⊆ B(x∞, 1/k) per ogni k: infatti, se x ∈ Xk e n> k, allora abbiamo che xn ∈ Xn ⊆ Xk, da cui

∥x – x∞∥ ≤ ∥x – xn∥ + ∥xn – x∞∥< 1/k + ∥xn – x∞∥

Quindi, passando al limite su n−→∞, concludiamo che

∥x – x∞∥ ≤ 1/k perognix ∈ Xk
Sia Aλ0 un aperto del ricoprimentoA contenente x∞ e sia r> 0 tale che B(x∞, r)⊆ Aλ0 . Se k> 1/r, allora ∥x–x∞∥< r per ogni x ∈ Xk, cioè Xk ⊆ B(x∞, r)⊆ Aλ0 ,
e questo è assurdo perché abbiamo assunto che Xk non possa essere ricoperto da un numero finito di aperti inA.
[iii. implica i.] È il corollario 1.59.

Concludiamo rivedendo alcuni dei risultati già incontrati nelle pagine precedenti, alla luce del concetto di compattezza.

OSSERVAZIONE 1.62 (COMPATTI DI � n) Consideriamo (� n,∥ · ∥). Un insieme K ⊆ � n è compatto se e solo se è chiuso e limitato. Infatti, dato che (� n,∥ · ∥) è
uno spazio metrico completo, un insieme è chiuso se e solo se è completo e limitato se e solo se è totalmente limitato.

OSSERVAZIONE 1.63 (PRINCIPIO DEGLI INTERVALLI INCAPSULATI) Siano In = [an,bn] per ogni n ∈ � intervalli chiusi, limitati e incapsulati, ossia tali che In+1 ⊆ In
per ogni n ∈ � . Allora, l’intersezione

T
n∈� In è non vuota.

Questa è una conseguenza della proposizione relativa all’intersezione di insiemi compatti e della caratterizzazione degli insiemi compatti di � fatta nell’osser-
vazione 1.62.

TEOREMA 1.64 (DI B.P.J.N. BOLZANO & K.T.W.WEIERSTRASS) Una successione limitata in � n ammette una sottosuccessione convergente.

DIMOSTRAZIONE. Sia {xk}⊆ � n una successione limitata, ossia esiste M> 0 tale che {xk}⊆ [–M,M]n per ogni k ∈ � . Dato che [–M,M]n è compatto in � n,
per il Teorema 1.61, è compatto per successioni, per cui possiamo estrarre da {xk} una sottosuccessione convergente.
Proponiamo una dimostrazione alternativa che fa uso, soltanto, del teorema di Bolzano eWeierstrass in� usualmente studiato nei corsi di Analisi delle funzioni
scalari.
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TEOREMA 1.65 (DI K.T.W.WEIERSTRASS) Sia (X,∥ · ∥) uno spazio normato, K ⊆ X un insieme compatto e f : K −→ � una funzione continua. Allora f ha un
massimo e un minimo in K, ossia esistono z0,z1 ∈ K tali che

f(z0)≤ f(x)≤ f(z1) perognix ∈ K

DIMOSTRAZIONE. La dimostrazione procede seguendo il metodo diretto del calcolo delle variazioni:
i. si considera una successione minimizzante (che esiste per definizione di estremo inferiore):

{xk}⊆ K taleche f(xk)−→ inf
x∈K

f(x)

ii. per la compattezza di K, esiste una sottosuccessione convergente, cioè esiste {xk(i)} tale che xk(i) −→ z0 ∈ K,
iii. usando la continuità di f, si conclude

f(z0) = lim
i−→∞

f(xk(i)) = infx∈K
f(x)

da cui si deduce che z0 è un punto di minimo di f. Per l’esistenza del massimo si ragiona in maniera analoga.

1.8 il teorema delle contrazioni

DEFINIZIONE 1.66 Sia (X,∥ · ∥) uno spazio metrico. Diremo che T : (X,∥ · ∥)−→ (X,∥ · ∥) è una contrazione, se esiste un realeα ∈ [0, 1) tale che

∥T(x) – T(y)∥ ≤ α∥x – y∥ perognix,y ∈ X

Il seguente teorema è il risultato principale che dimostriamo sulle contrazioni.

TEOREMA 1.67 (DELLE CONTRAZIONI DI S. BANACH & R. CACCIOPPOLI) Siano (X,∥ · ∥) uno spazio di Banach, C ⊆ X un insieme chiuso e T : C −→ C una
contrazione. Allora esiste un unico punto fisso di T, cioè esiste un solo punto p ∈ C tale che

T(p) = p

DIMOSTRAZIONE. Definiamo la seguente successione per ricorrenza: prendiamo un punto x0 ∈ C in maniera arbitraria e poniamo

xk+1 := T(xk) = ... = Tk+1–j(xj) = .. = Tk+1(x0) k ∈ �
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in questo modo abbiamo costruito una successione di punti {xk}⊆ C, visto che l’immagine di T è contenuta in C. Notiamo che vale

∥xk – xk+1∥ = ∥Tk(x0) – Tk(x1)∥ ≤ α∥Tk–1(x0) – Tk–1(x1)∥ ≤ · · ·≤ αk∥x0 – x1∥

In particolare, ne discende che per ogni j≥ 1

(1.5)
∥xk – xk+j∥ ≤ ∥xk – xk+1∥ + ∥xk+1 – xk+2∥ + ... + ∥xk+j–1 – xk+j∥ ≤ αk∥x0 – x1∥ +αk+1∥x0 – x1∥ + ... +αk+j–1∥x0 – x1∥

= αk
�
1 +α +α2 + ...αj–1

�
∥x0 – x1∥ ≤ αk

∞¼

i=0
αid(x0,x1) = αk

∥x0 – x1∥
1 –α

Dato che α ∈ [0, 1), questo prova che (xk) è una successione di Cauchy nello spazio normato X: infatti, vale l’implicazione

∥xk – xk+j∥ ≤ ε se k≥ K0(ε) =
$
logα

 
1 –α
C ε

!%
+ 1

dove le parentesi ⌊λ⌋ indicano il più grande intero minore o uguale a λ ∈ � . Siccome X è completo, C risulta completo in quanto chiuso, o possiamo dire che
esiste p ∈ C tale che xk −→ p e, per la continuità delle contrazioni, T(xk)−→ T(p). In conclusione abbiamo che

T(p) = lim
k−→∞

T(xk) = lim
k−→∞

xk+1 = p

Per l’unicità, supponiamo per assurdo che esistano due punti fissi p e q: allora

∥p –q∥ = ∥T(p) – T(q)∥ ≤ α∥p –q∥

ossia

(1 –α)∥p –q∥ ≤ 0

Dato che il fattore (1 –α)> 0 per ipotesi e che ∥p –q∥ ≥ 0 per definizione di distanza, si ha che ∥p –q∥ = 0, cioè che p = q.
Si noti che l’espressione (1.5) dà anche una stima dell’errore che si commette nel calcolare il punto fisso, in quanto

∥xk – p∥ = lim
j−→∞

∥xk – xk+j∥ ≤
αk∥x0,x1∥

1 –α

Concludiamo la dimostrazione del teorema con alcuni ragionamenti cercando di illustrare, in casi più semplici, alcuni argomenti che abbiamo utilizzato.
Innanzitutto consideriamo una situazione particolarmente semplice ambientando il primo esempio nello spaziometrico completo (� ,∥·∥2) = (� , |·|). In questo
contesto possiamo identificare un’applicazione da � in sé come una funzione di una variabile reale, quindi una contrazione è una funzione f : � −→ � tale che

|f(x) – f(y)|≤ L|x – y| conL< 1perognix,y ∈ �
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Un punto fisso di f è una soluzione dell’equazione x = f(x) o, in maniera equivalente, del sistema
(
y = f(x)
y = x

in questo modo possiamo osservare che gli eventuali punti fissi della funzione f sono punti comuni ai grafici delle due funzioni che compongono il sistema
precedente. Perché un tale sistema dovrebbe avere un’unica soluzione, a patto che f sia una contrazione?
Le proprietà del valore assoluto, unitamente alla scelta y = 0 nella definizione di contrazione, ci permettono di scrivere che

|f(x)| – |f(0)|≤ |f(x) – f(0)|≤ L|x –0| = L|x| cioè |f(x)|≤ |f(0)| + L|x| per ogni x ∈ �

la situazione descritta dalle disuguaglianze precedenti è schematizzata nella figura 5. Osserviamo che stiamo supponendo che f(0) , 0, altrimenti f(0) = 0 e
avremmo già trovato un punto fisso.

|f(0)|

–|f(0)|

La disuguaglianza implica che il grafico della funzione f deve trovarsi nella regione grigia e deve passare per uno dei due punti evidenziati di coordinate
(0,±|f(0)|), il grafico della retta y = x è la linea nera continua ed è facile convincersi che non è possibile evitare l’intersezione tra i due grafici, questo perché il
bordo della zona colorata ha pendenza±L con L< 1 e quindi non c’è spazio sufficiente che permetta ai due grafici di evitarsi.
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2 ANALISI DIFFERENZIALE

Introduzione

2.1 funzioni scalari e vettoriali

DEFINIZIONE 2.1 (Continuità di funzioni scalari) Sia f : A ⊆ � n −→ � , dove A è un aperto, e p ∈ A. Diremo che f è continua in p se per ogni ε > 0 esiste
δ = δ(ε, f,p)> 0 tale che

|f(x) – f(p)|< ε se ∥x – p∥< δ

DEFINIZIONE 2.2 (Continuità di funzioni vettoriali) Sia f : A ⊆ � n −→ � k, con A aperto, e p ∈ A. Diremo che f è continua in p se per ogni ε > 0 esiste
δ = δ(ε, f,p)> 0 tale che

∥f(x) – f(p)∥k < ε se ∥x – p∥n < δ

OSSERVAZIONE 2.3 Una funzione a valori vettoriali = (f1, ..., fk) : A ⊆ � n −→ � k è continua in un punto p se e soltanto se ogni funzione ”componente” fi : A ⊆
� n −→ � è continua, per i = 1, ...,k.

DEFINIZIONE 2.4 Sia f : A⊆ � n −→ � , con A aperto, e p ∈ A. Diremo che f possiede derivata nella direzionew ∈ � n se esiste finito il seguente limite

∂wf(p) =
∂f
∂w(p) = lim

h−→0

f(p + hw) – f(p)
h

Nel caso in cuiw = ei la derivata direzionale viene detta derivata parziale, e viene indicata con una delle seguenti notazioni

∂if(p) = ∂xi f(p) = ∂ei f(p) =
∂f
∂ei

(p) = ∂f
∂xi

(p) = fxi (p) peri = 1, ...,n
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DEFINIZIONE 2.5 Sia f : A⊆ � n −→ � , con A aperto, e p ∈ A. Diremo che f è differenziabile in p se esiste L = L(f,p) ∈ � n tale che

lim
∥h∥−→0

f(p + h) – [f(p) + L · h]
∥h∥ = 0

ovvero

f(p + h) = f(p) + L · h + o(∥h∥) dove lim
∥h∥−→0

o(∥h∥)
∥h∥ = 0

Diremo che f è differenziabile in A se è differenziabile in tutti i punti dell’aperto.

DEFINIZIONE 2.6 Introduciamo il seguente operatore differenziale vettoriale

∇ = (∂1, ...,∂n)

che in seguito verrà chiamato nabla.

OSSERVAZIONE 2.7 (Conseguenze della differenziabilità) Sia f : A −→ � una funzione differenziabile nell’aperto A ⊆ � n. Allora valgono le seguenti afferma-
zioni:
i. f è continua in A, infatti, per ogni p ∈ A abbiamo che

lim
h−→0

f(p + h) = lim
h−→0

�f(p) + L · h + o(∥h∥)� = f(p)

ii. La funzione f è derivabile in A e, per ogni p ∈ A, si ha L =∇f(p). Infatti possiamo scrivere che

∂if(p) = lim
h−→0

f(p + hei) – f(p)
h = lim

h−→0

Lih + o(h)
h = Li peri = 1, ...,n

Introducendo la quantità

R(p + h) = f(p + h) – f(p) –∇f(p) · h

possiamo affermare che

f è differenziabile in p seesolose R(p + h) = o(∥h∥)perh−→ 0

iii. La funzione f possiede derivate direzionali in A e si ha

(2.1) ∂wf(p) =∇f(p) ·w
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Infatti, dalla definizione di differenziabilità e dal punto precedente, segue che

∂wf(p) = lim
h−→0

f(p + hw) – f(p)
h = lim

h−→0

h∇f(p) ·w+o(h)
h =∇f(p) ·w

iv. Il vettore ∇f(p), se non è nullo, identifica la direzione di massima (e minima) crescita della funzione. Infatti dalla (2.1), per la disuguaglianza di Cauchy-
Schwartz, segue che

|∂wf(p)| = |∇f(p) ·w| = ∥∇f(p)∥ · ∥w∥ · |cos(θ)|≤ ∥∇f(p)∥ · ∥w∥ = |∇f(p)|

ricordando che w è un versore. La precedente maggiorazione implica che

–∥∇f(p)∥ ≤ ∂wf(p)≤ ∥∇f(p)∥

e il segno di uguaglianza è verificato se e solo se i vettori ∇f(p) e w sono paralleli. Se w = ∇f(p)/∥∇f(p)∥ allora la derivata direzionale è massima, se w =
–∇f(p)/∥∇f(p)∥ la derivata direzionale è minima.
v. Se p ∈ A, la funzione f possiede iperpiano tangente al suo grafico nel punto di coordinate (p, f(p)) ∈ � n+1. L’equazione cartesiana dell’iperpiano tangente è

xn+1 = f(p) +∇f(p) · (x – p)

ESEMPIO 2.8 Notiamo che la sola esistenza delle derivate parziali non basta a concludere che f è continua. Per esempio, la funzione di due variabili

f(x1,x2) =
(
x1x2 se x1x2 , 0
1 se x1x2 = 0

non è continua in (0,0) pur esistendo le derivate parziali prime ∂1f(0,0) = ∂2f(0,0) = 0.

Notiamo anche che la continuità e l’esistenza delle derivate parziali non garantiscono la differenziabilità. Come esempio, consideriamo f(x1,x2) =
p
|x1x2|, f è

continua in (0,0) e ha derivate parziali ∂1f(0,0) = ∂2f(0,0) = 0. Però f non è differenziabile nell’origine perché non esiste il limite

lim
∥h∥−→0

f(h)
∥h∥ = lim

∥h∥−→0

p
|h1h2|q
h21 + h

2
2

Infatti muovendosi lungo la direzione h1 = h2 oppure lungo gli assi coordinati si ottengono valori diversi.

A questo punto è lecito chiedersi cosa si può dedurre dall’esistenza della derivate parziali, il seguente risultato prova che condizione sufficiente affinché una
funzione sia differenziabilè è che le derivate parziali non solo esistano ma siano continue.

TEOREMA 2.9 (del differenziale totale) Sia f : A⊆ � n −→ � conA aperto, se esistono continue le derivate parziali di f inA allora la funzione è differenziabile
nell’aperto.
Sinteticamente: se f ∈ C1(A), allora f è differenziabile in A.
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DIMOSTRAZIONE. Dimostriamo il teorema nel caso n = 2. Per p ∈ A scriviamo

f(p + h) – f(p) = f(p1 + h1,p2 + h2) – f(p1,p2 + h2) + f(p1,p2 + h2) – f(p1,p2)

Per il teorema del valor medio (Lagrange) esisterà un punto q1 compreso tra p1 e p1 + h1 tale che

f(p1 + h1,p2 + h2) – f(p1,p2 + h2) = ∂1f(q1,p2 + h2)h1

Analogamente esisterà un punto q2 compreso tra p2 e p2 + h2 tale che

f(p1,p2 + h2) – f(p1,p2) = ∂2f(p1,q2)h2

Quindi

f(p + h) – f(p) –∇f(p) · h = (∂1f(q1,p2 + h2) – ∂1f(p1,p2))h1 + (∂2f(p1,q2) – ∂2f(p1,p2))h2

Abbiamo allora

|f(p + h) – f(p) –∇f(p) · h|
∥h∥ ≤ |∂1f(q1,p2 + h2) – ∂1f(p1,p2)|

h1
∥h∥ + |∂2f(p1,q2) – ∂2f(p1,p2)|

h2
∥h∥ ≤ |∂1f(q1,p2 + h2) – ∂1f(p1,p2)| + |∂2f(p1,q2) – ∂2f(p1,p2)|

Per la continuità delle derivate parziali di f

lim
∥h∥−→0

(∂1f(q1,p2 + h2) – ∂1f(p1,p2)) = 0 e lim
∥h∥−→0

(∂2f(p1,q2) – ∂2f(p1,p2)) = 0

da cui si deduce che

lim
∥h∥−→0

|f(p + h) – f(p) –∇f(p) · h|
∥h∥ = 0

che implica alla tesi.

Se indichiamo conMk,n(� ) lo spazio delle matrici a coefficienti reali con k righe e n colonne, possiamo presentare il seguente concetto

DEFINIZIONE 2.10 Sia f : A−→ � k, dove A⊆ � n aperto e p ∈ A. Diremo che f è differenziabile in p se esiste una matriceM ∈Mk,n(� ) tale che

lim
∥h∥n−→0

∥f(p + h) – (f(p) +Mh)∥k
∥h∥n

= 0

che possiamo scrivere, in maniera equivalente, anche nel seguente modo

f(p + h) = f(p) +Mh + o(∥h∥) perh−→ 0
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OSSERVAZIONE 2.11 Dato che un vettore di � k tende a zero se e solo se tutte le sue componenti tendono a zero possiamo dire che f è differenziabile se e solo
se lo sono le sue componenti f1, ..., fk.
Indicando con Jf lo jacobiano (cioè la matrice Jacobiana) di f definita come

Jf(p)�ik = ∂kfi(p) coni = 1, ...,kej = 1, ...,n

si ha che nella definizione 2.10 vale M = Jf(p).

DEFINIZIONE 2.12 L’uso formale dell’operatore nabla ci permette di definire alcuni operatori differenziali che operano su campi scalari o vettoriali di classe C1,
o più. Tali operatori avrano un ruolo importante nelle pagine che seguiranno.

gradiente seu ∈ C1(� n,� ) abbiamo ∇u : � n −→ � n con ∇u(p) := (∂1u(p), ...,∂nu(p))
divergenza seu ∈ C1(� n,� n) abbiamo ∇ · u : � n −→ � con (∇ · u)(p) := ∂1u1(p) + ... + ∂nun(p)
jacobiano seu ∈ C1(� n,� n) abbiamo Ju : � n −→Mn,n(� ) con Ju(p) := (∂kui(p))ik

rotore seu ∈ C1(� 3,� 3) abbiamo ∇∧ u : � 3 −→ � 3 con (∇∧ u)(p) := (∂2u3 – ∂3u2,∂3u1 – ∂1u3,∂1u2 – ∂2u1)(p)

TEOREMA 2.13 (differenziale di funzioni composte) Siano f : A −→ � k, con A ⊆ � n aperto, e g : B −→ � p, con B ⊆ � k aperto e f(A) ⊆ B, due funzioni
differenziabili (rispettivamente) in p ∈ A e in f(p) ∈ B. Allora definita la funzione h : A−→ � p come h(p) := g(f(p)), abbiamo che h è differenziabile in p e vale

Jh(p) = Jg f(p)� Jf(p)

ovvero

(Jh(p))ik = ∂khi(p) =
k¼

s=1
∂sgi(f(p))∂kfs(p) i = 1, ...,p,k = 1, ...,n

Si noti che

Jh ∈Mp,n(� ) Jg ∈Mp,k(� ) Jf ∈Mk,n(� )

DIMOSTRAZIONE. Ricordiamo il significato delle ipotesi: la funzione g è differenziabile in z se

g(q) = g(z) + Jg(z)(q – z) + o(∥q – z∥)
Ponendo q = f(p + s) e z = f(p) otteniamo

g(f(p + s)) = g(f(p)) + Jg(f(p))(f(p + s) – f(p)) + o(∥f(p + s) – f(p)∥)
D’altra parte, per la differenziabilità di f abbiamo che

(2.2) f(p + s) = f(p) + Jf(p)s + o(∥s∥)
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da cui segue

g(f(p + s)) = g(f(p)) + Jg(f(p))Jf(p)s + Jg(f(p))o(∥s∥) + o(∥f(p + s) – f(p)∥)
Per concludere la dimostrazione dobbiamo mostrare che

lim
∥s∥−→0

Jg(f(p)))o(∥s∥) + o(∥f(p + s) – f(p)∥)
∥s∥ = 0

È evidente che
Jg(f(p)))o(∥s∥)

∥s∥ = Jg(f(p))o(∥s∥)∥s∥ −→ 0 per∥s∥ −→ 0

D’altra parte, tenuto conto della (2.2), vale anche

∥f(p + s) – f(p)∥ ≤ |Jf(p)s∥ + o(∥s∥)≤ ∥Jf(p)∥ · ∥s∥ + o(∥s∥)≤ C∥s∥
con C costante positiva. Con ∥A∥ abbiamo indicato la norma di Frobenius della matrice A ∈Mk,n, cioè la quantità

∥A∥ :=


k¼

i=1

n¼

j=1
|aij|2




1/2

Quindi
o(∥f(p + s) – f(p)∥)

∥s∥ = o(∥f(p + s) – f(p)∥)∥f(p + s) – f(p)∥ ·
∥f(p + s) – f(p)∥

∥s∥ −→ 0 per∥s∥ −→ 0

perché prodotto di una quantità infinitesima, per definizione di o piccolo, e di una quantità limitata. Concludiamo che

g(f(p + s)) = g(f(p)) + Jg(f(p))Jf(p)s + o(∥s∥) per∥s∥ −→ 0

ESEMPIO 2.14 Sia f : [a,b] ⊆ � −→ � 3 di componenti f(t) = (x(t),y(t),z(t)) e sia g : � 3 −→ � . Consideriamo la funzione composta F(t) = g(x(t),y(t),z(t)),
discende dal precedente risultato che se f e g sono differenziabili allora lo è anche F e si ha

F′(t) =∇g(f(t)) · f′(t) = ∂1g(x(t),y(t),z(t))x′(t) + ∂2g(x(t),y(t),z(t))y′(t) + ∂3g(x(t),y(t),z(t))z′(t)
ESEMPIO 2.15 Siano f : A −→ � e h : B −→ � 2, dove h(u,v) = (x(u,v),y(u,v)), con A,B ⊆ � 2 aperti e h(B) ⊆ A due funzioni differenziabili. Consideriamo la
funzione composta F(u,v) := f(x(u,v),y(u,v)) : B−→ � . Allora la funzione F è differenziabile in B e si ha

∇F(u,v) =
∂1F(u,v),∂2F(u,v)

� =∇f(x(u,v),y(u,v))Jg(u,v) =
∂1f(x(u,v),y(u,v)),∂2f(x(u,v),y(u,v))

�
 
∂1x(u,v) ∂2x(u,v)
∂1y(u,v) ∂2y(u,v)

!

=
∂1f(x(u,v),y(u,v))∂1x(u,v) + ∂2f(x(u,v),y(u,v))∂1y(u,v),∂1f(x(u,v),y(u,v))∂2x(u,v) + ∂2f(x(u,v),y(u,v))∂2y(u,v)

�
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2.2 derivate successive

Analogamente al caso di funzioni di una variabile reale, è possibile definire derivate successive anche per funzioni vettoriali.

DEFINIZIONE 2.16 Sia f : A−→ � , con A⊆ � n aperto, chiameremo derivate parziali del secondo ordine di f (se esistono) le funzioni

∂ijf(x) := ∂j (∂if(x)) i, j = 1, ...,n

Segue dalla precedente definzione che una funzione di due variabili ha 4 derivate seconde

∂11f(x) ∂12f(x) ∂21f(x) ∂22f(x)

mentre una funzione di tre variabili ha addirittura 9 derivate seconde

∂11f(x) ∂12f(x) ∂21f(x) ∂13f(x) ∂31f(x) ∂22f(x) ∂23f(x) ∂32f(x) ∂3xf(x)

in generale una funzione f : A−→ � , con A⊆ � n aperto, può avere n2 derivate seconde.
Non sempre è possibile scambiare l’ordine in cui si eseguono le derivate, per esempio, consideriamo

f(x1,x2) =



x1x2(x21 – x
2
2)

x21 + x
2
2

se(x1,x2) , (0,0)

0 per(x1,x2) = (0,0)

Si ha

∂12f(0,0) = lim
k−→0

∂1f(0,k) – ∂1f(0,0)
k = lim

k−→0
lim

h−→0

h2 – k2

h2 + k2
= –1

∂21f(0,0) = lim
h−→0

∂2f(h,0) – ∂2f(0,0)
h = lim

h−→0
lim
k−→0

h2 – k2

h2 + k2
= 1

da cui segue che

∂21f(0,0) , ∂21f(0,0)

Il seguente teorema ci assicura però che, per funzioni di classe C2, le derivate non dipendono dall’ordine in cui si eseguono le operazioni di derivazione.

TEOREMA 2.17 (di K.H.A. Schwarz) Sia f : A −→ � , con A ⊆ � n aperto, una funzione di classe C2, cioè derivabile due volte con derivate seconde continue,
allora vale

∂ijf(x) = ∂jif(x) peri, j = 1, ...,n
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DEFINIZIONE 2.18 Sia f : A−→ � una funzione di classe C2, con A⊆ � n aperto, allora possiamo definire la matrice delle derivate seconde

Hf(x) = (hij(x))ij =
�
∂ijf(x)

�
ij peri, j = 1, ...,n

che chiameremomatrice hessiana. Il teorema di Schwarz può essere enunciato dicendo che la matrice hessiana è simmetrica.

Se f : A−→ � è differenziabile nell’aperto A⊆ � n, allora possiede un iperpiano tangente in tutti i punti del suo grafico, il che equivale a dire che ha uno sviluppo
lineare (cioè vale la formula di Taylor al primo ordine)

f(x) = f(p) +∇f(p) · (x – p) + o∥x – p∥� con lim
x−→p

o∥x – p∥�

∥x – p∥ = 0

Se f è una funzione di classe C2 possiamo, come è ragionevole pensare, migliorare l’approssimazione: consideriamo la funzione di una variabile

F(t) := f(p) + t(x – p)) pert ∈ [0, 1]

Dato che F ∈ C2([0, 1]) possiamo scrivere lo sviluppo di Taylor del secondo ordine per funzioni di una variabile, ottenendo

F(1) = F(0) + F′(0) + 12F
′′(θ) conθ ∈ (0, 1)

Per la formula di derivazione delle funzioni composte abbiamo

F′(t) =∇f(p + t(x – p)) · (x – p) e F′′(t) = Hf(p)(x – p) · (x – p)

da cui segue, in termini di funzione f, la formula di Taylor del primo ordine con resto di Lagrange

(2.3) f(x) = f(p) +∇f(p) · (x – p) + 12
Hf(ξ)(x – p) · (x – p)� conξ = p + θ(x – p)

Facciamo vedere che dalla (2.3) discende la formula di Taylor del secondo ordine con resto di Peano

(2.4) f(x) = f(p) +∇f(p) · (x – p) + 12
Hf(p)(x – p) · (x – p)� + o

�
∥x – p∥2

�

dove vale

lim
x−→p

o
�
∥x – p∥2

�

∥x – p∥2
= 0

La (2.4) segue dalla (2.3) se dimostriamo che

(2.5)
(Hf(ξ) –Hf(x)) (x – p)

� · (x – p) = o
�
∥x – p∥2

�
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Infatti, dalla disuguaglianza di Cauchy-Schwarz ricaviamo per una generica matrice M che

|Mx · x| =

��������

1,n¼

i,j
Mijxixj

��������
≤ ∥M∥ · ∥x∥2 dove∥M∥ :=



k¼

i=1

n¼

j=1
|Mij|2




1/2

Quindi, nel nostro caso otteniamo

|(Hf(ξ) –Hf(x)) (x – p) · (x – p)|≤ ε∥x – p∥2 con ε =



1,n¼

i,j
(∂ijf(ξ) – ∂ijf(p))2




1/2

e dalla continuità delle derivate seconde segue la (2.5).

OSSERVAZIONE 2.19 Sia f : A−→ � una funzione di classe C1 in A⊆ � n aperto connesso (per archi) tale che∇f≡O, allora

f(p) = f(q) perognip,q ∈ A

Se cos̀ı non fosse potremmo costruire una curva regolare di parametrizzazione φ : [0, 1] −→ A congiungente i punti p e q tali che f(p) , f(q). Allora (per il
teorema di Lagrange e per il teorema di derivazione delle funzioni composte) seguirebbe

0 , f(p) – f(q) = f(φ(0)) – f(φ(1)) =
"
d
dt f(φ(t))

#

t=ξ
=∇f(φ(ξ)) ·φ′(ξ) = O ·φ′(ξ) = 0

perché φ(ξ) ∈ A.

2.3 punti critici

DEFINIZIONE 2.20 Sia f : A−→ � una funzione di classe C1, con A⊆ � n aperto, allora si dice che p ∈ A è un punto critico (o stazionario) per f se

∇f(p) = O

TEOREMA 2.21 (di P. Fermat) Sia p ∈ A⊆ � n (insieme aperto) un punto di massimo o minimo locale per f, se f è differenziabile in p allora∇f(p) = O.

DIMOSTRAZIONE. Fissata una direzione w, la funzione di una variabile F(t) := f(p + tw) ha in t = 0 un punto di massimo o minimo locale. Dato che F(t) è
differenziabile in t = 0 deve necessariamente essere F′(0) = ∂wf(p) =∇f(p) ·w = 0. Per l’arbitrarietà di w segue che∇f(p) = 0.
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Per stabilire se un punto critico p è un estremo relativo è necessario studiare il segno della differenza f(x)– f(p), e spesso è conveniente farlo usando la formula
di Taylor. Ciò conduce a studiare il segno della forma quadratica associata alla matrice hessiana Hf(p)

Hf(p)w ·w =
n¼

i,j=1
∂ijf(p)wiwj conw = (w1, ...,wn) ∈ � n

Richiamiamo alcune definizioni e proprietà delle forme quadratiche.

DEFINIZIONE 2.22 Data f : A−→ � , con A⊆ � n aperto e p ∈ A, si dice che l’hessianoHf(p) è una matrice
i. definita positiva seHf(p)w ·w> 0, per ogni vettorew , 0,
ii. definita negativa seHf(p)w ·w< 0, per ogni vettorew , 0,
iii. semidefinita positiva seHf(p)w ·w≥ 0, per ogniw ∈ � n,
iv. semidefinita negativa seHf(p)w ·w≤ 0, per ogniw ∈ � n,
v. indefinita se esistonow1,w2 ∈ � n tali cheHf(p)w1 ·w1 > 0 eHf(p)w2 ·w2 > 0.

TEOREMA 2.23 (di J.J. Sylvester) Indichiamo con H(k) il minore principale di ordine k ≤ n estratto dalla matrice Hf(p), cioè la sottomatrice composta dalle
prime k righe e k colonne. Allora
i.Hf(p) è definita positiva se e solo se |Hk| = det[H(k)]> 0, per ogni k = 1, ...,n,
ii.Hf(p) è definita negativa se e solo se (–1)k|H(k)|> 0, per ogni k = 1, . . . ,n,
iii. Hf(p) è indefinita se ha un minore principale di ordine pari con determinante negativo oppure se ha due diversi minori principali di ordine dispari che sono
discordi.

TEOREMA 2.24 (test degli autovalori)
i.Hf(p) è definita positiva se e solo se tutti i suoi autovalori sono positivi,
ii.Hf(p) è definita negativa se e solo se tutti i suoi autovalori sono negativi,
iii.Hf(p) è semidefinita positiva se e solo se tutti i suoi autovalori sono non negativi,
iv.Hf(p) è definita negativa se e solo se tutti i suoi autovalori sono non positivi,
v.Hf(p) è indefinita se e solo se ha almeno due autovalori non nulli e discordi.

OSSERVAZIONE 2.25 Per stabilire se una matrice è definita, semidefinita o indefinita non serve conoscere gli autovalori, ma basta conoscere il loro segno. È
quindi utile ricordare la regola dei segni di Cartesio.

È anche utile sapere che

PROPOSIZIONE 2.26 Hf(p) è definita positiva se e solo esistem > 0 tale cheHf(p)w ·w ≥m∥w∥2 per ogniw ∈ � n. Hf(p) è definita negativa se e solo esistem > 0
tale cheHf(p)w ·w≤ –m∥w∥2.
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Un’altra condizione necessaria oltre al teorema di Fermat è data dal seguente

TEOREMA 2.27 Siano f ∈ C2(A), con A⊆ � n aperto, e p ∈ A un punto critico, allora
i. se p è un punto di minimo locale, alloraHf(p) è una matrice semidefinita positiva,
ii. se p è un punto di massimo locale, alloraHf(p) è una matrice semidefinita negativa.

DIMOSTRAZIONE. Dimostriamo il caso i, il caso ii segue considerando la funzione g(x) = –f(x) che ha un minimo locale in p. Per la formula di Taylor con resto
di Peano possiamo scrivere che

f(p)≤ f(x) = f(p) +∇f(p) · (x – p) + 12
Hf(p)(x – p) · (x – p)� + o

�
∥x – p∥2

�

essendo p un punto critico vale∇f(p) = O, e otteniamo che

Hf(p)(x – p) · (x – p)≥ o
�
∥x – p∥2

�

Posto x – p = tw, con ∥w∥ = 1 la precedente relazione equivale a scrivere

Hf(p)w ·w≥ o(t2)
t2

E per t−→ 0 si ottiene Hf(p)w ·w≥ 0 per ogni w ∈ � n, cioè la matrice hessiana è semidefinita positiva nel punto p.

TEOREMA 2.28 (test dell’hessiano) Siano f ∈ C2(A), con A⊆ � n aperto, e p ∈ A un punto critico della funzione, allora
i. seHf(p) è una matrice indefinita allora p è una sella,
ii. seHf(p) è una matrice definita positiva (cioè ha solo autovalori positivi), allora p è un punto di minimo locale,
iii. seHf(p) è una matrice definita negativa (cioè ha solo autovalori negativi), allora p è un punto di massimo locale.

DIMOSTRAZIONE. i. Se Hf(p) è indefinita, per il teorema precedente p non è né un punto di massimo né un punto di minimo.
ii. Per la proposizione 2.26 esiste m> 0 tale che Hf(p)w ·w≥m∥w∥2 per ogni w ∈ � n, dalla formula di Taylor con resto di Peano

f(x) – f(p) = 12
Hf(p)(x – p) · (x – p)� + o

�
∥x – p∥2

�
≥ m

2 ∥x – p|
2 + o(∥x – p∥2) =

�m
2 +o(1)

�
∥x – p∥2

Sia δ > 0 tale che, per ∥x – p∥< δ, si abbia m/2 + o(1)> 0, allora segue che f(x)> f(p) per 0< ∥x – p∥< δ cioè p è un punto di minimo locale stretto. Il caso iii
si tratta in maniera analoga.

Se Hf(p) è semidefinita, positiva o negativa, non si può concludere nulla. Per esempio, O(0,0) è punto stazionario sia per f(x1,x2) = x21 + x
4
2 che per g(x1,x2) =

x21 – x
4
2 e, in entrambi i casi, la matrice hessiana nell’origine è semidefinita positiva. Si verifica facilmente che l’origine O è punto di minimo (assoluto) per f e

punto di sella per g.
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inserire un paio di grafici?

TEOREMA 2.29 (di K.T.W. Weierstrass) Sia f : K−→ � una funzione continua con K⊆ � n compatto. Allora esistono due punti p,q ∈ K tali che

min
K
(f) = f(p)≤ f(x)≤ f(q) = max

K
(f) perognix ∈ K

DIMOSTRAZIONE. Sia {pj} una successione minimizzante, cioè una successione tale che

{pj}⊆ K e lim
j−→+∞

f(pj) = infx∈K
f(x)

Osserviamo che sotto la sola condizione K , ∅ esistono successioni minimizzanti. Infatti, posto m := infx∈K f(x) > –∞, dalla definizione di estremo inferiore
segue che per ogni j = 1,2, ... esiste yj ∈ f(K) tale che m≤ yj ≤m+ 1j . Ogni successione {pj} tale che

{pj}⊆ K e f(pj) = yj n = 1,2,3, ...

è dunque una successione minimizzante (il caso che infx∈K f(x) = –∞ si tratta in maniera simile). Osserviamo che non è detto che la successione minimizzante
{pj} converga. Dato che K è compatto, cioè chiuso e limitato, per il teorema di Bolzano-Weierstrass esiste una sottosuccessione {pj(k)} convergente a p ∈ K
per k−→ +∞. Per la continuità di f si ha dunque

lim
k−→+∞

f(pj(k)) = f(p)

D’altra parte, per definizione di successione minimizzante, si ha anche

lim
j−→+∞

f(pj) = m = inf
x∈K

f(x)

e si conclude dunque che

f(p) = m = min
x∈K

f(x)

Lo stesso ragionamento è vero per il punto di massimo q.

TEOREMA 2.30 (di K.T.W. Weierstrass) Sia f : K−→ � continua, con K⊆ � n chiuso. Se f è coercitiva, cioè se vale la seguente condizione,

lim
x∈Ke∥x∥−→+∞

f(x) = +∞

allora esiste p ∈ K tale che

min
K
f = f(p)
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DIMOSTRAZIONE. Sia pj una successione minimizzante per f in K . Se {pj} non fosse limitata, a meno di sottosuccessioni, avremmo che ∥pj∥ −→∞ e dalla
ipotesi di coercività si avrebbe allora l’assurdo che

inf
K
(f) = lim

n−→+∞ f(pj) = +∞

Quindi {pj} è una successione limitata e si può procedere come nel caso K limitato.

OSSERVAZIONE 2.31 I precedenti risultati di Weierstrass propongono alcune ipotesi che si rivelano sufficienti a garantire che f sia dotata di massimo e/ominimo
assoluti. Però come è possibile identificare questi punti? Se f è differenziabile e se uno di questi punti q appartiene a Ko (l’interno di K), segue dal teorema di
Fermat che∇f(q) = O. Naturalmente il punto di massimo e/o minimo potrebbe cadere sulla frontiera ∂K del dominio K. Si noti che se q ∈ ∂K (la frontiera di K)
non è vero che il gradiente della funzione nel punto deve essere nullo, quindi avremo bisogno di strumenti differenti per studiare le proprietà dei punti della
frontiera.

Per stabilire se un insieme è chiuso è utile conoscere il seguente risultato.

TEOREMA 2.32 (caratterizzazione della continuità) Sia f : � n −→ � una funzione continua, allora vale che
i. gli insiemi {x ∈ � n : f(x)< λ} e {x ∈ � n : f(x)> µ} sono aperti,
ii. gli insiemi {x ∈ � n : f(x)≤ λ} e {x ∈ � n : f(x)≥ µ} sono chiusi,
per ogni λ,µ ∈ � .

Si ricordi che l’unione (qualsiasi) di insiemi aperti produce sempre un aperto e l’intersezione di un numero finito di aperti produce ancora un aperto. L’unione
finita di chiusi produce un chiuso, mentre l’intersezione (qualsiasi) di chiusi è sempre un chiuso.

DEFINIZIONE 2.33 Un insieme A⊆ � n si dice convesso se

λx + (1 –λ)y ∈ A per ogni x,y ∈ A e λ ∈ [0, 1]

Data f : A−→ � , con A⊆ � n aperto convesso, la funzione f si dice convessa se

f(λx + (1 –λ)y)≤ λf(x) + (1 –λ)f(y) per ogni x,y ∈ A e λ ∈ [0, 1]

OSSERVAZIONE 2.34 È possibile mostrare che f è convessa se e solo se l’insieme epigrafico Ef ⊆ � n+1 definito come Ef := {(x,y) ∈ A×� : y≥ f(x)} è convesso.

Le funzioni convesse hanno un ruolo importante in ottimizzazione. Infatti se f è convessa in A allora ogni punto di minimo locale è anche di minimo assoluto
per f.

OSSERVAZIONE 2.35 Lo studio della matrice hessiana fornisce un criterio per stabilire la convessità di una funzione di più variabili. Richiamiamo brevemente
alcune proprietà delle funzioni convesse. Sia f : A←− � , con A aperto convesso:
i. se f è convessa allora f è continua in A,
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ii. se f è differenziabile allora f è convessa se e solo se f(x)≥ f(p) +∇f(p) · (x – p),
iii. se f ∈ C2(A) allora f è convessa in A se e solo se Hf(x) è una matrice semidefinita positiva.

2.4 curve

DEFINIZIONE 2.36 Una curva in � 3 è un’applicazione φ : [a,b] ⊆ � −→ � 3, con φ(t) = (x1(t),x2(t),x3(t)). La funzione p = φ(t) è detta una rappresentazione
parametrica della curva. Se una delle tre componenti è identicamente nulla allora si ha una curva piana, contenuta in uno dei piani coordinati del sistema di
riferimento.
Una curva è continua se ogni sua componente x1(t),x2(t),x3(t) è continua in [a,b].
Una curva è regolare se ogni sua componente è di classe C1([a,b]) e vale

∥φ′(t)∥2 =
h
|x′1(t)|2 + |x′2(t)|

2 + |x′3(t)|2
i1/2
, 0 perognit ∈ (a,b)

Una curva è regolare a tratti se è continua in [a,b] e se è possibile dividere [a,b] in un numero finito di intervalli chiusi, all’interno dei quali φ è regolare, cioè φ
deve essere un collage continuo di un numero finito di curve regolari.
Una curva φ si dice chiusa se φ(a) = φ(b), si dice semplice se φ(t) è iniettiva in (a,b).
Al variare di t ∈ [a,b], φ(t) descrive un insieme γ = φ[a,b]⊆ � 3 detto sostegno della curva.
Due curve φ : [a,b]−→ � 3 eψ : [c,d]−→ � 3 si dicono equivalenti se esiste una funzione continua e biunivoca h : [c,d]⊆ � −→ [a,b] tale che

φ(h(t)) = ψ(t) perognit ∈ [c,d]

OSSERVAZIONE 2.37 Nel caso in cui φ eψ siano due curve equivalenti, possiamo anche dire cheψ è una nuova parametrizzazione della curva φ, si noti che due
curve equivalenti hanno sempre lo stesso sostegno.
Data una rappresentazione parametrica è automaticamente assegnato un verso di percorrenza sulla curva ovvero una orientazione: φ(a) è il punto iniziale e
φ(b) è il punto finale della curva.

OSSERVAZIONE 2.38 Per una curva regolare (a tratti) è (quasi) sempre ben definito il vettore φ′(t) = (x′1(t),x
′
2(t),x

′
3(t)). Interpretando t come il tempo, si può

pensare φ(t) come il vettore posizione di una particella al tempo t; il sostegno γ = φ([a,b]) è la traiettoria del moto; il vettore φ′(t) è il vettore velocità. Il versore

T(t) = φ
′(t)
|φ′(t)|

viene detto versore tangente. La retta tangente alla curva nel punto p0 = φ(t0) ha equazione parametrica

(2.6) p(t) = φ(t0) +φ′(t0)(t – t0) = p0 + v(t0)(t – t0)
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A questo punto vogliamo introdurre il concetto di lunghezza per una generica curva (anche se siamo interessati alle curve regolare a tratti, come sarà chiaro più
avanti). Come spesso accade la nostra definizione dovrà fare i conti con le lunghezze che abbiamo già definito, cioè dovrà coincidere con la nozione elementare
di perimetro di un poligono, visto che i lati di un poligono possono essere interpretati come una curva regolare a tratti.
Data una partizione a = t0 < t1 < ... < tk = b dell’intervallo [a,b], poniamo pj = φ(tj) i punti corrispondenti sulla curva φ. La poligonale o spezzata P di vertici
p0,p1, ...,pk inscritta alla curva φ ha lunghezza

L(P) =
k¼

j=1
∥pj – pj–1∥ =

k¼

j=1
∥φ(tj) –φ(tj–1)∥

Nella figura che segue possiamo vedere rappresentato un tratto di curva regolare con una poligonale iscritta e una curva chiusa non semplice, quindi soltanto
regolare a tratti.

p6

p5p4

p3

p2

p1

p0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figura 2: una curva piana semplice (in viola) e una poligonale inscritta (verde) e una curva chiusa regolare a tratti

Sia L(φ) := sup{L(P)alvariaredellepoligonaliPinscritteinφ}, allora abbiamo

DEFINIZIONE 2.39 Se L(φ)< +∞ si dice che la curva φ è rettificabile e si definisce L(φ) la sua lunghezza.
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TEOREMA 2.40 (rettificazione di una curva regolare semplice) Sia φ : [a,b] −→ � n una curva regolare semplice, allora φ è rettificabile e possiamo
calcolare la lunghezza della curva nel seguente modo

(2.7) L(φ) =
Z b

a
|φ′(t)|dt =

Z b

a

h
|x′1(t)|2 + |x′2(t)|

2 + |x′3(t)|2
i1/2 dt

È possibile dimostrare che la lunghezza di una curva non dipende dalla rappresentazione parametrica scelta. Se φ è una curva regolare a tratti allora φ è
rettificabile, perché è unione di un numero finito di curve regolari, quindi la lunghezza della curva è la somma (finita) delle lunghezze dei tratti regolari.

ESEMPIO 2.41 Sia f(x) = xsin(1/x) per x ∈ (0, 1], f(0) = 0. La curva (t, f(t)) per t ∈ [0, 1] non è rettificabile

OSSERVAZIONE 2.42 Data f : [a,b] −→ � di classe C1, la curva del piano che ha come sostegno il grafico di f è una curva regolare di equazioni parametriche
(x1(t),x2(t),x3(t)) = (t, f(t),0), con t ∈ [a,b]. In tal caso si dice che la curva è data in forma cartesiana

y = f(x) x ∈ [a,b] curvainformacartesiana

La lunghezza del suo grafico è data dalla formula

(2.8) L(φ) =
Z b

a

p
1 + (f′(x))2dx

Una curva piana in coordinate polari è data dall’equazione

ρ = ρ(θ) θ ∈ [θ0,θ1] curvainformapolare

che corrisponde all’equazione in forma parametrica
x(θ),y(θ)� = (ρ(θ)cos(θ),ρ(θ) sin(θ)) θ ∈ [θ0,θ1]

La lunghezza del suo grafico è data dall’espressione

(2.9) L(φ) =
Z θ1

θ0

q
(ρ′(θ))2 + (ρ(θ))2dθ

È sempre possibile, tramite un opportuno cambio di variabile, parametrizzare la curva con una particolare variabile s, detta ascissa curvilinea

s(t) =
Z t

a
∥φ′(u)∥du

Si ha s′(t) = ∥φ′(t)∥> 0 in (a,b). Quindi s : [a,b]→ [0,L(φ)] è strettamente crescente e quindi invertibile. Indichiamo con t(s) la funzione inversa, t : [0,L(φ)]→
[a,b]. Posto φ∗(s) = φ(t(s)) con s ∈ [0,L(φ)], la curva φ∗ è equivalente alla curva φ e le curve hanno lo stesso orientamento. Si ha

dφ∗(s)
ds = dφ(t)dt

dt
ds =

φ′(t(s))
|φ′(t(s))|
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da cui segue
�����
dφ∗
ds (s)

����� = |φ̇∗(s)| = 1

Con φ̇∗(s) indichiamo la derivata rispetto a s di φ∗(s).

DEFINIZIONE 2.43 Sia φ : [a,b] −→ � 3 una curva regolare parametrizzata con la sua ascissa curvilinea, e supponiamo che φ ∈ C2([a,b]). Indichiamo con
T(s) il versore tangente cioè

T(s) = φ̇(s)
|φ̇(s)|

= φ̇(s) e poiché vale
�
Ṫ(s) · T(s)

�
= 12

d
ds (T(s) · T(s)) =

1
2
d
ds∥T(s)∥

2
2 = 0

segue che Ṫ(s) è un vettore ortogonale al versore tangente T(s).

Si definisce la curvatura della curva (nel punto φ(s)) la quantità scalare κ(s) = ∥Ṫ(s)∥ e il versore normale alla curva il versoreN(s) = 1
κ(s) Ṫ(s).

A questo possiamo introdurre il vettore B(s) = T(s) ∧ N(s), detto vettore binormale. I versori T(s), N(s) e B(s) costituiscono la terna intrinseca o tetraedro di
Frénet nel punto φ(s), questi versori sono linearmente indipendenti, la terna (T,N,B) è una base dello spazio ed ha la stessa orientazione della terna canonica
(e1,e2,e3).

Si può anche mostrare che Ḃ(s) = –τ (s)N(s), introducendo la quantità scalare τ (s), detta torsione della curva.

2.5 superfici
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DEFINIZIONE 2.44 Sia K⊆ � 2 la chiusura di un aperto connesso. Una superficie regolare di � 3 è un’applicazione r : K−→ � 3 tale che
i. r è di classe C1(K) cioè r è continua in K ed è dotata di derivate parziali continue,
ii. r è iniettiva all’interno di K,
iii. la matrice jacobiana

Jr(u1,u2) =
∂r(u1,u2)
∂(u1,u2)

=




∂1r1(u1,u2) ∂2r1(u1,u2)
∂1r2(u1,u2) ∂2r2(u1,u2)
∂1r3(u1,u2) ∂2r3(u1,u2)




ha rango 2 in ogni punto dell’interno di K. L’immagineÎ = r(K) è un insieme di � 3 detto sostegno della superficie. Le equazioni

x = r(u) cioè (x1,x2,x3) =
r1(u1,u2), r2(u1,u2), r3(u1,u2)

� perogniu = (u1,u2) ∈ K

si chiamano equazioni parametriche della superficie. Nel seguito identificheremo spesso la superficie r con il suo sostegnoÎ.

Se poniamo

∂1r(u) = (∂1r1(u1,u2),∂1r2(u1,u2),∂1r3(u1,u2)) e ∂2r(u) = (∂2r1(u1,u2),∂2r2(u1,u2),∂2r3(u1,u2))

La condizione iii equivale a richiedere che ∂1r(u) e ∂2r(u) siano linearmente indipendenti ovvero che sia

∂1r(u)∧ ∂2r(u) ,O perogniu ∈ int(K)

OSSERVAZIONE 2.45 Data una funzione f ∈ C1(K), possiamo interpretare il suo grafico x3 = f(x1,x2) come una superficie di equazioni parametriche

(x1(u1,u2),x2(u1,u2),x3(u1,u2)) =
u1,u2, f(u1,u2)

� u = (u1,u2) ∈ K

Poiché ∂1r(u) = (1,0,∂1f(u)) e ∂2r(u) = (0, 1,∂2f(u)) risulta ∂1r∧ ∂2r = (–∂1f(u)),–∂2f(u)), 1) ,O, quindi la superficie è sempre regolare.

Le curve ottenute fissando una delle due variabili u1 = u1 oppure u2 = u2 di equazioni parametriche

p = r(u1,u2) oppure p = r(u1,u2)

sono dette linee coordinate e sono delle curve regolari che giacciono sulla superficie.

ESEMPIO 2.46 La sfera di centro p0 e raggio R> 0 di � 3 ha equazioni parametriche

(x1,x2,x3) =
�
x0 + Rsin(φ)cos(θ),y0 + Rsin(φ) sin(θ),z0 + Rcos(φ)

�

con u = (φ,θ) ∈ K = [0,π]× [0,2π]. È una superficie regolare dato che si ha

∥∂1r(u)∧ ∂2r(u)∥2 = R2 sin(φ)> 0 in (0,π)

In questo caso le linee coordinate φ = φ rappresentano i paralleli, mentre le linee coordinate θ = θ rappresentano i meridiani, usando un linguaggio di tipo geografico.
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Consideriamo una curva regolare γ con sostegno contenuto in K⊆ � 2, di equazioni parametriche

γ : φ(t) = u1(t),u2(t)
� cont ∈ [a,b]⊆ �

passante per (u0,1,u0,2) = (u1(t0),u2(t0)). La curva regolare ottenuta componendo la parametrizzazione diφ con la parametrizzazione di una superficie regolare
r (definita su K), cioèÐ (t) = r(u1(t),u2(t)) ha sostegno contenuto inÎ, il sostegno della superficie r, passa per il punto p0 = r(u0,1,u0,2) e ha come retta tangente
nel punto p0 la retta di equazione parametrica

(p – p0) =
"
d
dt r(u1(t),u2(t))

#

t=t0
(t – t0)

Per la formula di derivazione delle funzioni composte vale

d
dt r(u(t)) = ∂1r(u1(t),u2(t))u

′
1(t) + ∂2r(u1(t),u2(t))u

′
2(t)

quindi il vettore tangente è contenuto nel piano passante per p0 generato dai vettori linearmente indipendenti ∂1r(u0,1,u0,2) e ∂2r(u0,1,u0,2) ovvero nel piano
di equazione

det







x1 – x0,1 x2 – x0,2 x3 – x0,3
∂1r1(u0,1,u0,2) ∂1r2(u0,1,u0,2) ∂1r3(u0,1,u0,2)
∂2r1(u0,1,u0,2) ∂2r2(u0,1,u0,2) ∂2r3(u0,1,u0,2)





 = 0

Il piano tangente introdotto non dipende dalla particolare curva γ. Dato che qualunque curva regolare tracciata su Î e passante per p0 può esprimersi local-
mente nella forma p = r(u1(t),u2(t)), il piano di sopra contiene tutte le rette tangenti a ogni curva regolare sulla superficie passante per p0. Tale piano si dice
piano tangente a Î nel punto p0.
Il vettore ∂1r(u)∧ ∂2r(u) è ortogonale al piano tangente, il corrispondente versore

n = ∂1r(u)∧ ∂2r(u)
∥∂1r(u)∧ ∂2r(u)∥2

è detto versore normale alla superficie.

OSSERVAZIONE 2.47 Nel caso di superfici in forma cartesiana x3 = f(x1,x2), il piano tangente alla superficie nel punto (x0,1,x0,2, f(x0,1,x0,2)) ha equazione

x3 = f(x0) +∇f(x0) · (x – x0) = f(x0,1,x0,2) + ∂1f(x0,1,x0,2)(x1 – x0,1) + ∂2f(x0,1,x0,2)(x2 – x0,2)

e ha versore normale

n = (–∂1f(x0),–∂2f(x0), 1)q
1 + ∥∇f(x0)∥22

È facile osservare che anche –n è un versore normale alla superficie. La scelta di uno dei due versori±n è legata al concetto di orientazione di una superficie.
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Oltre che in forma parametrica o cartesiana le superfici possono essere date in forma implicita. Sia F : A ⊆ � 3 −→ � con F ∈ C1(A). Sia Î l’insieme di livello
F(x1,x2,x3) = 0, se (x0,1,x0,2,x0,3) ∈ Î e ∇F(x0) , 0 allora Î coincide localmente con una superficie in forma cartesiana. Si noti che questa affermazio-
ne è, al momento, decisamente immotivata, perché non disponiamo di risultati e strumenti con cui provarla! Ritorneremo più avanti su questo problema.
Analogamente a quanto scritto prima l’equazione del piano tangente a Î in x0 = (x0,1,x0,2,x0,3) è

∇F(x0) · (x – x0) = 0 oanche ∂1F(x0,1,x0,2,x0,3)(x1 – x0,1) + ∂2F(x0,1,x0,2,x0,3)(x2 – x0,2) + ∂3F(x0,1,x0,2,x0,3)(x3 – x0,3) = 0

Consideriamo ancora la curva γ tracciata su Î. L’ascissa curvilinea

s(t) =
Z t

a

����
d
dt r(u1(τ ),u2(τ ))

����dτ

rappresenta la lunghezza dell’arco descritto da r(u1(τ ),u2(τ )), per τ ∈ [a, t]. Si ha
 
ds
dt

!2
=





d
dt r(u1(t),u2(t))






2

2
= ∥∂1r(u1(t),u2(t))u′1(t) + ∂2r(u1(t),u2(t))u′2(t)∥

2
2

= ∥∂1r(u1(t),u2(t))∥22|u
′
1(t)|2 + 2(∂1r(u1(t),u2(t)) · ∂2r(u1(t),u2(t)))u′1(t)u′2(t) + ∥∂2r(u1(t),u2(t))∥

2
2|u
′
2(t)|

2

Ponendo

E(u) = ∥∂1r(u1,u2)∥22 F(u) = ∂1r(u1,u2) · ∂2r(u1,u2) G(u) = ∥∂2r(u1,u2)∥22
si ricava la seguente formula

ds2 = E(u)du21 + 2F(u)du1du2 +G(u)du
2
2

che esprime il quadrato del differenziale dell’arco su una superficie. La forma quadratica

I(u) = E(u1,u2)du21 + 2F(u1,u2)du1du2 +G(u1,u2)du
2
2

prende il nome di prima forma quadratica fondamentale della superficie ed esprime, codifica in termini quantitativi alcune delle proprietà geometriche della
superficie stessa.

2.6 il teorema delle funzioni implicite

ESEMPIO 2.48 Sia S2 =
n
x = (x1,x2,x3) : N(x) = x21 + x

2
2 + x

2
3 – 1 = 0

o
⊆ � 3 e F : S2 −→ � definita come F(x) = Dx · x, con D ∈ M3,3(� ) matrice diagonale M =

diag(c1,c2,c3) con c1 < c2 < c3. Si provi che esistono p,q ∈ S2 tali che

F(p) = max
x∈S2

[F(x)] e F(q) = min
x∈S2

[F(x)]
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e si identifichino tali punti.
Prima di tutto notiamo che la sfera unitaria, cioè il nostro vincolo S2, è un insieme limitato (per definizione) e chiuso in quanto controimmagine del chiuso {0} ⊆ � , e
poiché la funzione F è continua in tutto � 3, essendo di classe C∞(� 3), il teorema di Weierstrass garantisce l’esistenza di (almeno) un punto di massimo e di minimo.
A questo punto proseguiamo i nostri ragionamenti osservando che

F(x) = F(x1,x2,x3) = Mx · x =
c1x1,c2x2,c3x3

� · x1,x2,x3
� = c1x21 + c2x

2
2 + c3x

2
3 x ∈ S2

e anche che

c1 = c1[x21 + x
2
2 + x

2
3]≤ c1x21 + c2x22 + c3x

2
3 ≤ c3[x21 + x22 + x

2
3] = c3 perognix ∈ S2

Dalle precedenti osservazioni possiamo concludere subito che

c1 = F(e1) = min
x∈S2

[F(x)] e c3 = F(e3) = max
x∈S2

[F(x)]

quindi conosciamo gia la soluzione del problema che ci siamo posti!
A questo punto consideriamo le seguenti curve regolari in � 2 di parametrizzazione φ(t) = wt, con t ∈ [–ε,ε] e w ∈ � 2 versore, tali curve (pensate nel piano {x3 = 0})
hanno immagine dei segmenti passanti per il puntoO. A partire dalla precedente parametrizzazione possiamo ottenere delle curve sul vincolo S2 nel seguente modo

ψ(t) =
�
w1t,w2t, [1 –w21 t

2 –w22t
2]1/2

�
cont ∈ [–ε,ε],w ∈ � 2

Si noti che abbiamo ricavato la terza componente di ψ in modo che valga ψ(t) ∈ S2 per ogni t e ψ(0) = e3, cioè ψ descrive una curva sulla sfera passante per il polo
nord, per ogni scelta del versore w. Siamo riusciti in questo intento esclusivamente grazie al fatto che la semisfera S2 ∩ {x3 > 0} può essere pensata come il grafico
della funzione f(x1,x2) = [1 – x21 – x

2
2]
1/2, con (x1,x2) ∈ B(O, 1).

A questo punto possiamo introdurre due funzioni nel seguente modo: h(t) := F(ψ(t)) e k(t) := N(ψ(t)), per t ∈ [–ε,ε], e osserviamo che sono funzioni di classe C1 e che
vale

k′(t) = 0 perognit ∈ [–ε,ε],w ∈ � 2 e h(0) = max(h) dacui h′(0) = 0

inoltre abbiamo, per ogni versorew ∈ � 2, che

h′(0) =∇F(ψ(0)) ·ψ′(0) =∇F(e3) ·ψ′(0) = 2(c1w1t,c2w2t,c3[1 – ∥w∥2t2]1/2) · (w1,w2,0) = 2(0,0,c3) · (w1,w2,0)
k′(0) =∇N(ψ(0)) ·ψ′(0) =∇N(e3) ·ψ′(0) = 2(0,0, 1) · (w1,w2,0)

Queste ultime due relazioni mostrano che i vettori∇F(e3) e∇N(e3) devono essere paralleli, cioè proporzionali, visto che sono entrambi ortogonali a tutti i vettori dello
spazio vettorialeW = {(w1,w2,0),w ∈ � 2} (cosa per altro evidente dalle espressioni calcolate). Quest’ultima osservazione si rivela essere una conseguenza sempre
vera per punti critici vincolati, cioè vera per F eN qualsiasi, e suggerisce l’introduzione della funzione di Lagrange

L(x,s) = F(x) – sN(x) : A×� ⊆ � 4 −→ �

I punti critici liberi di L risultano essere punti (x,s) ∈ � 4 tali che x appartiene al vincolo e in tali punti i vettori∇F(x) e∇N(x) (derivate parziali rispetto alle sole variabili
di x) sono paralleli (s è la costante di proporzionalità), quindi sono i punti critici di F sul vincolo {x : N(x) = 0} (si veda il teorema 2.59).
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Il teorema delle funzioni implicite risponde ad alcune delle precedenti domande: per ripetere i ragionamenti dell’esempio 2.48 abbiamo bisogno di poter
descrivere, almeno intorno ai punti critici di una funzione obiettivo F ristretta ai punti di un vincolo, il luogo dei punti appartenenti al vincolo come il grafico di
una funzione, in modo da ottenere una struttura regolare di cui sia possibile descrivere lo spazio tangente, cioè lo spazio dei vettori tangenti, e che tale spazio
abbia dimensione sufficientemente alta, in modo da poter dedurre il parallelismo dei vettori gradiente delle funzioni che compongono la funzione di Lagrange
L. Come primo passo verso una migliore comprensione dei risultati di Ulisse Dini, cioè del teorema della funzione implicita, proviamo a studiare un primo caso
non troppo complesso.

TEOREMA 2.49 (delle funzioni implicite in tre dimensioni I) Sia F : A ⊆ � 3 −→ � , dove A ⊆ � 3 è un aperto e f una funzione di classe C1(A), e x0 =
(x0,1,x0,2,x0,3) ∈ A un punto tale che

F(x0) = 0 e ∂3F(x0) , 0

Allora esistono due costanti a,b > 0 tali che per ogni punto (x1,x2) ∈ B = {(x1 – x0,1)2 + (x2 – x0,2)2 ≤ a2} ⊆ � 2, cioè per ogni punto in un cerchio (del piano)
sufficientemente piccolo centrato in (x0,1,x0,2), l’equazione

F(x1,x2,x3) = 0

(dove l’incognita è la variabile x3) ha un’unica soluzione x3 = φ(x1,x2) che appartiene all’intervallo I = [x0,3 – b,x0,3 + b] ⊆ � . Inoltre la funzione (x1,x2) 7−→
φ(x1,x2) appartiene allo spazio C1(B, I) e vale anche la relazione

∇z(x,y) =
�
∂xz(x,y),∂yz(x,y)

�
=
 
–∂xF(x,y,z(x,y))
∂zF(x,y,z(x,y))

,–
∂yF(x,y,z(x,y))
∂zF(x,y,z(x,y))

!

DIMOSTRAZIONE. Osserviamo subito che le ipotesti su F nel punto x0, cioè che

F(x0) = 0 e ∂3F(x0)> 0

ci permettono di dedurre che esiste r1 > 0 tale che

F(x0,1,x0,2,x0,3 – r1)< F(x0) = 0< F(x0,1,x0,2,x0,3 + r1)

Si noti che abbiamo assunto che ∂3F(x0)> 0, questa scelta sul segno della derivata parziale non lede la generalità del discorso, come sarà chiaro nel proseguio.
l teorema della permanenza del segno (applicato alla funzione F nei punti x0, (x0,1,x0,2,x0,3 – r1) e (x0,1,x0,2,x0,3 + r1)) ci permette di affermare che esiste un
numero reale r2 > 0 e, conseguentemente, un cilindro C⊆ � 3, definito nel seguente modo

C =
n
(x1 – x0,1)2 + (x2 – x0,2)2 ≤ r22

o
×{x0,3 – r1 ≤ x3 ≤ x0,3 + r1} = Br2 × I

tale che

F(x0,1,x0,2,x0,3 – r1)< 0< F(x0,1,x0,2,x0,3 + r1) perogni(x1,x2) ∈ Br2 e ∂3F(x)> 0 perognix ∈ C
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A questo punto del ragionamento possiamo osservare che, fissato (x1,x2) ∈ Br2 , la funzione di una variabile reale

h(t) := F(x1,x2, t) : [z0 – r1,z0 + r1]−→ �

è una funzione continua (anzi almeno di classe C1) che assume valori discordi agli estermi dell’intervallo

h(x0,3 – r1) = F(x0,1,x0,2,x0,3 – r1)< 0< F(x0,1,x0,2,x0,3 + r1) = h(x0,3 + r1)

quindi, per il teorema di esistenza degli zeri esiste x3 = φ(x1,x2) ∈ I tale che F(x1,x2,φ(x1,x2)) = 0. Inoltre tale soluzione è unica, perché la funzione h è
strettamente monotona crescente in I, perché per t ∈ I si ha che h′(t) = ∂3F(x1,x2, t)> 0 con (x1,x2, t) ∈ C.
Poniamo a := r2 e b := r1. A questo punto del ragionamento abbiamo ottenuto l’esistenza di una funzione φ(x,y) definita su B = Ba = Br2 che produce valori in I,
tale funzione ad ogni input (x1,x2) associa un reale x2 = φ(x1,x2) unica soluzione, nell’intervallo I, dell’equazione F(x1,x2,x3) = 0. Per concludere la dimostrazione
dobbiamo investigare le proprietà di continuità e differenziabilità della funzione φ.
Consideriamo i punti (x1,x2,x3) e (y1,y2,y3) appartenenti al cilindro C, con x3 = φ(x1,x2) e y3 = φ(y1,y2). Per le proprietà della funzione φ e per il teorema dei
valori intermedi (si ricordi che C è un insieme convesso) abbiamo che

0 = F(x1,x2,x3) – F(y1,y2,y3) =∇F(ν,σ,ξ) · (x1 – y1,x2 – y2,x3 – y3) con(ν,σ,ξ) ∈ xy

da cui, svolgendo alcuni calcoli, ricaviamo

|φ(x1,x2) –φ(y1,y2)| = |x3 – y3| =
�����
∂1F(ν,σ,ξ)(x – x1) + ∂2F(ν,σ,ξ)(y – y1)

∂3F(ν,σ,ξ)

�����≤
�����
∂1F(ν,σ,ξ)
∂3F(ν,σ,ξ)

����� |x1 – y1| +
�����
∂2F(ν,σ,ξ)
∂3F(ν,σ,ξ)

����� |x2 – y2|

≤ max |∂1F|
min∂3F

|x1 – y1| +
max |∂2F|
min∂3F

|x2 – y2|≤ K0
q
(x1 – y1)2 + (x2 – y2)2

e le disuguaglianze ottenute implicano la continuità della funzione φ nel generico punto (x1,x2), visto che se facciamo tendere (y1,y2) −→ (x1,x2), segue che
|φ(x1,x2) –φ(y1,y2)|−→ 0.
Per mostrare la differenziabilità della funzione implicita φ introduciamo la seguente funzione ausiliaria:

g(t) := F(x1 + t(y1 – x1),x2,φ(x1,x2) + t(φ(y1,x2) –φ(x1,x2)))

dove t ∈ [0, 1] e (x1,x2), (y1,x2) ∈ Br2 . La funzione g è costruita come composizione di funzioni di classe C1 e in più vale che g(0) = F(x1,x2,φ(x1,x2)) = 0 e
g(1) = F(y1,x2,φ(y1,x2)) = 0, allora il teorema di Rolle prova l’esistenza di τ ∈ (0, 1) tale che

g′(τ ) := ∂1F(ν,x2,σ)(y1 – x1) + ∂3F(ν,x2,σ)(φ(y1,x2) –φ(x1,x2)) = 0

dove ν = x1 + τ (y1 – x1), σ = φ(x1,x2) + τ (φ(y1,x2) –φ(x1,x2)) e si noti che abbiamo usato il teorema di derivazione delle funzioni composte.
La precedente relazione ci permette di ricavare che

∂1φ(x1,x2) = lim
y1−→x1

φ(y1,x2) –φ(x1,x2)
y1 – x1

= – lim
y1−→x1

∂1F(ν,x2,σ)
∂3F(ν,x2,σ)

= – ∂1F(x1,x2,φ(x1,x2))
∂3F(x1,x2,φ(x1,x2))
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e il limite ottenuto, unitamente al fatto che F ∈ C1, ci permette di concludere che φ ha derivata parziale continua nel generico punto (x1,x2) ∈ B, Ragionando
in modo speculare sulla funzione ausiliaria

g(t) := F(x1,x2 + t(y2 – x2),φ(x1,x2) + t(φ(x1,y2) –φ(x1,x2)))

possiamo concludere che φ ∈ C1(B), il che (anche grazie al teorema del differenziale totale) termina la dimostrazione del teorema.
Osserviamo, come già detto, che il teorema può essere riscritto permutando il ruolo delle variabili. Per mostrare come questa possibilità complichi i possibili
enunciati equivalenti proviamo a riassumere le differenti situazioni nel seguentemodo: data una funzione F ∈ C1(A,� ) definita su un aperto A⊆ � 3 e un punto
(x0) ∈ A tale che F(x0) = 0, abbiamo che

se ∂3F(x0) , 0 alloraesiste φ(x1,x2) ∈ C1(B, I) taleche {F(x,y,z) = 0}∩C = {x3 = φ(x1,x2)}
se ∂2F(x0) , 0 alloraesiste φ(x1,x3) ∈ C1(B, I) taleche {F(x,y,z) = 0}∩C = {x2 = φ(x1,x3)}
se ∂1F(x0) , 0 alloraesiste φ(x2,x3) ∈ C1(B, I) taleche {F(x,y,z) = 0}∩C = {x1 = φ(x2,x3}

In tutti i casi il grafico della funzione descrive (almeno nelle vicinanze del punto x0) l’insieme {F(x) = 0}, cioè il luogo degli zeri della funzione F.
Al crescere delle dimensioni del input e dell’output della funzione F le cose si complicano un po’, consideriamo il caso in cui la funzione produca risposte
vettoriali. Fissiamo le idee considerando il caso F : A−→ � 2, con A⊆ � 3, questo significa che possiamo pensare la nostra funzione vettoriale come una coppia
di funzioni scalari

F(x) = (F1(x1,x2,x3),F2(x1,x2,x3)) : A−→ � 2

Intuitivamente possiamo dire che il luogo degli zeri di ognuna delle due funzioni F1 e F2 possa essere il grafico di una funzione (come nel precedente risultato)
quindi un oggetto che possiamo pensare come una superficie nello spazio tridimensionale, e questo significa che il luogo degli zeri della funzione vettoriale F,
cioè l’insieme dove sono nulle entrambe le componenti di F ZF = {F1(x) = F2(x) = 0} , può essere pensato come l’intersezione di due superfici, quindi una curva.
Per precisare meglio questo ragionamento qualitativo possiamo procedere come segue: sia x0 = (x0,1,x0,2,x0,3) ∈ ZF e supponiamo che una delle derivate
parziali di F1 in x0 sia non nulla, per esempio ∂3F1 (si ricordi che se nessuna derivata parziale ha valore diverso da 0 è possibile che il luogo degli zeri non abbia
alcuna struttura geometrica, come suggerisce l’esempio della funzione f(x1,x2,x3) = x21 + x

2
2 + x

2
3 il cui luogo degli zeri è solo il punto (0,0,0)). Per il teorema

precedente, almeno in un intorno del punto x0, l’insieme {F1(x) = 0} è descritto dal grafico di una funzione φ3(x1,x2), e siccome per ogni x ∈ ZF vale F1(x) = 0
segue anche che

G(x1,x2) := F2(x1,x2,φ3(x1,x2)) = 0

e in particolare abbiamo che

G(x0) = F2(x0,1,x0,2,φ3(x0,1,x0,2)) = F2(x0,1,x0,2,x0,3) = 0

Per poter applicare il primo teorema che abbiamo dimostrato alla funzione G dobbiamo verificare che la sua derivata parziale, rispetto alla variabile y per
esempio, sia diversa da 0, quindi grazie al teorema di derivazione delle funzioni composte e al teorema di Dini in � 2 possiamo calcolare

∂2G(x1,x2) = ∂2[F2(x1,x2,φ3(x1,x2))] = ∂2F2(x1,x2,φ3(x1,x2)) + ∂3F2(x1,x2,φ3(x1,x2))∂2φ3(x1,x2) =
∂2F2∂3F1 – ∂3F2∂2F1

∂3F1

75



�� ��

Se questa derivata è non nulla otteniamo l’esistenza di una funzione ψ2(x), definita per x ∈ [x0 – a,x0 + a], tale che

0 = G(x1,ψ2(x1)) = F2(x1,ψ2(x1),φ3(x1,ψ2(x1))) = F2(x1,ψ2(x1),ψ3(x1)) conψ3(x1) := φ3(x1,ψ2(x1))

e vale anche F1(x1,ψ2(x1),ψ3(x1)) = 0 per quanto osservato prima. Quanto ottenuto conferma che è possibile descrivere ZF come l’intersezione di due grafici
di funzioni da � 2 in� , cioè (geometricamente parlando) che ZF è una curva. L’ipotesi cruciale per il calcolo precedente è che

∂2F2(x0,1,x0,2,x0,3)∂3F1(x0,1,x0,2,x0,3) – ∂3F2(x0,1,x0,2,x0,3)∂2F1(x0,1,x0,2,x0,3) , 0

e siccome vale la relazione

∂2F2(x)∂3F1(x) – ∂3F2(x)∂2F1(x) = det[J2,3F](x) = det
 
∂2F1(x) ∂3F1(x)
∂2F2(x) ∂3F2(x)

!

possiamo concludere che un’ipotesi sufficiente per poter descrivere l’insieme degli zeri di una funzione vettoriale come grafico di una funzione vettoriale (una
curva nel caso in esame) è che il determinante della matrice jacobiana di F, rispetto alle sole variabili che dipenderanno dalle restanti, sia non nullo. Notiamo
anche che il fatto che tale determinante sia diverso da 0 implica che almeno una tra le derivate parziali ∂zF1 e ∂zF2 debba essere differente da 0, quindi la
prima ipotesi fatta per costruire la funzione φ1 è ”contenuta” nella richiesta che la matrice jacobiana sia non singolare.
Per completare il ragionamento supponiamo di aver provato che le funzioni x1 7−→ ψ2(x1),ψ3(x1) siano di classe C1, e svolgiamo la seguente derivata della
funzione vettoriale

0 = d
dx1

 
F1(x1,ψ2(x1),ψ3(x1))
F2(x1,ψ2(x1),ψ3(x1))

!
=
 
∂1F1 + ∂2F1ψ′2(x1) + ∂3F1ψ

′
3(x1)

∂1F2 + ∂2F2ψ′2(x1) + ∂3F2ψ
′
3(x1)

!

da cui otteniamo un sistema lineare per le incognite ψ′2(x1) e ψ
′
3(x1)

(
∂2F1ψ′2(x1) + ∂3F1ψ

′
3(x1) = –∂1F1

∂2F2ψ′2(x1) + ∂3F2ψ
′
3(x1) = –∂1F2

Tale sistema è risolubile, perché la matrice associata al sistema è esattamente Jy,zF(x,y(x),z(x)) che è non singolare, cioè invertibile, per cui otteniamo che



ψ′2(x1) =
"
∂3F1∂1F2 – ∂1F1∂3F3
∂2F1∂3F2 – ∂3F1∂2F2

#
(x1,ψ2(x1),ψ3(x1))

ψ′3(x1) =
"
∂1F1∂2F2 – ∂2F1∂1F2
∂2F1∂3F2 – ∂3F1∂2F2

#
(x1,ψ2(x1),ψ3(x1))

Tutto quello che abbiamo discusso può essere condensato nel seguente enunciato.
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TEOREMA 2.50 (delle funzioni implicite in tre dimensioni II) Sia F : A⊆ � 3 −→ � 2, con A⊆ � 3 insieme aperto, e F una funzione di classeC1(A), e x0 ∈ A
un punto tale che

F(x0) = 0 e e det[(J2,3F](x0)) = [∂2F1∂3F2 – ∂3F1∂2F2](x0) , 0

Allora esistono due costanti a,b> 0 tali che per ogni x1 ∈ B = {x0 – a≤ x≤ x0 + a}, cioè sufficientemente vicino ad x0,1, l’equazione

F(x1,x2,x3) = 0

(dove l’incognita adesso è la coppia di variabili (x2,x3)!) ha una sola soluzione (x2 = ψ2(x1),x3 = ψ3(x1) che appartiene al cerchio I = {(x2–x0,2)2+(x3–x0,3)2 ≤
b2}. Inoltre la funzione x1 7−→ (ψ2(x1),ψ3(x1)) appartiene allo spazio C1(B, I) e vale anche la relazione

ψ′2(x1) = –
det[J1,3F](x1,ψ2(x1),ψ3(x1))
det[J2,3F](x1,ψ2(x1),ψ3(x1))

e ψ′3(x1) = –
det[J1,2F](x1,ψ2(x1),ψ3(x1))
det[J2,3F](x1,ψ2(x1),ψ3(x1))

DIMOSTRAZIONE. La dimostrazione di questo risultato è stata sviluppata (per grandi linee) nelle righe precedenti, per non appesantire il discorso omettiamo
i dettagli mancanti che saranno affrontati nella prova del caso generale.
Sottolineiamo che la richiesta fatta sul determinante della matrice jacobiana garantisce che la variabile indipendente sia esattamente la x. Come nei casi
precedenti il ruolo della variabile indipendente non può essere fissato a priori, in generale bisognerà considerare la matrice jacobiana di F, cioè

JF(x1,x2,x3) =
 
∇F1(x)
∇F2(x)

!
=
 
∂xF1(x) ∂yF1(x) ∂zF1(x)
∂xF2(x) ∂yF2(x) ∂zF2(x)

!

e, per poter dimostrare il teorema delle funzioni implicite di Dini, supporre che la matrice abbia rango 2, cioè che esista un suo minore (sottomatrice quadrata)
2× 2 ottenuto cancellando una delle tre colonne, che abbia determinante diverso da zero. La colonna scartata conterrà le derivate parziali delle due funzioni
rispetto alla variabile che assurgerà al ruolo di variabile indipendente!

ESEMPIO 2.51 Assegnato il seguente vincolo

T =
�
x = (x1,x2,x3) :

h
2– (x22 + x

2
2)
1/2i2 + x23 – 1 = 0

�
⊆ � 3

i. si provi cheT è chiuso e limitato,
ii. si trovino tutti i punti critici, vincolati suT, della funzione f(x) = f(x1,x2,x3) = x2,
iii. si scriva il polinomio di Taylor del secondo ordine della funzione implicitamente definita daT intorno ai punti critici trovati in ii.
i. L’insieme in questione è definito come

T =
�
H(x1,x2,x3) =

h
2– (x21 + x

2
2)
1/2i2 + x23 – 1 = 0

�

essendo la funzioneH ∈ C0(� 3) il nostro vincolo risulta chiuso, perché controimmagine di un chiuso in � . La sua limitatezza segue dall’osservazione che

x23 ≤
h
2– (x21 + x

2
2)
1/2i2 + x23 = 1 implica |x3|≤ 1
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e analogamente

|(x21 + x22)
1/2 – 2|≤ 1

da cui si ottiene

–1≤ (x21 + x22)
1/2 – 2≤ 1 cioè 1≤ (x21 + x22)

1/2 = r≤ 3

la precedente disuguaglianza implica

|x1|, |x2|≤ 3 omeglio – 3≤ x1,x2 ≤ 3

Le disguaglianze provate, combinate insieme, mostrano che T ⊆ [–3,3]× [–3,3]× [–1, 1] ⊆ � 3, cioè che il nostro insieme è limitato. E, come noto, chiuso e limitato
equivale a (sequenzialmente) compatto in � 3 e in tutti gli spazi di dimensione finita.
ii. La funzione f(x1,x2,x3) = x2 ha gradiente costante (e non nullo) in tutto lo spazio (esattamente ∇f(x1,x2,x3) = (0, 1,0) = e2 per ogni (x1,x2,x3) ∈ � 3), quindi la
funzione non ha punti critici liberi. D’altronde, ponendo r = r(x1,x2) = (x21 + x

2
2)
1/2 e ricordando che

∂1r(x1,x2) =
x1
r e ∂2r(x1,x2) =

x2
r

vale

∇H(x1,x2,x3) =

∂1H(x1,x2,x3),∂2H(x1,x2,x3),∂3H(x1,x2,x3)

� = 2
 
x1(r – 2)

r ,
x2(r – 2)

r ,x3
!
= 2

 
x1

"
1 – 2r

#
,x2

"
1 – 2r

#
,x3

!

Si noti che tale vettore non può avere tutte le componenti nulle nei punti diT, cioè la superficie non possiede punti singolari, per cui sarà possibile applicare il teorema
delle funzioni implicite in uno qualsiasi dei punti che la compongono. Come visto precedentemente i punti critici vincolati x = (x1,x2,x3) di f su T sono punti in cui il
vettore∇H(x1,x2,x3) è paralello al vettore∇f(x1,x2,x3) = e2, quindi sono punti le cui coordinate, per qualche c ∈ � , sono soluzioni del seguente sistema

 
x1

"
1 – 2r

#
,x2

"
1 – 2r

#
,x3

!
= (0,c,0) x ∈ T

È subito evidente che x3 = 0, inoltre la prima componente ci permette di scrivere che

x1
"
1 – 2r

#
= 0 dacui

(
o x1 = 0
o r2 = x21 + x

2
2 = 4

però non è possibile che r = 2, perché nessun x ∈ T è tale che x21 + x
2
2 = 4 e x3 = 0, quindi i punti critici vincolati sono solo i punti del tipo (0,s,0), dove s deve essere una

soluzione dell’equazione
�|s| – 2�2 = 1 cioè s1,2,3,4 =±1,±3

affinché il punto si trovi sul vincolo. Riassumendo i ragionamenti precedenti i punti critici vincolati di f suT sono i seguenti

a = (0 – 3,0) b = (0,–1,0) c = (0, 1,0) d = (0,3,0)
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e, naturalmente, vale

f(a) = a2 = –3 = min
T
(f) f(b) = b2 = –1 f(c) = c2 = +1 f(d) = d2 = +3 = max

T
(f)

iii. Nella precedente discussione abbiamo verificato che

∂2H(a),∂2H(b),∂2H(c),∂2H(d)> 0

quindi intorno a tutti e quattro i punti possiamo ricorrere al teorema delle funzioni implicite per affermare che esistono4 funzioniφp(x1,x3), al variare di p ∈ {a,b,c,d},
tali che

H
�
x1,φp(x1,x3),x3

�
= 0 perogni(x1,x2) ∈ B(O,δ)⊆ � 2

con φp(O) = φp(0,0) = f(p), al variare di p ∈ {a,b,c,d}.
Per scrivere il polinomiodi Taylor del secondoordinedella funzioneφp(x1,x3)abbiamobisognodel gradiente edellamatricehessianadiH, avendogià scritto∇H(x1,x2,x3)
procediamo oltre, ricordando che l’hessiano deve essere una matrice simmatrica e svolgendo qualche ”agile” conto abbiamo

∂11H(x1,x2,x3) = 2

1 –

2x22
r3


 ∂12H(x1,x2,x3) =

4x1x2
r3

∂13H(x1,x2,x3) = 0

∂22H(x1,x2,x3) = 2

1 –

2x21
r3


 ∂23H(x1,x2,x3) = 0 ∂33H(x1,x2,x3) = 2

Dalla teoria sappiamo che

∇φp(x1,x3) =
�
∂1φp(x1,x3),∂2φp(x1,x3)

�
=
 
–
∂1H(x1,φp(x1,x3),x3)
∂2H(x1,φp(x1,x3),x3)

,–
∂3H(x1,φp(x1,x3),x3)
∂2H(x3,φp(x1,x3),x3)

!

e che

∂11φp(x1,x3) = –
"
∂11H|∂2H|2 – 2∂12H∂1H∂2H + ∂22H|∂1H|2

[∂2H]3

#
(x1,φp(x1,x3),x3)

∂12φp(x1,x3) = –
"
∂13H|∂2H|2 – ∂2H(∂12H∂3H + ∂23H∂1Hx) + ∂22H∂1H∂3H

[∂2H]3

#
(x1,φp(x1,x3),x3)

∂22φp(x1,x3) = –
"
∂22H|∂3H|2 – 2∂23H∂2H∂3H + ∂33H|∂2H|2

[∂2H]3

#
(x1,φp(x1,x3),x3)

dalle precedenti espressioni ricaviamo innanzitutto che

∂1φp(0,0) = ∂2φp(0,0) = 0

79



�� ��

cioè (0,0) è un punto critico per φp (per ogni p ∈ {a,b,c,d}), inoltre, ricordando lo sviluppo di Taylor (al secondo ordine) per funzioni in due variabili e le formule scritte
sopra, troviamo

φp(x1,x3) = φp(0,0) +∇φp(0,0) · (x1,x3) +
1
2
h
∂11φp(0,0)x21 + 2∂12φp(0,0)x1x3 + ∂22yP(0,0)x

2
3
i
+ o(x21 + x

2
3)

= φp(0,0) –
1
2

"
∂11H(0,φp(0,0),0)
∂2H(0,φp(0,0),0)

x21 +
∂22H(0,φp(0,0),0)
∂2H(0,φp(0,0),0)

x23

#
+ o(x21 + x

2
3) = φp(0,0) –

1
2


–

1
φp(0,0)

x21 +
|φp(0,0)|

φp(0,0)
�
2– |φp(0,0)|

�x23


 + o(x

2
1 + x

2
3)

e nei vari casi p ∈ {a,b,c,d} otteniamo le approssimazioni richeste

φa(x1,x3) = –3 +
1
6x

2
1 +

1
2x

2
3 + o(x

2
1 + x

2
3) φb(x1,x3) = –1 +

1
2x

2
1 –

1
2x

2
3 + o(x

2
1 + x

2
3)

φc(x1,x3) = +1 –
1
2x

2
1 +

1
2x

2
3 + o(x

2
1 + x

2
3) φd(x,z) = +3 –

1
6x

2
1 –

1
2x

2
3 + o(x

2
1 + x

2
3)

concludiamo con una rappresentazione grafica del vincoloT, che è la seguente superficie, detta toro, contenuta in � 3.
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TEOREMA 2.52 (del valor medio in più dimensioni) Sia f : A−→ �m, conA⊆ � k aperto, una funzione vettoriale di classeC1 eK⊆ A un compatto convesso,
allora

∥f(x) – f(y)∥ ≤ ∥Jf∥∞ ∥x – y∥ perognix,y ∈ K

dove vale

∥J∥∞ :=
√
m


maxi=1...m

max
x∈K

k¼

j=1

���∂jfi(x)
���2



1/2

DIMOSTRAZIONE. Sia p(t) = (1 – t)y + tx una parametrizzazione regolare del segmento di estremi x e y, allora per i teoremi di Lagrange e di derivazione delle
funzioni composte abbiamo

|fi(x) – fi(y)| = |fi(p(1)) – fi(p(0))| = |
fi(p(t))

�′ | = |∇fi(p(t0)) · (x – y)|≤ ∥∇fi(p(t0))∥ · ∥x – y∥ ≤maxq∈K
∥∇fi(q)∥ · ∥x – y∥ = ∥∇fi∥∞∥x – y∥

Allora vale

∥f(x) – f(y)|2 =
m¼

i=1
|fi(x) – fi(y)|2 ≤



m¼

i=1
∥∇fi∥2∞


∥x – y|

2 ≤m
�
max
i=1...m

∥∇fi∥2∞
�
∥x – y∥2

cioè

∥f(x) – f(y)∥ ≤
√
m

�
max
i=1...m

∥∇fi∥2∞
�1/2
∥x – y∥ = ∥Jf∥∞ ∥x – y∥ perognix,y ∈ K

OSSERVAZIONE 2.53 (norme di matrici) Nel precedente risultato abbiamo introdotto una norma per lamatrice jacobiana di una funzione vettoriale, in generale
se F = (Fij) ∈Mm,k(� ) abbiamo diverse possibilità. Per esempio le quantità

∥F∥1 :=
√
m


maxi=1...m

� k¼

j=1
|Fij|2

�

1/2

∥F∥2 :=
√
nm

"
max

i=1...m,j=1...k

���Fij
���
#

∥F∥3 := max
v∈Sk

∥Fv∥
∥v∥

inducono norme ”buone” per funzioni continue a valori in spazi di matrici (per esempio la funzione Jf quando f è di classe C1!) sostituendo alle entrate Fij la
norma della funzione corrispondente ∥aij∥∞ = maxK |aij(x)|.
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TEOREMA 2.54 (delle funzioni implicite (U. Dini)) Sia f : A−→ � n, con A⊆ �m+n aperto, una funzione di classe C1 e (x0,y0) ∈ A tale che

f(x0,y0) = O e det[Jyf(x0,y0)] , 0

Allora esiste un intorno I⊆ �m di x0 e un intorno J⊆ � n di y0 tali che, per ogni x ∈ I l’equazione nell’incognita y

f(x,y) = O

ha un’unica soluzione y = g(x). Inoltre l’applicazione g che ad ogni x ∈ I associa l’unica soluzione y = g(x) ∈ J è una funzione vettoriale g : I −→ J di classe C1 e
risulta

(2.10) Jg(x) = (∂jgi)ij = –
h
Jyf(x,g(x))

i–1 Jxf(x,g(x))

Dove abbiamo usato la notazione

Jyf(x0,y0) =
�
∂ykfi(x0,y0)

�
ik coni,k = 1, ...,n

DIMOSTRAZIONE. Osserviamo subito che, ponendo B = [Jyf(x0,y0)]–1, abbiamo che

f(x,y) = O seesolose Bf(x,y) = O ovvero G(x,y) := y – Bf(x,y) = y

quindi gli zeri di f sonoesattamente i punti fissi di G. Per cui possiamo riformulare il problemanel seguentemodo: vogliamoprovare cheesiste g ∈ C0
�
B(x0, r),B(y0,ε)

�

tale che

G(x,g(x)) = g(x) perognix ∈ B(x0, r) e g(x0) = y0

I parametri ε, r> 0 saranno fissati in modo che B(x0, r)×B(y0,ε)⊆ A e che siano garantite delle stime che ci serviranno più avanti. Per dimostrare il teorema
ricorreremo al teorema delle contrazioni nello spazio metrico completo

X = C0
�
B(x0, r),B(y0,ε)

�
=
n
g ∈ C0

�
B(x0, r)

�
: ∥g – y0∥∞ ≤ ε

o

dove la distanza indotta è dalla norma ∥f∥∞ := maxx∈B(x–0,r) |f(x)|. Notiamo subito che

G(x0,y0) = y0 ∂yG(x,y) = In – B∂yf(x,y) e ∂yG(x0,y0) = In – B∂yf(x0,y0) = In – In = 0n

e consideriamo la seguente applicazione (operatore) da X in sé

H : w 7−→ H[w] dove H[w](x) := G(x,w(x)) perognix ∈ B(x0, r)

Si noti che H[w] è una funzione continua in quanto composizione di funzioni continue: il teorema è dimostrato se riusciamo a provare che H è una contrazione.
Allora vale

∥H[w](x) – y0∥2 = ∥G(x,w(x)) – y0∥2 ≤ ∥G(x,w(x)) –G(x,y0)∥2 + ∥G(x,y0) –G(x0,y0)∥2 ≤ ∥∂yG∥∞∥w(x) – y0∥2 + ∥G(x,y0) –G(x0,y0)∥2 ≤ ε
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a patto che r ed ε siano sufficientemente piccoli in modo da avere

∥G(x,y0) –G(x0,y0)∥2 ≤
ε

2 e ∥∂yG∥∞ ≤
1
2

per continuità (si ricordi che ∂yG è la matrice nulla nel punto (x0,y0)). Inoltre vale

|H[w](x) –H[v](x)∥2 = ∥G(x,w(x)) –G(x,v(x))∥2 ≤ ∥∂yG∥∞∥w(x) – v(x)∥2 ≤
1
2∥w(x) – v(x)∥2

per quanto detto prima. Passando all’estremo superiore per x ∈ B(x0, r) otteniamo che H[w] ∈ X, cioè che l’operatore H agisce su X, e che H è una contrazione.
Questo implica l’esistenza di un unico punto fisso, cioè di una funzione g ∈ X che descrive (localmente) il luogo degli zeri di f.
Rimane da dimostrare che g è di classe C1 in I = B(x0, r). Supponiamo che

det[∂yf(x,y)] , 0 inI

(se non lo fosse dovremmo restringere l’intorno I). Dalla differenziabilità di f segue che per ogni ε> 0 esiste η(ε) tale che, se ∥h∥ ≤ η(ε) e ∥k∥ ≤ η(ε) allora

∥f(x + h,g(x) + k) – f(x,g(x)) – ∂xf(x,g(x))h – ∂yf(x,g(x))k∥2 ≤ ε
∥h∥2 + ∥k∥2

�

Sia per il momento Jyf(x,g(x)) = In. Posto k = (g(x + h) – g(x)), dato che per definizione f(x + h,g(x + h)) = f(x,g(x)) = O, se ∥h∥2 ≤ η(ε) e ∥g(x + h) – g(x)∥2 ≤ η(ε)
otteniamo

(2.11) ∥g(x + h) – g(x) + ∂xf(x,g(x))h∥2 ≤ ε
∥h∥2 + ∥g(x + h) – g(x)∥2

�

Sia ε = 1/2 in (2.11) e sia δ0 < η(1/2) tale che

∥g(x + h) – g(x)∥2 < η(1/2) per ∥h∥2 < δ0
(si ricordi che g è continua e quindi un tale δ0 esiste sempre). Usando la disuguaglianza triangolare e la (2.11), per ∥h∥< δ0 si ha

∥g(x + h) – g(x)∥2 ≤ ∥g(x + h) – g(x) + Jxf(x,g(x))h∥2 + ∥Jxf(x,g(x))h∥2 ≤
1
2
∥h∥2 + ∥g(x + h) – g(x)∥2

� + ∥Jxf(x,g(x))∥∞∥h∥2

che implica

(2.12) ∥g(x + h) – g(x)∥2 ≤ ∥h∥2
1 + 2∥Jxf(x,g(x))∥∞

�

Riprendiamo la (2.11). Siano ε e η(ε) i parametri che intervengono nella (2.11). Se ∥h∥2 < η(ε)/((1+2∥Jxf(x,g(x))∥∞) allora, dalla (2.12), segue ∥g(x+h)–g(x)∥2 ≤ η(ε)
e dalla (2.11) e (2.12) ricaviamo

∥g(x + h) – g(x) + Jxf(x,g(x))h∥2 ≤ 2ε∥h∥2
1 + ∥Jxf(x,g(x))∥∞

�

che porta alla (2.10) nell’ipotesi Jyf(x,g(x)) = In. In generale, posto

ef(x′,y′) := (Jy′ f(x′,g(x′)))–1f(x′,y′)
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si ha

ef(x′,g(x′)) = 0 e Jy′ef(x′,g(x′)) = In

E segue la (2.10) nel caso generale.

OSSERVAZIONE 2.55 Dal teorema delle funzioni implicite, siccome vale che

f(x,g(x)) = O perognix ∈ I

e le funzioni coinvolte sono di classe C1, dalla regola di derivazione delle funzioni composte abbiamo che

∂if(x,g(x)) + Jyf(x,g(x))∂ig(x) = O i = 1, ...,m

Se f ha regolarità maggiore di uno, g eredita la stessa regolarità di f. Le sue derivate successive si ottengono derivando la precedente identità e ricordando la
formula di derivazione delle funzioni composte.

TEOREMA 2.56 (della funzione inversa) Sia f : A−→ � n, con A⊆ � n aperto, una funzione di classe C1 tale che

f(y) = x e det
h
Jf(y0)

i
, 0 cony0 ∈ A

allora esiste un intorno aperto A⊆ � n di y0 tale che f(A) è un aperto, f è invertibile in A e la funzione inversa è di classe C1.

DIMOSTRAZIONE. Introduciamo la funzione

F(x,y) := f(y) – x (x,y) ∈ � n×A

e osserviamo che F è di classe C1 e verifica

F(x0,y0) = f(y0) – x0 = x0 – x0 = 0
JyF(x,y) = Jf(y) dacui det[JyF](x0,y0) = det[Jf](y0) , 0

Quindi la funzione F verifica tutte le ipotesi del teorema delle funzioni implicite, che abbiamo dimostrato nelle pagine precedenti, nel punto (x0,y0) =
(f(y0),y0), per cui sappiamo che esistono due insiemi aperti B, intorno di x0, e I, intorno di y0, e una funzione g : B−→ I suriettiva di classe C1, tali che

F(x,g(x)) = 0 perognix ∈ B

Notiamo inoltre che

F(x,g(x)) = f(g(x)) – x = 0 quindi f(g(x)) = x
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dunque la funzione g è la funzione inversa di f, cioè g(x) = f–1(x). Si noti che, dal teorema di derivazione delle funzioni composte, possiamo ricavare anche

J(f–1)(x) = Jg(x) = –[JyF(x,g(x))]–1JxF(x,g(x))
= –[Jf(g(x))]–1J(x) = –[Jf(g(x))]–1In = –[Jf(g(x))]–1

Tale relazione generalizza l’espressione della derivata della funzione inversa che si incontra usualmente nei testi di analisi delle funzioni di una variabile reale.

2.7 massimi e minimi vincolati

Per risolvere completamente il problema della ricerca del massimo e del minimo di una funzione f in un compatto K dobbiamo studiare il comportamento
della funzione sulla frontiera di K cioè sul vincolo ∂K.

OSSERVAZIONE 2.57 Un caso relatvamente semplice da studiare è quando si ha a che fare con f : K −→ � una funzione di classe C1 in A, aperto del piano
contenente K, compatto di � 2 tale che ∂K =

SN
k=1γk dove γk = φk([ak,bk]) è il sostegno di una curva regolare di parametrizzazione φk : [ak,bk]−→ � 2 per ogni

k = 1, ...,N. I punti di massimo eminimo assoluti della funzione f ristretta sulla frontiera di K sono da cercarsi tra i punti di giunzione dei tratti reolari della frontiera
di K o tra i punti stazionari delle funzioni f(φk) : [ak,bk]−→ � 2, cioè

P1k = φk(ak), P2k = φk(bk), ... Pik = φk(ti)

per ogni ti tale che
d
dt f(φk(t))

����t=ti
= 0, per k = 1, ...,N.

OSSERVAZIONE 2.58 Salendo di dimensione possiamo pensare che avere a che fare con un vincoloÎ sostegno di una superficie regolare di parametrizzazione
φ(u) (con u ∈ R⊆ � 2) contenuto in A⊆ � 3 insieme aperto e con una funzione f ∈ C1(A). Cercare i punti critici vincolati della funzione f suÎ equivale a studiare
la funzione composta F(u) = f(φ(u)) con u ∈ R e a identificare i punti critici di quest’ultima.
Dal teorema di derivazione delle funzioni composte abbiamo che

∇F(u) =∇f(φ(u))Jφ(u)

Quindi il gradiente della funzione vincolata∇F è nullo non appena il gradiente libero∇f appartiene al nucleo della matrice jacobiana della parametrizzazione
φ. E il nucleo di Jφ è sempre non banale, in quanto φ è un’applicazione da � 2 a valori in � 3, quindi ha nucleo almeno di dimensione 1.
In generale parametrizzare il vincolo, come fatto in questo caso e nel precedente, è un metodo che diventa sempre più difficile da applicare al crescere della
dimensione e del numero di componenti regolari che formano il vincolo, quindi è necessario introdurre qualche idea nuova.

Se la frontiera di K è della forma ∂K = {x ∈ A : g(x) = 0}, per cercare gli estremi di f sul vincolo ∂K (cioè gli estremi vincolati) è utile conoscere il metodo dei
moltiplicatori di Lagrange che fornisce dei possibili candidati (si noti che non possiamo applicare il teorema di Fermat perché ∂K non è mai un aperto!).
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TEOREMA 2.59 (dei moltiplicatori di J.L. Lagrange) Siano f,g : A −→ � due funzioni di classe C1, definite in A ⊆ � n aperto, siaM = {x ∈ A : g(x) = 0} e
x0 ∈M tale che∇g(x0) ,O (cioè x0 è punto regolare per il vincolo). Allora x0 ∈M è un estremo relativo (massimo ominimo) vincolato di f (rispetto al vincolo
M) se è un punto critico libero della funzione lagrangiana

L(x,λ) = f(x) –λg(x) (x,λ) ∈ A×�

cioè esiste λ0 tale che la coppia (x0,λ0) è soluzione del sistema
(
∇f(x) = λ∇g(x)
g(x) = 0

In particolare la tesi equivale a chiedere che la matrice di ordine 2×n
 
∇f(x0)
∇g(x0)

!
=
 
∂1f(x0) ... ∂nf(x0)
∂1g(x0) ... ∂ng(x0)

!

abbia rango 1, cioè che i due vettori gradiente siano paralleli in un punto x0 ∈M.

DIMOSTRAZIONE. Sia, per esempio, ∂ng(x0) , 0. Per il teorema delle funzioni implicite sappiamo cheM può essere visto, localmente, come grafico di una
funzione h : B−→ � , con B = B(x′0, r)⊆ � n–1 e x0 = (x′0,x0,n), definita implicitamente dalla relazione

g(x′,h(x′)) = 0 perognix′ ∈ B⊆ � n–1

Sia φ : (–ε,ε) −→ B(x′0, r) la parametrizzazione di una curva regolare tale che φ(0) = x
′
0, allora vale che P(t) = (φ(t),h(φ(t))) è la parametrizzazione regolare di

una curva suM passante per x0.
Poiché x0 è un punto critico vincolato di f e g≡ 0 sul vincolo segue

0 = d
dt f(P(t))

����t=0 =
n–1¼

j=1
∂jf(P(0))φ′j (0) + ∂nf(P(0))

d
dth(P(t))

����t=0 =∇f(x0) · s

0 = d
dtg(P(t))

����t=0 =
n–1¼

j=1
∂jg(P(0))φ′j (0) + ∂ng(P(0))

d
dth(P(t))

����t=0 =∇g(x0) · s

con s = (φ′(0),∇h(x′0) · φ′(0)). Quindi abbiamo ricavato che i vettori ∇f(x0) e ∇g(x0) verificano alcune relazioni di ortogonalità. Siccome possiamo scegliere
φ in modo che φ′(0) = ei con i = 1, ..., (n – 1) entrambi i vettori soddisfano almeno (n – 1) condizioni indipendenti di perpendicolarità, ed essendo vettori di � n

questo equivale a dire che sono paralleli (o proporzionali, come si preferisce).

In generale, nel caso di ottimizzazione su più vincoli di equazioni g1(x) = ... = gk(x) = 0, si può provare il seguente enunciato
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TEOREMA 2.60 (dei moltiplicatori di J.L. Lagrange con più vincoli) Siano f,gi : A −→ � (con i = 1, ...,k, k < n) funzioni di classe C1, A ⊆ � n aperto eM =
{x : gi(x) = 0, i = 1...k}. Sia x0 ∈M tale che la matrice jacobiana di ordine k×n

Jg(x0) =
�
∂jgi(x0)

�
ij i = 1, ...,k j = 1, ...,n

abbia rango massimo k, cioe x0 deve essere un punto di regolarità per il vincolo. Ciò equivale a richiede che i vettori∇gj(x0), per j = 1, ...,k, siano linearmente
indipendenti.
Allora x0 ∈M è un estremo relativo (massimo o minimo) vincolato di f (con vincoloM) se è un punto critico libero della funzione lagrangiana

L(x,λ) := f(x) –
¼

i=1...k
λigi(x) (x,λ1, ...,λk) ∈ A×� k

cioè esiste un vettore λ0 tale che (x0,λ0) è soluzione del sistema


∇f(x) = λJg(x) =
¼

i=1...k
λi∇gi(x)

g(x) = 0

Ciò equivale a richiedere che la matrice di ordine (k + 1)×n



∇f(x0)
∇g1(x0)

...
∇gk(x0)



=




∂1f(x0) ... ∂nf(x0)
∂1g1(x0) ... ∂ng1(x0)

...
∂1gk(x0) ... ∂ngk(x0)




abbia rango k.
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3 MISURA E INTEGRAZIONE

3.1 La misura di Lebesgue

La teoria dell’integrazione secondo Lebesgue trattata nelle sezioni 3.1-3.5 è stata presa dal testo di E. Giusti [12]. Per le dimostrazioni dei risultati che abbiamo
solamente richiamato rimandiamo gli studenti interessati a questo testo.
Nel seguito chiameremo iperrettangolo o iperintervallo in � n il prodotto cartesiano di n intervalli, cioè un insieme del tipo

I =
n½

i=1
[ai,bi]

definiamo, in modo naturale, la misura di un iperrettangolo nel seguente modo

mn(I) = m(I) =
n½

i=1
(bi – ai) = (b1 – a1)(b2 – a2)...(bn – an)

in modo da generalizzare la formula per il calcolo della misura di un usuale rettangolo. Ovviamente ogni iperrettangolo è individuato dagli iperpiani

{x1 = a1} {x1 = b1} {x2 = a2} {x2 = b2} ..... {xn = an} {xn = bn}

Un’unione di iperpiani del tipo {xj = c(j)k }, con j = 1, ...,n e k = 1, ...,N, verrà detto reticolo. Un reticolo P divide � n in un numero finito di iperrettangoli più un
numero finito di insiemi illimitati.
Chiameremo plurirettangolo l’unione di un numero finito di iperrettangoli, se Y = I1 ∪ I2 ∪ ...∪ IN è un plurirettangolo determinato da un reticolo allora vale

m(Y) = m(I1) + ... +m(IN)

Ci asterremo dal farlo, ma è possibile provare che la misura di un plurirettangolo non dipende dal reticolo che lo individua, inoltre tale misura non varia se il
reticolo viene raffinato aggiungendo altri iperpiani!
In generale due plurirettangoli Y e Z possono essere identificati dall’unione degli iperrettangoli di uno stesso reticolo, da cui segue che Y ∪ Z è ancora un
plurirettangolo e che

m(Y∪ Z)≤m(Y) +m(Z)

In particolare se Y∩ Z = ∅ allora

m(Y∪ Z) = m(Y) +m(Z)

A questo punto possiamo introdurre la definizione di misura di Lebesgue limitatamente ad alcune importanti classi di insiemi.
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DEFINIZIONE 3.1 Dati A un insieme aperto e K un insieme compatto A,K⊆ � n, poniamo

m(A) =sup{m(Y) : Yplurirettangolo,Y⊆ A}
m(K) = inf{m(Y) : Yplurirettangolo,Y⊇ K}

OSSERVAZIONE 3.2 È possibile che m(A) = +∞, in ogni caso se A è limitato, quindi contenuto in un iperrettangolo, allora vale sempre che m(A)< +∞.
Si può definire in maniera equivalente la misura dei compatti K

m(K) = inf{m(Y) : Yplurirettangolo, intY⊇ K}

dove con intY si indica la parte interna di Y.

La precedente definizione ci permette di considerare degli insiemi arbitrari e di introdurre i seguenti concetti

DEFINIZIONE 3.3 Dato E⊆ � n definiamo i concetti dimisura esterna emisura interna (rispettivamente) di un generico insieme nel seguente modo

m(E) = inf{m(A) : Aaperto,A⊇ E}
m(E) = sup{m(K) : Kcompatto,K⊆ E}

OSSERVAZIONE 3.4 In realtà la misura interna potrebbe essere ”dedotta” dalla sola misura esterna, in modo da dover introdurre un solo oggetto, nel seguente
modo: dato un iperrettangolo R contenente E, si pone

m(E) = m(R) –m(R\E)

È possibilemostrare che tale definizione non dipende dalla scelta di R e che lamisura interna cos̀ı definita verifica tutti i precedenti enunciati, ma non seguiremo
questo approccio, cercando di fornire una presentazione meno generale ma più costruttiva e chiara (almeno si spera...).

PROPOSIZIONE 3.5 Per ogni E⊆ � n vale

(3.1) m(E)≤m(E)

DIMOSTRAZIONE. Siano K e A, rispettivamente, un compatto e un aperto tali che K ⊂ E ⊂ A. Sia R un plurirettangolo tale che K ⊂ R ⊂ A (si può dimostrare
che esiste sempre un tale R). Dalla definizione 3.1 segue che

m(K)≤m(A)

per ogni compatto K ⊂ E e aperto A ⊃ E. La disuguaglianza continuerà a valere per l’estremo inferiore sugli aperti e l’estremo superiore sui compatti cioè la
tesi.
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OSSERVAZIONE 3.6 Sia A un aperto. Dalla definizione si ha chem(A) = m(A). Inoltre, dato che i plurirettangoli sono insieme compatti, si avrà

m(A) = sup{m(Y) : Yplurirettangolo,Y⊆ A}
≤ sup{m(K) : Kplurirettangolo,Y⊆ A} = m(A) ≤

(3.1)
m(A)

Segue chem(A) = m(A) = m(A). Analogamente per i compatti K si ha chem(K) = m(K) = m(K).

DEFINIZIONE 3.7 Un insieme E ⊆ � n si dicemisurabile secondo Lebesgue (semplicemente misurabile, nel seguito) se la sua misura esterna ed interna sono finite e
coincidono, e si pone

m(E) = m(E) = m(E)

e conm(E) indichiamo la misura di Lebesgue n-dimensionale dell’insieme E.

Dall’osservazione precedente si ha che gli insieme aperti limitati e i compatti di � n sono misurabili. Dalla definizione di misura di un insieme segue che

TEOREMA 3.8 Un insieme E⊆ � n è misurabile se e solo se per ogni ε> 0 esistono un aperto Aε ed un compatto Kε, con Kε ⊆ E⊆ Aε em(Aε) –m(Kε)< ε.

TEOREMA 3.9 Siano E,F⊆ � n. Allora vale chem(E∪ F)≤m(E) +m(F). Inoltre se E∩ F = ∅ vale anchem(E∪ F)≥m(E) +m(F).

TEOREMA 3.10 Siano E1, ...,Ek ⊆ � n insiemi misurabili a due a due disgiunti. Posto E =
Sk
i=1 Ei si ha che E è misurabile e vale

m(E) =
k¼

i=1
m(Ei)

DIMOSTRAZIONE. Sia k = 2. Dato che E1 ∩E2 = ∅, dal teorema 3.9 si ha

m(E1 ∪E2) = m(E1) +m(E2)

Se k> 2 si procede per induzione.

TEOREMA 3.11 Siano E,F⊆ � n due insiemi misurabili, allora risultano misurabili gli insiemi E∪ F, E∩ F e E\F.

DIMOSTRAZIONE. Essendo i due insiemi E ed F misurabili sappiamo che esistono due aperti A,A′ e due compatti K,K′ tali cheK ⊆ E ⊆ A, K′ ⊆ F ⊆ A′ e
m(A\K),m(A′\K′)< ε/2. Osserviamo che A\K e A′\K′ sono misurabili perchè sono aperti.
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Consideriamo gli insiemi aperti A\K′ e A′\K e i compatti K\A′ e K′\A. Si ha

K\A′ ⊂ K\F⊂ E\F⊂ A\F⊂ A\K′

(A\K′)\(K\A′) è un aperto; inoltre

(A\K′)\(K\A′)⊂ (A\K)∪ (A′\K′)

da cui segue che

m((A\K′)\(K\A′))≤m(A\K) +m(A′\K′)< ε

Applichiamo il teorema 3.8 con Kε = K\A′ e Aε = A\K′. Per costruzione Kε ⊂ Aε e, dato che

m(Aε) –m(Kε) = m(Aε\Kε)< ε

otteniamo la misurabilità di E\F.
La misurabilità di E∩ F segue dalla relazione E∩ F = E\(E\F).
Infine la misurabilità di E∪ F segue dal teorema 3.10 e dalla relazione

E∪ F = (E∩ F)∪ (E\F)∪ (F\E)

con E∩ F,E\F,F\E misurabili e disgiunti.

OSSERVAZIONE 3.12 Se E,F⊆ � n sono due insiemi misurabili, dai precedenti risultati segue che

m(E∪ F) = m(E) +m(F\E)

siccome vale che F = (F\E)∪ (F∩ E) e che (F\E)∩ (F∩ E) = ∅, abbiamo anche che

m(F) = m(F\E) +m(F∩E)

da cui ricaviamo che

m(E) +m(F) = m(E∪ F) +m(F∩E)

LEMMA 3.13 Sia {Ai} una collezione numerabile di sottoinsiemi aperti di � n, posto A =
S∞
i=1 Ai vale

m(A) = m


∞[

i=1
Ai


≤

∞¼

i=1
m(Ai)

Se gli aperti sono inscatolati, cioè Ai ⊆ Ai+1 per ogni indice i, allora risulta

m(A) = lim
i−→+∞

m(Ai)
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PROPOSIZIONE 3.14 Sia {Ei} una collezione numerabile di sottoinsiemi di � n, posto E =
S∞
i=1 Ei vale

m(E) = m


∞[

i=1
Ei


≤

∞¼

i=1
m(Ei)

Inoltre se gli insiemi sono a due a due disgiunti risulta

m(E)≥
∞¼

i=1
m(Ei)

PROPOSIZIONE 3.15 Sia {Ei} una collezione numerabile di sottoinsiemi inscatolati (cioè Ei ⊆ Ei+1 per ogni i), posto E =
S∞
i=1 Ei vale

m(E) = lim
i−→+∞

m(Ei)

TEOREMA 3.16 (additività numerabile della misura di Lebesgue) Sia {Ei} una collezione numerabile di sottoinsiemi misurabili di � n a due a due disgiunti.
Posto E =

S∞
i=1 Ei si supponga chem(E)< +∞, allora vale

m(E) = m


∞[

i=1
Ei


 =

∞¼

i=1
m(Ei)

TEOREMA 3.17 (subadditività numerabile della misura di Lebesgue) Sia {Ei} una collezione numerabile di sottoinsiemi misurabili di � n. Posto E =
S∞
i=1 Ei,

si supponga chem(E)< +∞, allora vale

m(E) = m


∞[

i=1
Ei


≤

∞¼

i=1
m(Ei)

Se Ei ⊆ Ei+1 per ogni indice i, allora risulta

m(E) = lim
i−→+∞

m(Ei)

OSSERVAZIONE 3.18 Dal precedente enunciato segue un interessante risultato. Siano E1,E2,E3, ... un’infinità numerabile di insiemi aventi misura nulla, allora abbiamo
che la loro unione E è ancora un insieme misurabile di misura nulla.
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Siccome un punto ha misura di Lebesgue nulla segue che ogni insieme numerabile ha misura nulla. In particolare � , l’insieme dei numeri razionali, come ogni suo
sottoinsieme, ha misura nulla.

OSSERVAZIONE 3.19 L’insieme di Cantor, introdotto dalmatematico tedesco Georg Cantor (1845-1918), si ottiene per svuotamenti reiterati dell’intervallo [0, 1]. Al primo
passo si divide [0, 1] in tre intervalli di uguale lunghezza e si elimina quello medio aperto cioè (1/3,2/3). Si ottiene

C1 = [0, 1/3]∪ [2/3, 1] con m(C1) = 1 –
1
3 =

2
3

Si applica la stessa procedura agli intervalli [0, 1/3] e [2/3, 1] cioè si dividono ambedue in tre intervalli uguali e si elimina quello intermedio aperto. Si ottiene

C2 = [0, 1/9]∪ [2/9, 1/3]∪ [2/3,7/9]∪ [8/9, 1] con m(C2) = 1 –
1
3 –

2
32

= 49

Iterando questo procedimento si costruisce una successione di insiemi Cn inscatolati cioè Cn+1 ⊂ Cn. Si definisce l’insieme di Cantor

C =
\

n≥1
Cn

L’insieme C ha le seguenti proprietà:
i. C è chiuso perchè ogni Cn è chiuso
ii. C è non vuoto (infatti contiene0, 1ma non solo....)
iii. C non contiene nessun intervallo
iv. C ha misura nulla. Infatti il suo complementare ha misura 1 dato che al primo passo si toglie un intervallo di ampiezza 1/3, al secondo passo si tolgono due intervalli
di ampiezza 1/32,...,al passo n si tolgono 2n–1 intervalli di ampiezza 3n e cos̀ı via. Dunque

m([0, 1] \C) = 13 +
2
32

+ 4
33

+ 8
34

+ ... + 2
n–1

3n + .... =
∞¼

n=1

2n–1
3n = 1

v. C ha tanti punti quanti l’intervallo [0, 1] cioè ha la potenza del continuo. Questo esempio ci mostra che gli insieme di misura nulla non sono solo quelli numerabili.
vi. ogni punto di C è un punto di accumulazione
vii. C non è un insieme misurabile secondo Peano-Jordan.

OSSERVAZIONE 3.20 Sia E un insieme misurabile. Allora E ha misura nulla se e solo se la misura esterna di E è nulla cioè, per ogni ϵ> 0 è possibile trovare un aperto
Aϵ con E⊂ Aϵ, tale chem(A)< ϵ.

Finora abbiamo introdotto il concetto di misurabilità per insiemi le cui misure esterne ed interne sono uguali e finite, a questo punto discuteremo il concetto
di misurabilità per insiemi di misura infinita.
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DEFINIZIONE 3.21 Un insieme E⊆ � n si dicemisurabile se per ogni r> 0 l’insieme E∩B(O, r) è misurabile, cioè se per ogni r

m(E∩B(O, r)) = m(E∩B(O, r))

e si definisce

(3.2) m(E) = lim
r−→+∞m(E∩B(O, r))

Il limite (3.2) esiste sempre perchè la successione m(E∩B(O, r)) è monotona crescente. Tale limite potrebbe essere +∞.

La definizione appena enunciata ci dice che � n è misurabile, quindi, poiché Ec = � n\E, abbiamo che il complementare di un insiememisurabile è misurabile e
siccome gli aperti sono misurabili risultano misurabili anche i chiusi!
Tutti i risultati finora enunciati (additività, subadditività numerabile etc.) restano veri anche per insiemi misurabili (non solo di misura esterna finita).

OSSERVAZIONE 3.22 La famiglia degli insieme misurabili secondo Lebesgue è molto ampia: contiene l’unione numerabile di insieme misurabili, contiene gli aperti e
i chiusi di � n. È spontaneo chiedersi se tutti i sottoinsiemi di � n sono misurabili. La risposta è negativa ma la costruzione di tali insiemi è laboriosa. Un interessante
esempio è stato fornito dalmatematico italianoGiuseppeVitali (1875-1932). Vitali dimostra un risultato più forte: ogni insiememisurabile secondo Lebesgue, conmisura
positiva, contiene un sottoinsieme che non è misurabile. Di questa questione però non ce ne interesseremo.

Enunciamo, senza darne la dimostrazione, il seguente risultato sulla misura prodotto.

TEOREMA 3.23 Siano E⊆ � n e F⊆ � k due insiemi misurabili, allora l’insieme E× F⊆ � n+k è misurabile e vale

mn+k (E× F) = mn (E)mk (F)

3.2 Misura di Lebesgue e misura di Peano-Jordan
Che relazione esiste tra gli insiemi misurabili secondo Lebesgue e gli insiemi misurabili secondo Peano-Jordan?

137



�� ��

DEFINIZIONE 3.24 Sia E⊂ � n un insieme limitato. Si definisce misura esterna secondo Peano-Jordan dell’insieme E

mPJ(E) = inf{m(P) : P plurirettangolo,P⊇ E}

si definisce misura interna secondo Peano-Jordan dell’insieme E

mPJ(E) = sup{m(P) : P plurirettangolo,P⊆ E}

Si dice che E èmisurabile secondo Peano-Jordan se

mPJ(E) = mPJ(E)

Si nota subito che la definizione è analoga a quella di misurabilità secondo Lebesgue, ma con la differenza che gli aperti e i chiusi di Lebesgue sono sostituiti
da plurirettangoli. Osserviamo che la misura di un iperrettangolo

µn
j=1[aj,bj] coincide con la misura dell’ iperrettangolo aperto int

µn
j=1(aj,bj). Ne segue che

mPJ(E)≤m(E)≤m(E)≤mPJ(E)

cioè se E è misurabile secondo Peano-Jordan allora lo è anche secondo Lebesgue.
∂E è un insieme chiuso e quindi sempre misurabile secondo Lebesgue. Si ha la seguente interessante caratterizzazione degli insieme misurabili secondo
Peano-Jordan.

TEOREMA 3.25 Un insieme limitato E⊂ � n è misurabile secondo Peano-Jordan se e soltanto se la sua frontiera ∂E ha misura nulla secondo Lebesgue.

ESEMPIO 3.26 L’insieme E =�2 ∩ [0, 1]× [0, 1] è misurabile secondo Lebesgue perchè è un insieme numerabile. Non è misurabile secondo Peano-Jordan dato che

mPJ(E) = 0 mPJ(E) = 1

Si poteva anche osservare che ∂E = [0, 1]× [0, 1] e dunquem(∂E) = 1> 0.
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3.3 L’integrale di Lebsgue

DEFINIZIONE 3.27 Dato E⊆ � n indicheremo con il simbolo χE la sua funzione caratteristica, cioè la funzione tale che

χE (x) =
(
1 se x ∈ E
0 se x < E

Una funzione φ è detta semplice se è una combinazione lineare di funzioni caratteristiche di insiemi Ek ⊆ � n limitati e misurabili disgiunti a due a due

φ(x) =
N¼

i=1
λiχEi (x)

L’integrale di una funzione semplice φ è, per definizione, il numero

Z

� n
φ(x)dx =

Z

� n
φ(x)dx1dx2...dxn =

N¼

i=1
λim(Ei)

È intuitivo che una funzione semplice si può scrivere in più modi come combinazione lineare di funzioni caratteristiche, in ogni caso è possibile dimostrare che
il suo integrale non dipende dalla rappresentazione scelta. È altrettanto semplice mostrare che dalla definizione segue che l’integrale di funzioni semplici è
un’operazione lineare e monotona, cioè

Z �
αφ(x) +βψ(x)�dx = α

Z
φ(x)dx +β

Z
ψ(x)dx

per ogni α,β ∈ � e per ogni φ,ψ semplici, inoltre se ψ(x)≤ φ(x), per quasi ogni x ∈ � n, vale
Z
ψ(x)dx≤

Z
φ(x)dx

Nel seguito indicheremo l’insieme delle funzioni semplici con il simbolo S(� n).
Sia f una funzione definita su � n, limitata e nulla fuori di un compatto e indichiamo con con il simbolo S+(f) l’insieme delle funzioni semplici che maggiorano
la f, cioè

S+(f) = {φ ∈ S(� n) : φ(x)≥ f(x)perognix ∈ � n}

analogamente l’insieme

S–(f) = {ψ ∈ S(� n) : ψ(x)≤ f(x)perognix ∈ � n}

raccoglie le funzioni semplici che sonomaggiorate dalla funzione f. Si noti che tali insiemi non sono vuoti, visto che la f è limitata ed è nulla fuori di un compatto.
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DEFINIZIONE 3.28 Sia f : � n −→ � una funzione limitata e nulla fuori di un compatto, allora possiamo definire integrale superiore di f il numero
Z +

f(x)dx = inf
(Z
φ(x)dx : φ ∈ S+(f)

)

e integrale inferiore il numero
Z –

f(x)dx = sup
(Z
ψ(x)dx : ψ ∈ S–(f)

)

La funzione f è sommabile secondo Lebesgue (semplicemente sommabile, nel seguito) se i suoi integrali superiore e inferiore coincidono. L’integrale della funzione
sommabile f si indica con uno dei seguenti simboli

Z
fdx

Z
f(x)dx

Z

� n
f(x)dx1dx2...dxn

PROPOSIZIONE 3.29 Sia f : � n −→ � una funzione limitata e nulla fuori di un compatto, condizione necessaria e sufficiente affinché f sia sommabile è che
esistano due successioni di funzioni semplici {φk}⊆ S+(f) e {ψk}⊆ S–(f) tali che

lim
k−→+∞

Z �
φk(x) –ψk(x)

�dx = 0

Questo equivale a dire che esistono i limiti degli integrali delle successioni di funzioni semplici e che

lim
k−→+∞

Z
φk(x)dx = lim

k−→+∞

Z
ψk(x)dx =

Z
f(x)dx

PROPOSIZIONE 3.30 Sia f : � n −→ � una funzione limitata e nulla fuori di un compatto, condizione necessaria e sufficiente affinché f sia sommabile è che
per ogni ε> 0 esistano due funzioni semplici φ ∈ S+(f) eψ ∈ S–(f) tali che

0≤
Z �
φ(x) –ψ(x)�dx< ε

Le definizioni introdotte sono formalmente identiche agli analoghi concetti studiati relativamente all’integrale secondoRiemann. L’unica differenza risiede nella
classe delle funzioni caratteristiche che generano le funzioni semplici: infatti l’integrale secondo Riemann prevede l’uso di funzioni caratteristiche di intervalli,
mentre Lebesgue ha usato la classe più generale degli insiemi misurabili. Segue facilmente che ogni funzione limitata e nulla fuori di un compatto integrabile

140



�� ��

secondo Riemann è sommabile. Il viceversa non è vero, infatti l’insieme� ∩ [0, 1] è misurabile secondo Lebesgue, da cui segue
Z
χ�∩[0,1] (x)dx = m(� ∩ [0, 1]) = 0

però è anche vero che χ�∩[0,1] coincide con la funzione di Dirichlet, la quale non è integrabile secondo Riemann. Si ha il seguente fondamentale

TEOREMA 3.31 Sia f limitata e integrabile secondo Riemann nell’insieme E⊆ � n misurabile secondo Peano-Jordan. Allora f è integrabile secondo Lebesgue e i
due integrali coincidono.

A questo punto della nostra discussione introduciamo un nuovo concetto, ma partiamo da un nuovo insieme numerico: la retta ampliata

� = {–∞}∪� ∪ {+∞}

le operazioni di ordinamento, somma e prodotto vengono estese in maniera naturale (con eccezione della somma +∞ –∞ e dei prodotti±∞ ·0).

DEFINIZIONE 3.32 Sia f : � n −→ � una funzione, f è dettamisurabile se per ogni t ∈ � risulta misurabile l’insieme

Ft =
�x ∈ � n : f(x)> t	

Segue dalla definizione che ogni funzione continua è misurabile, visto che gli aperti sono misurabili.

PROPOSIZIONE 3.33 Le seguenti affermazioni sono equivalenti
i. F′t = {x ∈ � n : f(x)≤ t} è misurabile per ogni t ∈ � ,
ii. F′′t = {x ∈ � n : f(x)< t} è misurabile per ogni t ∈ � ,
iii. F′′′t = {x ∈ � n : f(x)≥ t} è misurabile per ogni t ∈ � ,
iv. f è misurabile.

LEMMA 3.34 Siano f,g : � n −→ � due funzioni misurabili, allora è misurabile l’insieme

E = �x ∈ � n : f(x)> g(x)	

Nel seguito indichiamo conM(� n) l’insieme delle funzioni misurabili su tutto lo spazio.
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TEOREMA 3.35 Alcune proprietà delle funzioni misurabili:
i. Se f,g ∈M(� n), allora (f + g) e fg sono misurabili.
ii. Se {fk}⊆M(� n) allora sono misurabili le funzionim(x) := inf

k∈�
fk(x)eM(x) := sup

k∈�
fk(x).

iii. Se {fk}⊆M(� n) con fk(x)≤ fk+1(x), allora sono misurabili le funzioni h(x) = liminf
k−→+∞

fk(x)eh(x) = limsup
k−→+∞

fk(x).

OSSERVAZIONE 3.36 Il precedente enunciato possiede alcune interessanti conseguenze. Ponendo f2k+1(x) = f(x) e f2k(x) = g(x) per ogni k ∈ � , l’affermazione ii. prova
che le seguenti funzioni sono misurabili

h(x) = min{f(x),g(x)} h(x) = max{f(x),g(x)}

Inoltre il punto iii. mostra che se una successione di funzioni misurabili converge puntualmente allora tale limite puntuale è una funzione misurabile. In altre parole
lo spazio vettoriale delle funzioni misurabili è chiuso rispetto alla convergenza puntuale. In particolare, data f una funzione misurabile, risultano misurabili anche le
funzioni

f+(x) = max{f(x),0} f–(x) = max{–f(x),0}

dette, rispettivamente, parte positiva e parte negativa della funzione f. Si noti che vale f(x) = f+(x)–f–(x) (la parte negativa di una funzione è una funzione non negativa!)
il che implica che se una funzione f ha le parti positiva e negativa f+ e f– misurabili, allora f è misurabile.

TEOREMA 3.37 Una funzione f è misurabile se e solo se è misurabile il suo sottografico, cioè l’insieme

F = {(x,y) ∈ � n×� : y< f(x)}

Ci domandiamo a questo punto che relazione intercorre tra funzioni misurabili e funzioni sommabili. Un primo risultato afferma che

TEOREMA 3.38 Sia f una funzione limitata e nulla fuori di un compatto K, allora f è sommabile se e solo se è misurabile.

Data una funzione f ∈M(� n) possiamo introdurre i seguenti insiemi

F0 = {(x,y) ∈ � n×� : 0< y< f(x)}
F ′0 = {(x,y) ∈ � n×� : 0< y≤ f(x)}

TEOREMA 3.39 Sia f una funzione misurabile, limitata e nulla fuori di un compatto K e non negativa, allora gli insiemiF0 eF ′0 sono misurabili e vale

mn+1
F0

� = mn+1
F ′0

� =
Z
f(x)dx
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A questo punto dobbiamo lavorare un po’ per estendere il nostro concetto di integrale che stiamo costruendo. In particolare vogliamo poter considerare insiemi
”generici” (non solo compatti) e funzioni non necessariamente limitate.

DEFINIZIONE 3.40 Sia E⊆ � n un insieme limitato e f : E−→ � una funzione limitata. Diremo che f è sommabile in E se

fE(x) =
(
f(x) sex ∈ E
0 sex < E

è una funzione sommabile in � n. In tal caso il numero reale
R
fEdx si chiama integrale di f su E e si indica con il simbolo

Z

E
f(x)dx =

Z

E
f(x)dx1...dxn

L’integrale su E eredita le proprietà dell’integrale su tutto � n discusse precedentemente, opportunamente riscritte. Per esempio, supponendo che E sia
misurabile, abbiamo che f è misurabile in E se e solo se è misurabile l’insieme

Ft = {x ∈ E : f(x)> t}

per ogni t ∈ � . In particolare il teorema 3.38 si legge nel seguente modo: sia E ⊆ � n misurabile e limitato e f : E −→ � una funzione limitata, allora f è
sommabile in E se e solo se è misurabile in E.
Adesso cercheremo di rimuovere l’ipotesi di limitatezza dalle richieste sulla funzione integranda. Cominciamo considerando il caso di funzioni non negative.

DEFINIZIONE 3.41 Sia E⊆ � n e f : E−→ � una funzione non negativa. Diremo che f è sommabile in E se

i. per ogni t> 0 la funzione Tt(f)(x) = min{f(x), t} è sommabile in E∩B(O, t)

ii. vale che

lim
t−→+∞

Z

E∩B(O,t)
Tt(f)(x)dx< +∞

Il limite nella precedente formula sarà chiamato integrale di F esteso ad E, si noti che la non negatività di f implica la monotonia della funzione

F(t) =
Z

E∩B(O,t)
Tt(f)(x)dx

e quindi l’esistenza del limite. Diremo che l’integrale di f su E è infinito quando, soddisfatta la richiesta i., il precedente limite diverge. Si noti che se E ed f sono
limitati la definizione introdotta coincide con la precedente definizione, infatti esiste t0 sufficientemente grande tale che

F(t) =
Z

E
f(x)dx ∀t≥ t0
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OSSERVAZIONE 3.42 È possibile mostrare che, supponendo f non negativa e sommabile su E, vale
Z

E
f(x)dx = lim

r−→+∞ lim
t−→+∞

Z

E∩B(O,r)
Tt(f)(x)dx = lim

t−→+∞
lim

r−→+∞

Z

E∩B(O,r)
Tt(f)(x)dx

Vale la seguente generalizzazione del teorema 3.39

TEOREMA 3.43 Una funzione f : E−→ � non negativa è sommabile su E se e solo se gli insiemi

F0 = {(x,y) ∈ E×� : 0< y< f(x)}
F ′0 = {(x,y) ∈ E×� : 0< y≤ f(x)}

sono misurabili in � n+1 e hanno misura finita, nel qual caso si ottiene
Z

E
f(x)dx = mn+1

F0
� = mn+1

F ′0
�

A questo punto possiamo introdurre la definizione di integrale per funzioni di segno qualsiasi

DEFINIZIONE 3.44 Diremo che f : E⊆ � n −→ � è sommabile su E se sono sommabili entrambe le seguenti funzioni non negative

f+(x) = max{f(x),0} f–(x) = max{–f(x),0}

e si porrà
Z

E
f(x)dx =

Z

E
f+(x)dx –

Z

E
f–(x)dx

Dalla discussione fin qui fatta possiamo dedurre l’esistenza delle seguenti tre classi di funzioni
i. funzioni misurabili su E,
ii. funzioni integrabili su E, cioè funzioni misurabili per le quali almeno una tra f+ e f– ha integrale finito,
iii. funzioni sommabili su E, cioè funzioni misurabili per le quali sia f+ che f– hanno integrale finito.
Si noti che le tre classi sono inscatolate e che, a differenza delle altre due classi, l’insieme delle funzioni integrabili non è chiuso rispetto all’operazione di somma.

TEOREMA 3.45 Sia f : E−→ � una funzione sommabile su E⊆ � n misurabile, posto

F+∞ = {x ∈ E : f(x) = +∞} F–∞ = {x ∈ E : f(x) = –∞}

si ha chem(F+∞) = m(F–∞) = 0.
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DIMOSTRAZIONE. Per definizione vale che

F+∞ =
\

k≥0
Fk

il che mostra che l’insieme è misurabile. Per r> 0 sia χr(x) la funzione caratteristica dell’insieme F+∞ ∩B(O, r) allora segue che

f+(x)≥ kχr(x) ∀k ∈ �

quindi abbiamo che

m(F+∞ ∩B(O, r)) =
Z
χr(x)dx≤

1
k

Z

E
f+(x)dx

passando al limite per k−→ +∞ si ottiene che m(F+∞ ∩B(O, r)) = 0 per ogni r> 0, da cui la tesi. Analogamente per F–∞.

In seguito diremo che una proprietà vale quasi ovunque (e scriveremo q.o.) in E se vale per tutti gli x ∈ E tranne al più per quelli di un sottoinsieme di E avente
misura nulla. Adottando questa convenzione possiamo enunciare il risultato precedente dicendo che una funzione sommabile su E è finita quasi ovunque in E.

PROPOSIZIONE 3.46 Sia E⊆ � n misurabile e f : E−→ � una funzione sommabile e non negativa, allora
Z

E
f(x)dx = 0 seesolose f(x) = 0 q.o. x ∈ E

DIMOSTRAZIONE. Se la funzione è quasi ovunquenulla è immediatomostrare che l’integrale è nullo, quindi concentriamoci nel provare l’implicazioneopposta,
poniamo

F0 = {x ∈ E : f(x)> 0} =
\

k≥0
F1/k

siccome f(x)> 1/k in F1/k segue che

1
km(F1/k)≤

Z

E
f(x)dx = 0

quindi abbiamo ottenuto che m(F1/k) = 0 per ogni k, da cui segue che m(F0) = 0.

3.4 Teoremi di passaggio al limite
Nel capitolo ?? abbiamo visto che, data una successione di funzioni, se si vuole passare al limite sotto segno di integrale bisogna aggiungere un’ipotesi supple-
mentare: la convergenza uniforme della successione di funzioni. Questo risultato è l’unico che si può ottenere nell’ambito dell’integrale di Riemann. Nell’ambito
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della teoria di Lebesgue si può passare al limite sotto segno di integrale in ipotesi molto generali. È questa la superiorità e la potenza della teoria di Lebesgue
rispetto a quella di Riemann. Un primo risultato interessante è dovuto a Beppo Levi.

TEOREMA 3.47 (della convergenza monotona (B. Levi)) Sia {fk} una successione di funzioni integrabili su un insieme misurabile E tali che

0≤ f1(x)≤ f2(x)≤ f3(x)≤ ... q.o. x ∈ E

posto f(x) = lim
k−→+∞

fk(x), vale

Z

E
f(x)dx = lim

k−→+∞

Z

E
fk(x)dx

DIMOSTRAZIONE. Consideriamo gli insiemi

F0k = {(x,y) ∈ E×� : 0< y< fk(x)} F0 = {(x,y) ∈ E×� : 0< y< f(x)}

Gli insiemi F0k sono misurabili perchè le fk sono integrabili. Si ha, dalla monotonia,

F01 ⊆ F02 ⊆ ...⊆ F0k ⊆ ... F0 =
∞[

k=1
F0k

Per il teorema 3.17 anche F0 è misurabile e si ha

mn+1(F0) = lim
k→∞

mn+1(F0k)

La tesi segue dal teorema 3.43.

Un risultato analogo vale per successioni decrescenti.

PROPOSIZIONE 3.48 Se {fk} è una successione di funzioni non negative, integrabili su un insieme misurabile E, allora
Z

E

∞¼

k=1
fk(x)dx =

∞¼

k=1

Z

E
fk(x)dx
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TEOREMA 3.49 (lemma di Fatou) Sia {fk} una successione di funzioni integrabili su un insieme misurabile E, tali che fk(x) ≥ Ð (x) q.o. in E con Ð funzione
sommabile in E, allora

(3.3)
Z

E
liminf
k−→+∞

fk(x)dx≤ liminf
k−→+∞

Z

E
fk(x)dx

Analogamente, seÑ (x) è una funzione sommabile in E e se fk(x)≤Ñ (x) q.o. in E . Allora

(3.4)
Z

E
limsup
k−→+∞

fk(x)dx≥ limsup
k−→+∞

Z

E
fk(x)dx

DIMOSTRAZIONE. Sia hk(x) = fk(x) –Ð (x)≥ 0 per quasi ogni x ∈ E. Definiamo

gj(x) = infk≥j
hk(x)

Si ha che gj(x) è una successione monotona crescente di funzioni integrabili e, se j≤ k, allora gj(x)≤ hk(x). Per la proprietà di monotonia dell’integrale,
Z

E
gj(x)dx≤

Z

E
hk(x)dx perogni k≥ j

Per k−→ +∞
Z

E
gj(x)dx≤ liminf

k→∞

Z

E
hk(x)dx

Per j−→ +∞ applichiamo a gj(x) il teorema di Beppo Levi
Z

E
lim
j→∞

gj(x)dx = lim
j→∞

Z

E
gj(x)dx≤ liminf

k→∞

Z

E
hk(x)dx

Inoltre, dall’essere gj(x) una successione monotona crescente, si ha

lim
j→∞

gj(x) = sup
j
gj(x) = sup

j
inf
k≥j

hk(x) = liminf
k→∞

hk(x)

Segue (3.3). In maniera analoga si prova (3.4).
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TEOREMA 3.50 (della convergenza dominata (H. Lebesgue)) Sia h una funzione non negativa e sommabile su un insieme misurabile E e sia {fk} una
successione di funzioni integrabili su E tali che

|fk(x)|≤ h(x) q.o. x ∈ E

e

f(x) = lim
k−→+∞

fk(x) q.o.x ∈ E

Allora f è sommabile e vale

(3.5)
Z

E
f(x)dx = lim

k−→+∞

Z

E
fk(x)dx

DIMOSTRAZIONE. Dato che –h(x)≤ fk(x)≤ h(x) per quasi ogni x ∈ E, possiamo applicare il lemma di Fatou
Z

E
f(x)dx ≤

(3.3)
liminf
k→∞

Z

E
fk(x)dx ≤

(3.4)
limsup
k→∞

Z

E
fk(x)dx≤

Z

E
f(x)dx

cioè la tesi.
ESEMPI. Consideriamo la successione di funzioni fk(x) = kxe–kx con x ∈ [0, 1]. Si ha convergenza puntale a f(x) = 0. La convergenza non è uniforme dato che

sup
[0,1]
|fk(x) – f(x)| = sup

[0,1]
fk(x) = fk(1/k) =

1
e ̸−→ 0

quindi non possiamo applicare il teorema di passaggio al limite ??. È possibile invece applicare il teorema 3.50 dato che

0≤ fk(x)≤ h(x) = e–1

e h(x) = e–1 è sommabile in [0, 1]. Alla luce di questo esempio possiamo dedurre facilmente dal teorema di convergenza dominata il seguente

PROPOSIZIONE 3.51 Sia E un insieme misurabile con misura finita. Sia fk una successione di funzioni misurabili in E tali che |fk(x)| ≤M per quasi ogni x ∈ E e
lim
k→∞

fk(x) = f(x) per quasi ogni x ∈ E. Allora vale (3.5).

Sia data una funzione f(x, t) definita in E×A, integrabile in E per ogni t ∈ A. Consideriamo la funzione definita da integrale

F(t) =
Z

E
f(x, t)dx

Dal teorema di convergenza dominata è possibile dimostrare importanti proprietà di F(t).
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TEOREMA 3.52 Sia f(x, t) continua in t per quasi ogni x ∈ A e sia g(x) sommabile in E tale che |f(x, t)|≤ g(x) per ogni t ∈ A e per quasi ogni x ∈ E. Allora F(t) è
continua in A.

TEOREMA 3.53 (derivazione sotto il segno di integrale) Sia f(x, t) una funzione sommabile in E per ogni t ∈ A e di classe C1(A) per q.o. x ∈ E e supponiamo
che esistano k + 1 funzioni sommabili in E g0,g1, ...,gk tali che, per ogni t ∈ A e per q.o. x ∈ E, risulti

|f(x, t)|≤ g0(x)
���∂tj f(x, t)

���≤ gj(x) j = 1, ...,k

Allora F(t) è di classe C1(A) e vale

∂tjF(t) =
Z

E
∂tj f(x, t)dx j = 1, ...,k

OSSERVAZIONE 3.54 La tesi del precedente risultato può essere riscritta come

∂tj

Z

E
f(x, t)dx =

Z

E
∂tj f(x, t)dx

OSSERVAZIONE 3.55 Consideriamo il caso particolare in cui E×A = (a,b)× (c,d)⊆ � 2 . In base al teorema di derivazione sotto il segno d’integrale, la funzione

F(t) =
Z b

a
f(x, t)dx t ∈ (c,d)

è una funzione C1((c,d)) e si ha

F′(t) =
Z b

a
∂tf(x, t)dx

Supponiamo ora che anche gli estremi d’integrazione dipendano dalla variabile t. Il teorema fondamentale del calcolo integrale si estende alla integrazione secondo
Lebesgue: se g è sommabile in (a,b) allora

H(t) =
Z t

a
g(x)dx

è derivabile q.o. in (a,b) e si ha

H′ = f q.o. in (a,b)

Consideriamo la funzione

F(t) =
Z β(t)

α(t)
f(x, t)dx

149



�� ��

conα(t) e β(t) funzione definite in [c,d], a valori in [a,b]. Sia

Ð (u,v, t) =
Z v

u
f(x, t)dx

Il teorema fondamentale del calcolo integrale assicura l’esistenza delle derivate parziali

∂uÐ (u,v, t) = –f(u, t) ∂vÐ (u,v, t) = f(v, t)

Inoltre, per teorema 3.53, esiste

∂tÐ (u,v, t) =
Z v

u
∂tf(x, t)dx

Di conseguenza, seα,β ∈ C1([c,d]), applicando il teorema di derivazione delle funzioni composte
d
dtF(t) =

∂

∂tÐ (α(t),β(t), t) = ∂uÐ (α(t),β(t), t)α
′(t) + ∂vÐ (α(t),β(t), t)β ′(t)

+ ∂tÐ (α(t),β(t), t)

da cui segue

(3.6) d
dtF(t) =

Z β(t)

α(t)
∂tf(x, t)dx + f(β(t), t)β ′(t) – f(α(t), t)α′(t)

3.5 Il calcolo degli integrali
In questa sezione ci occupiamo del calcolo effettivo degli integrali. Fondamentale è il teorema di Fubini che ci permette di ridurre il calcolo di un integrale
multiplo al calcolo di successivi integrali unidimensionali. Iniziamo considerando il calcolo della misura di insiemi misurabili.

TEOREMA 3.56 Sia E⊂ � 2 un insieme misurabile del piano. Per ogni x ∈ � , siano Ex = {y ∈ � | (x,y) ∈ E} le sezioni di E con le rette parallele all’asse y, si ha

(3.7) m2(E) =
Z

�
m1(Ex)dx

Sia E⊂ � 3 un insieme misurabile dello spazio. Per ogni z ∈ � , siano Ez = {(x,y) ∈ � 2| (x,y,z) ∈ E} le sezioni di E a quota z, si ha

m3(E) =
Z

�
m2(Ez)dz

Analogamente, per ogni (x,y) ∈ � 2, siano Exy = {z ∈ � | (x,y,z) ∈ E}, si ha anche

m3(E) =
Z

� 2
m1(Exy)dxdy

Valgono formule analoghe scambiando il ruolo delle variabili x,y,z.
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DIMOSTRAZIONE. Ci limitiamo a dimostrare la (3.7). Il primo passo consiste nel dimostrare la (3.7) per un aperto A. Sia Yk una successione di rettangoli
inscatolati Y1 ⊂ Y2 ⊂ .... tali che A =

S∞
k–1 Yk. Per l’additività numerabile della misura

(3.8) m2(A) = lim
k→∞

m2(Yk) = lim
k→∞

Z
m1(Ykx)dx

dove l’ultima uguaglianza segue dalla ovvia validità della (3.7) per i rettangoli. D’altra parte si avrà anche

Y1x ⊂ Y2x ⊂ .... che implica m1(Y1x)≤m1(Y2x)≤ ...

e

Ax =
∞[

k=1
Ykx che implica m1(Ax) = lim

k→∞
m1(Ykx)

Siamo nelle condizioni di applicare il teorema di Beppo Levi alla successione {m1(Ykx)}
Z
m1(Ax)dx = lim

k→∞

Z
m1(Ykx)dx

che, insieme alla (3.8), conclude questo primo passo.
Il secondo passo consiste nel dimostrare la validità della (3.7) per i compatti K. La dimostrazione è analoga a quella degli aperti con la differenza che bisogna
considerare rettangoli inscatolati Z1 ⊃ Z2 ⊃ ... che contengono K e K =

T∞
k=1 Zk.

Terzo passo: consideriamo un insieme misurabile E con misura finita. Per il teorema 3.8 possiamo costruire una successione di aperti Aj e una di compatti Kj
tali che

K1 ⊂ K2 ⊂ ...⊂ Kj ⊂E⊂ Aj ⊂ ...⊂ A2 ⊂ A1 ∀j
lim
j→∞

m2(Aj) = lim
j→∞

m2(Kj) = m2(E)

Risulterà Kjx ⊂ Ex ⊂ Ajx . Dato che la (3.7) vale per gli aperti e i compatti si ha

m2(Aj) =
Z
m1(Ajx)dx m2(Kj) =

Z
m1(Kjx)dx

da cui deduciamo che

lim
j→∞

Z m1(Ajx)dx –m1(Kjx)
�dx = 0

Consideriamo la successione di funzioni non negative fj(x) = m1(Ajx) –m1(Kjx). Per costruzione si ha Ajx\Kjx ⊂ Aj–1,x\Kj–1,x da cui segue che fj(x)≤ fj–1(x) cioè la
successione è monotona decrescente. Questo ci consente di applicare il teorema di Beppo Levi e ottenere

lim
j→∞

Z
fj(x)dx =

Z
lim
j→∞

fj(x)dx = 0
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Per la proposizione 3.46 si ha

lim
j→∞

fj(x)dx = 0 ovvero lim
j→∞

m1(Ajx) = lim
j→∞

m1(Kjx) q.o. x ∈ �

che, ricordando le relazioni Kjx ⊂ Ex ⊂ Ajx, implica la misurabilità di Ex per quasi ogni x.
Ricordando la definizione di integrale superiore e inferiore si ha

m2(Kj) =
Z
m1(Kjx)≤

Z –
m1(Ex)dx≤

Z +
m1(Ex)dx≤

Z
m1(Ajx)dx = m2(Aj)

Passando al limite per j→∞ si ottiene la (3.7) per insieme di misura finita
Se m2(E) = +∞, consideriamo l’insieme limitato ER = E∩B(O,R). La funzione m1(ERx ) è misurabile e quindi anche la funzione m1(Ex) = supR>0m1(ERx ) lo è. Per
il passo precedente

m2(ER) =
Z
m1(ERx )dx≤

Z
m1(Ex)dx

la tesi si ottiene per R→∞.
In seguito indicheremo m2(E) anche come area(E) e m3(E) come vol(E).

TEOREMA 3.57 (di G. Fubini) Sia f(x,y) una funzione sommabile in � 2, allora

i. per q.o. x ∈ � la funzione y 7→ f(x,y) è sommabile in � ,

ii. la funzione g(x) =
R
� f(x,y)dy è sommabile in � ,

iii.
Z

� 2
f(x,y)dxdy =

Z

�

 Z

�
f(x,y)dy

!
dx

La tesi resta vera scambiando il ruolo delle variabili x e y nelle affermazioni precedenti (e anche in dimensioni più alte, con le debite correzioni).

DIMOSTRAZIONE. Sia f(x,y)≥ 0. Nel caso generale basterà considerare f+ e f–. Per il teorema 3.43 il sottografico della funzione f

F0 = {(x,y) ∈ E×� : 0< z< f(x,y)}

è misurabile e

m3(F0) =
Z

� 2
f(x,y)dxdy

Inoltre, per il teorema 3.56

F0x =
n
(y,z) ∈ � 2 : (x,y,z) ∈ F0

o
=
n
(y,z) ∈ � 2 : 0< z< f(x,y)

o
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è misurabile per quasi ogni x ∈ � e

m3(F0) =
Z

�
m2(F0x)dx

La iii. segue tenendo presente che, sempre per il teorema 3.43,

m2(F0x) =
Z

�
f(x,y)dy

Il teorema di Fubini consente di scambiare l’ordine di integrazione a condizione che si sappia che f è sommabile. Il teorema di Tonelli permette di stabilire la
sommabilità di f dall’esistenza di uno degli integrali iterati

TEOREMA 3.58 (di L. Tonelli) Sia fmisurabile in un insieme misurabile E, non negativa per quasi ogni x. Se uno dei tre integrali
Z

� 2
f(x,y)dxdy

Z

�

 Z

�
f(x,y)dy

!
dx

Z

�

 Z

�
f(x,y)dx

!
dy

esiste allora esistono anche gli altri e coincidono.

Se E è un rettangolo [a,b]× [c,d] e f(x,y) una funzione sommabile in E, dal teorema di Fubini segue

TEOREMA 3.59 (formula di integrazione sui rettangoli) Sia f(x,y) una funzione sommabile nel rettangolo R = [a,b]× [c,d]. Allora
i. se per q.o. x ∈ [a,b] esiste G(x) =

R d
c f(x,y)dy allora la funzione G(x) è sommabile in [a,b] e si ha

"

R
f(x,y)dxdy =

Z b

a
G(x)dx =

Z b

a



Z d

c
f(x,y)dy


dx

ii. se per q.o. y ∈ [c,d] esiste F(y) =
R b
a f(x,y)dx allora la funzione F(y) è sommabile in [c,d] e si ha

"

R
f(x,y)dxdy =

Z d

c
F(y)dy =

Z d

c



Z b

a
g(x,y)dx


dy

Se è possibile applicare entrambe le formule, per esempio se f ∈ C0(R), allora si ottengono le seguenti formule di scambio dell’ordine d’integrazione
"

R
f(x,y)dxdy =

Z b

a
dx

Z d

c
f(x,y)dy =

Z d

c
dy

Z b

a
f(x,y)dx

DIMOSTRAZIONE. Sia

f∗(x,y) =
������
f(x,y) x ∈ R
0 x < R
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Per il teorema di Fubini
"

R
f(x,y)dxdy =

"

� 2
f∗(x,y)dxdy =

Z

�
dx

Z

�
f∗(x,y)dy

=
Z

�
dx

Z d

c
f∗(x,y)dy =

Z b

a
dx

Z d

c
f(x,y)dy

Analogamente per la ii.

Le due formule significano che il calcolo di un integrale doppio su un rettangolo si riduce al calcolo di due integrali di funzioni di una variabile. La riduzione di
un integrale doppio a due integrazioni unidimensionali successive funziona anche per insiemi più generali.

DEFINIZIONE 3.60 Un insieme E⊂ � 2 si dice normale rispetto all’asse x se

E = {(x,y) ∈ � 2| a≤ x≤ b α(x)≤ y≤ β(x)}

conα(x),β(x) ∈ C0([a,b]),α(x)< β(x) (cf. figura 3).
Un insieme E⊂ � 2 si dice normale rispetto all’asse y se

E = {(x,y) ∈ � 2| c≤ y≤ d γ(y)≤ x≤ δ(y)}

con γ(y),δ(y) ∈ C0([c,d]) , γ(y)< δ(y) (cf. figura 4).

La frontiera di un dominio normale rispetto ad un asse, per esempio l’asse x, è costituito dall’unione dei grafici di α e β, che sono insiemi di misura nulla perchè
le funzioni sono continue, e da due segmenti che hanno ugualmente misura nulla. Ne segue che m(∂E) = 0 e quindi i domini normali sono misurabili secondo
Peano-Jordan (e quindi secondo Lebesgue).

TEOREMA 3.61 (Formule di integrazione su domini normali) Sia E un dominio normale rispetto all’asse x. Se f è sommabile in E allora

(3.9)
"

E
f(x,y)dxdy =

Z b

a
dx

Z β(x)

α(x)
f(x,y)dy

Se, invece, E è un dominio normale rispetto all’asse y allora

(3.10)
"

E
f(x,y)dxdy =

Z d

c
dy

Z δ(y)

γ(y)
f(x,y)dx

DIMOSTRAZIONE. Come nel caso dell’integrazione sui rettangoli, la tesi segue applicando il teorema di Fubini alla funzione

f∗(x,y) =
(
f(x,y) x ∈ E
0 x < E
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y = α(x)

y = β(x)

E

a b
x

y

Figura 3: Dominio normale rispetto all’asse x

x = γ(y) x = δ(y)
E

c

d

x

y

Figura 4: Dominio normale rispetto all’asse y
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OSSERVAZIONE 3.62 Consideriamo il triangolo T = {(x,y)| a ≤ y ≤ x ≤ b}. Possiamo pensare T come un insieme normale rispetto all’asse x con α(x) = a e β(x) = x
oppure come un dominio normale rispetto all’asse y con γ(y) = y e δ(y) = b. Applicando le formule (3.9) e (3.10) si ottiene la seguente formula nota come formula di
inversione di Dirichlet

(3.11)
"

T
f(x,y)dxdy =

Z b

a
dx

Z x

a
f(x,y)dy =

Z b

a
dy

Z b

y
f(x,y)dx

Il teorema di Fubini ammette una generalizzazione a integrali multipli.

DEFINIZIONE 3.63 Un insieme E⊆ � 3 si dice normale rispetto all’asse z se

E = {(x,y,z) ∈ � 3 : (x,y) ∈ D, h(x,y)≤ z≤ g(x,y)}

con h,g ∈ C0(D),D⊂ � 2 misurabile.D altro non è che la proiezione di E sul piano xy. In maniera analoga si danno le definizioni di domini normali rispetto all’asse x
o y.

∂E è costituito dai grafici delle superfici z = h(x,y) e z = g(x,y), e dai lati di una superficie cilindrica, che hanno tutti misura nulla. Ne segue che m(∂E) = 0 e
l’insieme E è misurabile.

TEOREMA 3.64 (Formule di integrazione su domini normali) Sia E⊆ � 3 un dominio rispetto all’asse z. Se f è sommabile in E allora

(3.12)
$

E
f(x,y,z)dxdydz =

"

D
dxdy

Z g(x,y)

h(x,y)
f(x,y,z)dz

La (3.12) è detta anche formula di integrazione per fili. Se D è a sua volta un dominio normale rispetto ad un asse, allora per il calcolo dell’integrale esteso a D
si può ricorrere alla (3.9) o (3.10). Valgono formule analoghe permutando le variabili x,y,z.
Concludiamo questa sezione con un teorema che si ottiene dal teorema 3.56

TEOREMA 3.65 Sia E⊂ � 3 un insieme misurabile delimitato dai piani z = a e z = b con a< b. Fissato z ∈ [a,b], sia

Ez = {(x,y)| (x,y,z) ∈ E}

la proiezione di E sul piano a quota z. Se f è sommabile in E allora

(3.13)
$

E
f(x,y,z)dxdydz =

Z b

a
dz
"

Ez
f(x,y,z)dxdy

La (3.13) è nota come formula di integrazione per strati o sezioni.
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4 ANALISI INTEGRALE

Scelta della notazione sulle coordinate

4.1 integrali lungo curve

Sia x : [a,b] −→ � 3 una curva regolare e f : A ⊆ � 3 −→ � una funzione scalare definita su un aperto A contenente il supporto della curva, cioè tale che
γ = x([a,b])⊆ A. Supponiamo che f sia continua. Allora possiamo definire l’integrale di linea (o integrale curvilineo di prima specie) nel seguente modo

Z

γ
f(x)ds =

Z b

a
f(x(t))∥x′(t)∥dt

Se x(t) = (x1(t),x2(t),x3(t)), t ∈ [a,b], si può scrivere
Z

γ
f(x)ds =

Z b

a
f(x1(t),x2(t),x3(t))

h
|x′1(t)|2 + |x′2(t)|

2 + |x′3(t)|2
i1/2 dt

Per ogni f,g funzioni scalari definite in A⊆ � 3, γ1,γ2,γ curve regolari il cui supporto è contenuto in A e α,β ∈ � , valgono le seguenti proprietà
i. linearità:

Z

γ


αf +βg�ds = α

Z

γ
fds +β

Z

γ
gds,

ii. additività:
Z

γ1∪γ2
fds =

Z

γ1

fds +
Z

γ2

fds,

iii. se due curve sono equivalenti, cioè γ1 ∼ γ2, vale
Z

γ1

fds =
Z

γ2

fds.

Sottolineiamo il fatto che l’integrale curvilineo della funzione f≡ 1 rappresenta esattamente la lunghezza della curva γ.
Se interpretiamo γ come un filo materiale con densità lineare di massa m : γ ⊆ � 3 −→ � , m≥ 0, allora l’integrale curvilineo

M =
Z

γ
mds =

Z b

a
m(x(t))∥x′(t)∥dt

rappresenta la massa totale del filo. Il centro di massa o baricentro del filo ha coordinate B = (B1,B2,B3), dove vale

B1 =
1
M

Z

γ
x1mds =

1
M

Z b

a
x1(t)m(x(t))∥x′(t)∥dt B2 =

1
M

Z

γ
x2mds =

1
M

Z b

a
x2(t)m(x(t))∥x′(t)∥dt B3 =

1
M

Z

γ
x3mds =

1
M

Z b

a
x3(t)m(x(t))∥x′(t)∥dt

Il momento di inerzia di γ rispetto ad una retta r è

Ir =
Z

γ
d2(p, r)m(p)ds
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dove la funzione d(p, r) = minq∈r ∥p –q∥ è la distanza del punto p dalla retta r.
Sia x : [a,b]−→ � 3 una curva regolare di estremi P0 = x(a) e P1 = x(b) e sia F : A⊆ � 3 −→ � 3 un campo vettoriale continuo definito su un aperto A contenente
il supporto della curva. Allora possiamo definire l’integrale curvilineo (di seconda specie)

(4.1)
Z

γ
F · Tds =

Z b

a
F(x(t)) · x′(t)dt

dove T è il versore tangente alla curva, orientata nel verso che va da P0 a P1. L’integrale curvilineo di seconda specie rappresenta il lavoro W che il campo F
compie per spostare una particella da P0 a P1 lungo γ. La presenza del versore tangente T indica la dipendenza dall’orientazione della curva.
Se γ è una curva chiusa si parla di circuitazione del campo F (lungo γ) e si usa il simbolo

I

γ
F · Tds

4.2 campi vettoriali e forme differenziali

Sia F(x) = F(x1,x2,x3) =
F1(x),F2(x),F3(x)

� un campo vettoriale di classe C1(A) (nel seguito supporremo sempre che A⊆ � 3 sia un aperto connesso). Al campo
vettoriale F possiamo associare la seguente espressione formale

ω = F1(x,y,z)dx + F2(x,y,z)dy + F3(x,y,z)dz

che chiameremo 1-forma differenziale, diremo le funzioni F1,F2,F3 coefficienti della forma differenziale. Viceversa ad ogni forma differenziale possiamo as-
sociare un campo vettoriale che ha per componenti i coefficienti della forma. Quindi in seguito parleremo indifferentemente di campo vettoriale F o della
1-forma differenziale ω. L’insieme delle forme differenziali (con coefficienti di classe C1(A)) costituisce uno spazio vettoriale sul campo dei numeri reali.
Si definisce l’integrale curvilineo di ω lungo γ

Z

γ
ω =

Z b

a
F(φ(t)) ·φ′(t)dt

L’integrale curvilineo di ω non è altro che l’integrale curvilineo di seconda specie del campo vettoriale F = (F1,F2,F3) lungo γ.
Per ogni α,β ∈ � , ω1,ω2 forme differenziali e γ1,γ2 curve regolari a tratti abbiamo
i. lineartà:

Z

γ1


αω1 +βω2

� = α
Z

γ1

ω1 +β
Z

γ1

ω2,

ii. additività:
Z

γ1∪γ2
ω =

Z

γ1

ω +
Z

γ2

ω,

iii. se due curve sono equivalenti vale
Z

γ1

ω =
Z

γ2

ω, se le curve hanno lo stesso orientamento e
Z

γ2

ω = –
Z

γ2

ω se hanno orientamento opposto.
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ESEMPIO 4.1 Il campo di forze gravitazionale generato da un corpo puntiforme di massa m posto nell’origine, che agisce su una particella puntiforme di massa
M posta nel punto (x,y,z) è dato da

F = –GMm
r2

x
r = –

GMm
r3

x1,x2,x3
� dover = ∥x∥ =

h
x21 + x

2
2 + x

2
3
i1/2

G è la costante di gravitazione universale. Sia φ : [a,b]→ � 3 una curva regolare (o regolare a tratti) di rappresentazione parametriche φ(t) = (x1(t),x2(t),x3(t)).
Il lavoro compiuto per spostare una particella lungo φ dall’estremo φ(a) all’estremo φ(b) è dato da

W =
Z b

a
F(φ(t)) ·φ′(t)dt = –GMm

Z b

a

x1(t)x′1(t) + x2(t)x
′
2(t) + x3(t)x

′
3(t)h

x21 (t) + x
2
2(t) + x

2
3(t)

i3/2 dt = GMm
Z b

a

d
dt

1
h
x21 (t) + x

2
2(t) + x

2
3(t)

i1/2 dt = GMm
"

1
∥φ(b)∥ –

1
∥φ(a)∥

#

Segue che il lavoro non dipende dalla particolare curvama solo dalle posizioni iniziale e finale! Un’altra importante conseguenza è che il lavoro lungo una curva
chiusa, è sempre 0, cioè la circuitazione è sempre nulla.

Alla luce di questo esempio ci poniamo le seguenti questioni.
Domanda 1. Data ω (ovvero dato F) quali condizioni garantiscono che l’integrale lungo un cammino orientato dipenda soltanto dagli estremi della traiettoria
e non dal cammino percorso?
Domanda 2. Data ω (ovvero dato F) quando si ha

I

γ
ω = 0, o meglio

I

γ
F · Tds = 0, dove γ è una curva chiusa?

DEFINIZIONE 4.2 Sia ω una forma differenziale

ω = F1(x1,x2,x3)dx1 + F2(x1,x2,x3)dx2 + F3(x1,x2,x3)dx3

di classe C1(A) in A⊆ � 3 aperto connesso. Se esiste una funzioneU ∈ C2(A) tale che dU = ω, cioè

(4.2) ∂1U = F1 ∂2U = F2 ∂3U = F3

diremo che ω è esatta. La funzioneU è detta una primitiva di ω. Se ω è esatta, cioè vale∇U = F, si dice che F è un campo conservativo e la funzioneU è detta
un potenziale di F.

OSSERVAZIONE 4.3 Se U è una primitiva per ω allora, dato che A è connesso, tutte le possibili primitive sono della forma U + c con c ∈ � .

PROPOSIZIONE 4.4 Se ω è esatta in A vale che
Z

γ
ω = U(φ(b)) –U(φ(a))

dove φ : [a,b]−→ A è una qualsiasi parametrizzazione regolare di γ .
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DIMOSTRAZIONE. Dalla definizione di integrale di seconda specie, dalle relazioni in (4.2) e usando la formula di derivazione delle funzioni composte possiamo
ricavare

Z

γ
ω =

Z b

a
(F1(φ(t))φ′1(t) + F2(φ(t))φ

′
2(t) + F3(φ(t))φ

′
3(t))dt =

Z b

a

h
∂1U(φ(t))φ′1(t) + ∂2U(φ(t))φ

′
2(t) + ∂3U(φ(t))φ

′
3(t)

i
dt =

Z b

a

d
dtU(φ(t))dt = U(φ(b)) –U(φ(a))

il che conclude la dimostrazione.

DEFINIZIONE 4.5 Si definisce rotore di F, e si indica rot(F) oppure con∇∧ F, il campo vettoriale

∂2F3(x) – ∂3F2(x),∂3F1(x) – ∂1F3(x),∂1F2(x) – ∂2F1(x)

�

Esso coincide con il determinante simbolico della matrice



e1 e2 e3
∂1 ∂2 ∂3
F1(x) F2(x) F3(x)


 cioè rot(F) = det







e1 e2 e3
∂1 ∂2 ∂3
F1(x) F2(x) F3(x)







Il campo F si dice irrotazionale se rot(F) = O.

OSSERVAZIONE 4.6 Sia ω = F1(x1,x2)dx1 +F2(x1,x2)dx2 una forma differenziale definita in A⊆ � 2. È possibile considerare il campo vettoriale (in � 3) corrispon-
dente, cioè il campo vettoriale F = (F1(x1,x2,x3),F2(x1,x2,x3),0) e si ha

rot(F) = 0,0,∂1F2(x) – ∂2F1(x)
�

F è irrotazionale in A⊆ � 2, ovvero ω è chiusa, se

(4.3) ∂1F2(x1,x2) = ∂2F1(x1,x2) per ogni (x1,x2) ∈ A

DEFINIZIONE 4.7 In generale, data una 1-forma differenziale ω = F1(x)dx1 + F2(x)dx2 + F3(x)dx3, diremo che ω è chiusa se vale che

∂iFj(x) = ∂jFi(x) per i, j = 1,2,3 e i , j

In A⊆ � 3 aperto connesso consideriamo

F(x1,x2,x3) =
F1(x1,x2,x3),F2(x1,x2,x3),F3(x1,x2,x3)

�

un campo vettoriale di classe C1(A) ed

ω = F1(x1,x2,x3)dx1 + F2(x1,x2,x3)dx2 + F3(x1,x2,x3)dx3
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la forma differenziale associata. Vale la seguente corrispondenza tra i due linguaggi introdotti
i. ω è esatta se e solo se F è conservativo,
ii. ω è chiusa se e solo se F è irrotazionale,
iii. U è una primitiva di ω se e solo se U è un potenziale di F.

TEOREMA 4.8 Sia ω una forma differenziale

ω = F1(x1,x2,x3)dx1 + F2(x1,x2,x3)dx2 + F3(x1,x2,x3)dx3

di classe C1(A) in A⊆ � 3 aperto, allora le seguenti affermazioni sono equivalenti:
i. ω è esatta, cioè esisteU ∈ C2(A) tale che∇U = (F1,F2,F3),
ii. per ogni coppia di curve γ1 e γ2 che hanno gli stessi estremi vale

Z

γ1

ω =
Z

γ2

ω cioè
Z

γ1

F · Tds =
Z

γ2

F · Tds

iii. per ogni curva chiusa γ vale
I

γ
ω = 0 cioè

I
F · Tds = 0

DIMOSTRAZIONE. La strategia della dimostrazione consiste nel provare che sono equivalenti le affermazioni ii e iii e, in un secondomomento che ii, è equiva-
lente ad i. Cominciamomostrando che i implica ii. Sia γ il sostegno di una curva chiusa di parametrizzazione regolare φ : [a,b]−→ � 3, possiamo scegliere due
punti p,q ∈ γ e considerare la curva chiusa come composta di due cammini differenti, γ1(p,q) e γ2(p,q) aventi p come punto iniziale e q come punto finale.
Per ipotesi vale

Z

γ1(p,q)
ω =

Z

γ2(p,q)
ω

quindi, sfruttando la proprietà di additività dell’integrale, abbiamo che
I

γ
ω =

Z

γ1(p,q)
ω +

Z

γ2(q,p)
ω =

Z

γ1(p,q)
ω –

Z

γ2(p,q)
ω = 0

Viceversa supponiamo che valga iii e consideriamo due curve regolari a tratti γ1 e γ2 aventi p e q come estremi. Concatenando i due cammini in modo da
percorrere prima γ1 e poi γ2 (il secondo in verso opposto) otteniamo γ∗ un cammino chiuso regolare a tratti. Allora vale

0 =
I

γ∗
ω =

Z

γ1

ω +
Z

γ–2

ω =
Z

γ1

ω –
Z

γ2

ω

con cui abbiamo provato l’equivalenza tra le affermazioni ii e iii.
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Adesso possiamo provare l’equivalenza tra i e ii, se supponiamo sia vera i, ii segue molto facilmente, infatti sia γ un generico cammino che connette p e q
avente parametrizzazione φ : [a,b]−→ A⊆ � 3 con φ(t) = (φ1(t),φ2(t),φ3(t)), allora possiamo scrivere

Z

γ
ω =

Z b

a

h
F1(φ(t))φ′1(t) + F2(φ(t))φ

′
2(t) + F3(φ(t))φ

′
3(t)

i
dt =

Z b

a
∇U(φ(t)) ·φ′(t))dt =

Z b

a

d
dtU(φ(t))dt = U(φ(b)) –U(φ(a)) = U(q) –U(p)

la tesi segue dall’arbitrarietà della curva. Per concludere la dimostrazione mostriamo che ii implica i, fissiamo un punto p ∈ A e definiamo il seguente campo
scalare

U(x,y,z) =
Z

γ
ω

dove γ è un cammino da P al generico punto (x1,x2,x3) ∈ A. Notiamo subito che, siccome l’integrale è indipendente dal particolare percorso (dipende solo
dagli estremi per ipotesi), la funzione è ben definita. A questo punto dobbiamo solo mostrare che il gradiente di U è il campo vettoriale dei coefficienti della
forma differenziale, quindi indichiamo con s il segmento di parametrizzazione (x1 + ht,x2,x3), con t ∈ [0, 1], e calcoliamo il rapporto incrementale

U(x1 + h,x2,x3) –U(x1,x2,x3)
h = 1h

Z

s
ω = 1h

Z 1

0
F(x1 + ht,x2,x3) · (h,0,0)dt =

1
h

Z 1

0
F1(x1 + ht,x2,x3)hdt =

1
h

Z h

0
F1(x1 +w,x2,x3)dw = F1(x1 + ξ(h),x2,x3)

passando al limite per h che tende a 0, ricordando che ξ(h)−→ 0 e che F1 è di classe C1 segue

∂1U(x1,x2,x3) = F1(x1,x2,x3)

ripetendo il ragionamento per le altre componenti del gradiente di U si può concludere che∇U = F.

OSSERVAZIONE 4.9 Il teorema 4.8 ci fornisce una caratterizzazione dei campi conservativi. Una conseguenza è che il campo gravitazionale è conservativo e i
suoi potenziali in � 3 \ {(0,0,0)} sono dati da

U(x1,x2,x3) =
GMm

[x21 + x
2
2 + x

2
3]1/2

+ c c ∈ �

TEOREMA 4.10 Seω è di classe C1(A) (cioè i coefficienti F1,F2,F3 sono funzioni in C1(A)) e seω è esatta alloraω è chiusa. Nel linguaggio dei campi vettoriali, se
F è di classe C1(A) e se F è conservativo allora F è irrotazionale.

DIMOSTRAZIONE. È immediata conseguenza del fatto che, se U ∈ C2(A), per il teorema di Schwarz si ha rot (∇(U)) = O.

OSSERVAZIONE 4.11 La condizione di irrotazionalità è solo una condizione necessaria ma non sufficiente affinchè un campo vettoriale sia conservativo. Infatti,
si consideri la forma differenziale ω ∈ C1(A), dove A = � 3 \ {x1 = x2 = 0,}, cos̀ı definita

ω = – x2
x21 + x

2
2
dx1 +

x1
x21 + x

2
2
dx2 ovvero il campo vettoriale F(x) = F1(x),F2(x),F3(x)

� =

–

x2
x21 + x

2
2
,

x1
x21 + x

2
2
,0



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Si verifica facilmente che

∂1F2(x) =
x22 – x

2
1

(x21 + x
2
2)
2 = ∂2F1(x) ∂1F3(x) = ∂3F1(x) = ∂2F3(x) = ∂3F2(x) = 0

quindi ω è chiusa in tutto A. Però ω non è esatta perchè non è verificata la condizione iii del teorema 4.8. Basta calcolare la circuitazione lungo la circonferenza
di parametrizzazione

γ : x(t) = (cos(t),sin(t),0) con t ∈ [0,2π] per cui vale
Z

γ
ω =

Z 2π

0
(cos2(t) + sin2(t))dt = 2π , 0

La condizione di irrotazionalità diventa sufficiente se si fanno ulteriori ipotesi su A. Fondamentale è introdurre gli aperti semplicemente connessi.

La definizione di insieme semplicemente connesso richiama concetti topologici che non vengono trattati in questo corso. Per questo diamo una definizione
intuitiva.

DEFINIZIONE 4.12 Un aperto A⊆ � 2 si dice semplicemente connesso se è connesso e se ogni curva semplice chiusa (anche detta curva di Jordan) è frontiera di
un insieme limitato interamente contenuta in A.

OSSERVAZIONE 4.13 La precedente definizione equivale a richiedere che l’insieme A non ha buchi.

Il piano � 2 privato di una retta non è semplicemente connesso perché non è connesso. Non sono semplicemente connessi in � 2 il piano privato di un punto
oppure una corona circolare; il piano � 2 privato di una semiretta, i semipiani, i campi circolari, i campi rettangolari sono semplicemente connessi in � 2.

DEFINIZIONE 4.14 Un aperto A⊆ � 3 si dice semplicemente connesso se è connesso e se ogni curva semplice chiusa (anche detta curva di Jordan) è il bordo di
una superficie interamente contenuta in A.

In � 3 non si può dire che un insieme semplicemente connesso non ha buchi. Infatti, in � 3 è semplicemente connesso lo spazio privato di un punto oppure lo
spazio privato di un disco o di una sfera piena. Lo spazio � 3 privato di una retta non è semplicemente connesso.

OSSERVAZIONE 4.15 Le precedenti definizioni equivalgono a richiedere che ogni curva di Jordan possa essere deformata, con continuità, e contratta in un punto
senza ”uscire” da A ovvero senza mai toccare i punti del complementare di A.

DEFINIZIONE 4.16 A⊆ � n si dice stellato rispetto ad un suo punto p ∈ A se per ogni x ∈ A il segmento xp è interamente contenuto nell’insieme A.

OSSERVAZIONE 4.17 Si noti che
i. se A⊆ � n è convesso, allora è stellato rispetto ogni suo punto,
ii. se A⊆ � n è stellato, allora è semplicemente connesso.
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TEOREMA 4.18 (DI J.H. POINCARÉ) Sia ω una forma differenziale

ω = F1(x1,x2,x3)dx1 + F2(x1,x2,x3)dx2 + F3(x1,x2,x3)dx3

di classe C1(A) in A⊆ � 3 aperto stellato rispetto a un suo punto. Allora ω è esatta se e solo se è chiusa, oppure F è conservativo se e solo se è irrotazionale.

DIMOSTRAZIONE. Osserviamo subito che se ω è una forma differenziale esatta allora è sempre anche una forma chiusa, quindi possiamo limitarci a provare
l’implicazione logica inversa, mostrando l’esistenza di una funzione potenziale della forma differenziale.
Supponiamo che A sia un aperto stellato rispetto a un suo punto che, per semplicità, supponiamo sia l’origine O. Sia γp il cammino di parametrizzazione
φ(t) = t(x1,x2,x3), con t ∈ [0, 1], che unisce O al generico punto x = (x1,x2,x3) ∈ A, si noti che tale cammino è interamente contenuto nell’aperto, grazie
all’ipotesi che A sia stellato. A questo punto introduciamo la funzione

U(x1,x2,x3) =
Z

γx
ω =

Z 1

0
F(φ(t)) ·φ′(t)dt =

Z 1

0
F(t(x1,x2,x3)) · (x1,x2,x3)dt =

Z 1

0

�x1F1(t(x1,x2,x3)) + x2F2(t(x1,x2,x3)) + x3F3(t(x1,x2,x3))
�dt

Dobbiamo provare che U è un potenziale di ω, quindi calcoliamo le sue derivate parziali. È possibile scambiare le operazioni di derivazione e di integrazione
(cf. teorema 3.53 di derivazione sotto segno di integrale che è stato discusso nella sezione 3.4) da cui otteniamo che

∂1U(x1,x2,x3) =
Z 1

0

�F1(t(x1,x2,x3)) + tx1∂1F1(t(x1,x2,x3)) + tx2∂1F2(t(x1,x2,x3)) + tx3∂1F3(t(x1,x2,x3))
�dt

Ora grazie all’ipotesi che ω è chiusa, cioè che il campo vettoriale F ha rotore nullo, abbiamo che

∂1F2(x1,x2,x3) = ∂2F1(x1,x2,x3) ∂1F3(x1,x2,x3) = ∂3F1(x1,x2,x3)

e ricordando il teorema di derivazione di funzioni composte e il teorema fondamentale del calcolo integrale, possiamo scrivere che

∂1U(x1,x2,x3) =
Z 1

0

�F1(t(x1,x2,x3)) + tx1∂1F1(t(x1,x2,x3)) + tx2∂2F1(t(x1,x2,x3)) + tx3∂3F1(t(x1,x2,x3))
�dt =

Z 1

0

d
dt

�tF1(t(x1,x2,x3))
�dt = F1(x1,x2,x3)

Reiterando il ragionamento appena fatto per le altre derivate parziali abbiamo la conclusione∇U = F.
La dimostrazione del teorema di Poincaré è costruttiva in quanto fornisce un metodo per costruire i potenziali U di un campo vettoriale irrotazionale in un
aperto stellato. Vedremo negli esercizi che è anche possibile costruire tali potenziali partendo direttamente dalle relazioni ∂1U = F1, ∂2U = F2 e ∂3U = F3, con
successive integrazioni.
Nel prossimo capitolo dimostreremo che il teorema di Poincarè vale in ipotesi più generali, cioè per insiemi semplicemente connessi. Sussiste infatti il seguente

TEOREMA 4.19 Sia ω una forma differenziale

ω = F1(x1,x2,x3)dx1 + F2(x1,x2,x3)dx2 + F3(x1,x2,x3)dx3

di classe C1(A) in A⊆ � 3 aperto semplicemente connesso. Allora ω è esatta se e solo se è chiusa (oppure F è conservativo se e solo se è irrotazionale).
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Come procediamo se ω è chiusa in un aperto A⊆ � 2 connesso ma non semplicemente connesso? Supponiamo che sia A = � 3 \{x1 = x2 = 0} e scegliamo una
curva regolare (o regolare a tratti) chiusa, che gira intorno alla lacuna. Se

I

γ
ω =

(
= 0 allora F è conservativo in A
, 0 allora F non è conservativo in A

Se, in A, prendiamo in esama la forma

ω = 2x1
x21 + x

2
2
dx1 +

2x2
x21 + x

2
2
dx2

possiamo verificare che ω è chiusa dato che

∂1F2 = ∂1
2x2
x21 + x

2
2
= – 4x1x2

(x21 + x
2
2)
2 = ∂2

2x1
x21 + x

2
2
= ∂2F1

Calcoliamo la circuitazione di ω lungo la circonferenza di centro O e raggio 1, contenuta nel piano {x3 = 0}, avente equazioni parametriche

x(ϑ) = (cos(ϑ),sin(ϑ),0) con ϑ ∈ [0,2π]

e ricaviamo che
I

γ
ω =

Z 2π

0
[2cos(ϑ)(–sin(ϑ)) + 2sin(ϑ)cos(ϑ)]dϑ = 0

Ne segue che ω è esatta in � 3 \ {x1 = x2 = 0} ed è possibile verificare che le sue primitive sono U(x) = ln
�
x21 + x

2
2
�
+ c, c ∈ � .
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4.4 Area di una superficie e integrali su superfici

Quando abbiamo definito la lunghezza di una curva regolare γ, abbiamo definito L(γ) come l’estremo superiore della lunghezza di tutte le possibili poligo-
nali inscritte nella curva. Si potrebbe pensare di seguire lo stesso procedimento per le superfici cioè di considerare tutte le possibili superfici poliedriche (per
esempio a facce triangolari) inscritte nella superficie e quindi di definire l’area come l’estremo superiore delle aree delle superfici poliedriche inscritte. Questo
procedimento non funziona, infatti anche per superfici molto semplici questo estremo superiore può essere +∞ cioè si presenta il fenomeno di Schwarz. Per
un esempio vedi [?, p.488] o [?, p.202]. Sostituiamo le superfici poliedriche inscritte con le superfici poliedriche appoggiate sulla superficie e definiamo l’area
di una superficie regolare come l’estremo inferiore dell’area delle superfici poliedriche tangenti alla superficie. Per il calcolo dell’area di una superficie regolare
sussiste il seguente

DEFINIZIONE 4.20 (area di una superficie regolare) Sia x : K⊆ � 2 −→ � 3 una superficie regolare e siaÎ il suo sostegno. L’area della superficie è data da

(4.5) Area(Î) :=
"

K
|∂1x(u)∧ ∂2x(u)|du1du2 o equivalentemente Area(Î) :=

"

K

p
EG– F2du1du2

SeÎ ha equazione cartesiana x(u) = (u1,u2, f(u)), u ∈ K, allora

(4.6) Area(Î) =
"

K

q
1 + |∇f(x)|2dx1dx2

Diamo un significato intuitivo alla formula (4.6). Consideriamo una superficie in forma cartesiana x(u) = (u1,u2, f(u)), con u ∈ K. Suddividiamo K in K1, ...,Kn
domini privi di punti interni in comune e sia ui ∈ int(Ki). A tale suddivisione corrisponde una suddivisione della superficie in superfici Îi con pi = (ui, f(ui)) ∈ Îi.
Indichiamo con Í i la porzione di piano tangente Tpi (Î) alla superficie nel punto pi che si proietta su Îi. Detto αi l’angolo formato tra il versore e3 = (0,0, 1) e
∂1x∧ ∂2u si ha

Area(Í i) = Area(Îi) cosαi ovvero du1du2 = cos(αi)dσ

da cui segue che

cos(αi) = n3 =
1

h
1 + |∇f(ui)|2

i1/2

Come conseguenza si ottiene che

dσ =
h
1 + |∇f(u)|2

i1/2 du

che mostra come
h
1 + |∇f(ui)|2

i–1/2 sia un fattore di proiezione locale per le aree. Sia γ una curva regolare semplice contenuta nel piano {x2 = 0}, di equazioni
parametriche

(x1,x3) =
x1(t),x3(t)

� t ∈ [a,b]
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con x1(t)> 0 in (a,b). La rotazione di γ di un angolo θ0 intorno all’asse x3 genera una superficie di equazioni parametriche

(4.7) x(t,θ) = x1(t,θ),x2(t,θ),x3(t,θ)
� = x1(t)cos(θ),x1(t) sin(θ),x3(t)

� (t,θ) ∈ [a,b]× [0,θ0]

La superficie Î in (4.7) è detta superficie di rotazione. Si noti che Î è una superficie regolare dato che

∂1x(t,θ) = (x′1(t)cos(θ),x
′
1(t) sin(θ),x

′
3(t))

∂2x(t,θ) = (–x1(t) sin(θ),x1(t)cos(θ),0)
[∂1x∧ ∂2x](t,θ) = (–x1(t)x′3(t)cos(θ),–x1(t)x′3(t)sin(θ),x1(t)x′3(t))
∥∂1x∧ ∂2x∥2 = x1(t)

h
(x′1(t))

2 + (x′3(t))
2i > 0 per(t,θ) ∈ (a,b)× (0,θ0)

Applicando la (4.5) si trova che l’area della superficie di rotazione Î è data da

(4.8) Area(Î) = θ0
Z b

a
x(t)

h
(x′(t))2 + (y′(t))2

i1/2 dt

Dalla (4.8) e dalla definizione di baricentro di una curva si ha

TEOREMA 4.21 (di Guldino per le superfici di rotazione) L’area della superficie di rotazione Î in (4.7) è data dal prodotto della lunghezza della curva φ per
la lunghezza del cammino percorso dal baricentro.

DIMOSTRAZIONE. Infatti possiamo riscrivere la (4.8) nel seguente modo

Area(Î) = θ0
Z

γ
xds = θ0B1L(γ) dove B1 =

1
L(γ)

Z

γ
xds

con B1 che rappresenta la distanza del baricentro dall’asse di rotazione e L(γ) che indica la lunghezza di γ.

ESEMPIO 4.22 Facendo ruotare una circonferenza intorno ad una retta che non la interseca, si ottiene una superficie chiamata toro. Detta d la distanza del
centro della circonferenza dalla retta, e detto R il raggio della circonferenza, si ricava che l’area della superficie del toro è 4π2dR. Oppure una sfera di raggio R è
ottenuta facendo ruotare una semicirconferenza di raggio R intorno al suo diametro. Quindi ricaviamo che l’area della sfera è data da 2π · 2R/π ·πR = 4πR2.

Introduciamo ora un cambiamento di coordinate

u(s) = u1(s1,s2),u2(s1,s2)
� s = (s1,s2) ∈ S⊆ � 2

e supponiamo che
i. u ∈ C1(int(S),� 2),
ii. det[Ju] = det

"
∂1u1(s) ∂2u2(s)
∂1u2(s) ∂2u2(s)

#
, 0 per ogni s ∈ int(S),

iii. l’applicazione u è una corrispondenza biunivoca tra S e T = Im(S).
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Allora la superficie

x(s) = x1(u(s)),x2(u(s)),x3(u(s))
� s ∈ S

è ancora una superficie regolare. È importante osservare che l’area di una superficie risulta essere invariante per cambiamenti di coordinate.
Sia x : K⊆ � 2 −→ � 3 una superficie regolare e sia Î il suo sostegno. Se h(x) = h(x1,x2,x3) è una funzione reale definita su Î, si definisce integrale di superficie
di h su Î la seguente quantità

"

Î
h(x)dσ =

"

K
h(x(u1,u2))∥∂1x(u1,u2)∧ ∂2x(u1,u2)∥du1du2

Anche gli integrali di superficie non dipendono dalla rappresentazione parametrica della superficie. Se Î ha equazione cartesiana u1,u2, f(u1,u2)
�, con u ∈ K,

allora l’integrale di superficie è dato da

(4.9)
"

Î
h(x)dσ =

"

K
h(u1,u2, f(u1,u2))

h
1 + |∇f(u1,u2)|2

i
du1du2

4.5 Baricentro e momento d’inerzia di una superficie

Sia x : K ⊆ � 2 −→ � 3 una superficie regolare e sia Î = x(K) il suo sostegno. Sia δ : Î ⊆ � 3 −→ � la densità superficiale di una massa distribuita su Î. Allora
possiamo definire

m =
"

Î
δ(x)dσ

la massa totale della superficie. Il centro di massa, o baricentro, della superficie è il punto B dato da

B = 1
m

 "

Î
x1δ(x)dσ,

"

Î
x2δ(x)dσ,

"

Î
x3δ(x)dσ

!

Il momento d’inerzia di Î rispetto rispetto alla retta r è
"

Î
d2(x)δ(x)dσ

con d(x) := d(x, r) distanza del punto x dalla retta r.
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4.6 Superfici orientabili e flussi

La scelta di n o –n come versore normale positivo alla superficie regolare Î corrisponde a scegliere una ”faccia” della superficie, quella su cui punta n, che
chiameremo faccia positiva.

DEFINIZIONE 4.23 Una superficie regolare x : K⊆ � 2 −→ � 3 con sostegnoÎ si dice orientabile se per ogni curva chiusaÐ : [a,b]→ � 3 con sostegno γ ⊂ Î si
ha n(Ð (a)) = n(Ð (b)). Una superficie regolare orientabile si dice orientata se è stata scelta una delle due direzioni del versore normale che chiameremo normale
positiva. La faccia dalla quale esce il versore normale positivo è la faccia positiva.

In altre parole, una superficie Î è orientabile se il versore normale n(p) varia con continuità su Î; o anche, una superficie è orientabile se possiede due facce
(che posso colorare con colori diversi). La sfera o la superficie laterale di un cilindro sono superfici orientabili. Si capisce bene il concetto di superficie orientabile
se si conosce un esempio di superficie non orientabile. Il più famoso è il nastro di Möbius (cf. figura 15): immaginiamo di partire da p0 ∈ Î e di muoverci lungo
il meridiano centrale. Dopo un giro ci troviamo in p0.... ma sul lato opposto!

DEFINIZIONE 4.24 Sia K ⊆ � 2 la chiusura di un aperto connesso. Si definisce superficie regolare con bordo una superficie regolare x : K −→ � 3 iniettiva in
tutto K, la cui matrice jacobiana ha rango 2 in tutto K. L’insieme dei punti diÎ descritto dal punto p = x(u) quando u descrive la frontiera ∂K di K si dice bordo di
Î, relativamente alla parametrizzazione x, e si indica con ∂xÎ. Con la scrittura ∂Î = ∩x∂xÎ si indica la parte della superficie che è bordo rispetto a qualunque
parametrizzazione della superficie, tale insieme è il bordo della superficieÎ.
Una superficie orientataÎ induce un’orientazione positiva sul bordo ∂Î: diremo che ∂Î è orientato positivamente se un osservatore posto sulla faccia positiva
diÎ che percorre ∂Î nel verso positivo lasciaÎ alla sua sinistra. Il contorno cos̀ı orientato viene indicato con +∂Î o ∂+Î.

Se Î ha rappresentazione parametrica x : K ⊆ � 2 −→ � 3 biunivoca tra K e Î allora x(∂K) = ∂Î. Nel caso della semisfera Î : x21 + x
2
2 + x

2
3 = 1,x3 ≥ 0, il bordo

coincide con il cerchio massimo x21 + x
2
2 = 1,x3 = 0. Se scegliamo come faccia positiva quella esterna allora l’orientamento positivo su ∂Î è quello antiorario se

visto dall’alto.

DEFINIZIONE 4.25 Una superficie regolare è chiusa se è priva di bordo.

La sfera, il toro o un ellissoide sono superfici chiuse.

TEOREMA 4.26 Una superficie è connessa, chiusa e orientabile se e solo se è frontiera di un aperto connesso limitato di � 3.

Per le superfici chiuse, connesse e orientabili vale un teorema analogo a quello di Jordan per le curve: suddividono lo spazio � 3 in due parti, una limitata (interno
della superficie) e una non limitata (esterno della superficie).
L’otre di Klein è un esempio famoso di superficie chiusa, non orientabile, perchè non è frontiera di un aperto connesso limitato di � 3.
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Figura 15: Nastro di Möbius e Toro

Sia F(x) = F1(x1,x2,x3),F2(x1,x2,x3),F3(x1,x2,x3)
� un campo vettoriale di classe C0(A), sia x : K⊆ � 2 −→ � 3 una superficie regolare orientabile con sostegno

Î⊆ A. Sia n il versore normale alla superficie. L’integrale di superficie
"

Î
(F ·n)dσ

si chiama flusso ÐÎ del campo F attraverso Î nella direzione n. Il flusso è invariante per cambi di parametrizzazione equivalenti e cambia segno se cambia il
verso di n. Ricordando che n = ∂1x∧ ∂2x∥∂1x∧ ∂2x∥

si ricava

"

Î
(F ·n)dσ =

"

K
F(x(u)) · (∂1x∧ ∂2x)du1du2
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5 ANALISI VETTORIALE

In questo capitolo presentiamo i risultati che, tradizionalmente, costituiscono i principali risultati che vanno sotto il nome di analisi vettoriale. La trattazione
è decisamente lacunosa, rispetto ad un testo tradizionale e per la difficoltà dei concetti da affrontare e per alcune idee ostiche che compaiono in alcune
dimostrazioni. Per una presentazione più organica e completa rimandiamo ai molti e ottimi testi citati in bibliografia, in ogni caso desideriamo evidenziare la
presenza (alla fine del capitolo) di alcuni risultati interessanti che, usualmente, non sono inclusi in un libro di analisi matematica, ma che possono arricchire ed
essere utili.

5.1 Analisi vettoriale nel piano

TEOREMA 5.1 (FORMULE DI GAUSS-GREEN (G. GREEN)) SiaD⊆ � 2 un dominio con frontiera regolare a tratti e A,B due funzioni di classe C1 (A), con A⊆ � 2

aperto contenenteD, allora vale

(5.1)
Z

D
∂1B(x1,x2)dx1dx2 =

Z

∂+D
B(x1,x2)dx2

Z

D
∂2A(x1,x2)dx1dx2 = –

Z

∂+D
A(x1,x2)dx1

DIMOSTRAZIONE. Dimostriamo il teorema supponendo che sia possibile descrivere il dominio nei seguenti due modi, cioè che esistano quattro funzioni
continue e di classe C1 a tratti tali che

D = {(x1,x2) : x1 ∈ (a,b),c(x1)< x2 < d(x1)} = {(x1,x2) : a(x2)< x1 < b(x2),x2 ∈ (c,d)}⊆ � 2

Per dimostrare la tesi verificheremo direttamente l’uguaglianza degli integrali che compaiono in (5.1). Cominciamo dal primo integrale in due dimensioni. Grazie
alle proprietà del dominio D e alle formule di riduzione degli integrali possiamo scrivere che

Z

D
∂1B(x1,x2)dx1dx2 =

Z d

c



Z b(x2)

a(x2)
∂1B(x1,x2)dx1


dx2 =

Z d

c

�B(b(x2),x2) – B(a(x2),x2)
�dx2

e, analogamente, vale
Z

D
∂2A(x1,x2)dx1dx2 =

Z b

a



Z d(x1)

c(x1)
∂2A(x1,x2)dx2


dx1 =

Z b

a
[A(x1,d(x1)) – A(x1,c(x1))]dx1

L’integrale di linea richiede un po’ di lavoro in più, infatti dobbiamo scrivere una parametrizzazione, regolare a tratti e correttamente orientata, del bordo. Per
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quanto abbiamo ipotizzato su D possiamo affermare che ∂+D = ∪4i=1γi = ∪4i=1ηi dove gli archi regolari sono descritti dalle seguenti parametrizzazioni

γ1 = {φ1(t) = (t,c(t)) : t ∈ [a,b]} φ′1(t) = (1,c
′(t))

γ2 = {(b, t) : t ∈ [c(b),d(b)]} φ′2(t) = (0, 1)
γ3 = {φ3(t) = (–t,d(–t)) : t ∈ [–b,–a]} φ′3(t) = (–1,–d

′(–t))
γ4 = {φ4(t) = (a,–t) : t ∈ [–d(a),–c(a)]} φ′4(t) = (0,–1)
η1 = {ψ1(t) = (t,c) : t ∈ [a(c),b(c)]} ψ′1(t) = (1,0)
η2 = {ψ2(t) = (b(t), t) : t ∈ [c,d]} ψ′2(t) = (b

′(t), 1)
η3 = {ψ3(t) = (–t,d) : t ∈ [–b(d),–a(d)]} ψ′3(t) = (–1,0)
η4 = {ψ4(t) = (a(–t),–t) : t ∈ [–d,–c]} ψ′4(t) = (–a

′(–t),–1)

Ricordando la definizione di integrale di linea di una forma differenziale abbiamo che
Z

∂+D
A(x1,x2)dx1 =

¼

i

Z

γi

A(x1,x2)dx1 =
Z b

a
A(t,c(t))dt –

Z –a

–b
A(–t,d(–t))dt =

Z b

a
A(t,c(t))dt +

Z a

b
A(s,d(s))ds =

Z b

a
[A(t,c(t)) – A(t,d(t))]dt

Z

∂+D
B(x1,x2)dx2 =

4¼

i=1

Z

ηi

B(x1,x2)dx2 =
Z d

c
B(b(t), t)dt –

Z –c

–d
B(a(–t),–t)dt =

Z d

c
B(b(t), t)dt +

Z c

d
B(a(t), t)dt =

Z d

c
[B(b(t), t) – B(a(t), t)]dt

le ultime relazioni scritte completano la dimostrazione delle formule (5.1).

TEOREMA 5.2 (DEL ROTORE (G.G. STOKES)) Sia D ⊆ � 2 un dominio aperto con frontiera regolare a tratti e F ∈ C1(A,� 2) un campo vettoriale definito su un
aperto A contenenteD, allora vale

Z

D
[rot(F)]3 dx1dx2 =

Z

∂+D
[F · T](x1,x2)ds

DIMOSTRAZIONE. Come noto vale

rot(F) =
∂2F3 – ∂3F2,∂3F1 – ∂1F3,∂1F2 – ∂2F1

� = 0,0,∂1F2 – ∂2F1
�

quindi la terza componente del vettore rotore è [rot(F)]3 = ∂1F2 – ∂2F1. Grazie alle formule (5.1) (pensando B = F2 e A = F1) possiamo scrivere
Z

D
[rot(F)]3 dx1dx2 =

Z

D
(∂1F2 – ∂2F1)dx1dx2 =

Z

∂+D
F1dx1 + F2dx2 =

Z

∂+D
[F · T](x1,x2)ds

e l’ultima uguaglianza segue dalla definizione di integrale di linea, quindi l’affermazione è provata.
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TEOREMA 5.3 (DELLA DIVERGENZA (J.C.F. GAUSS)) SiaD⊆ � 2 un dominio aperto con frontiera regolare a tratti e F ∈ C1(A,� 2) un campo vettoriale definito
su un aperto A contenenteD, allora

(5.2)
Z

D
div(F) (x1,x2)dx1dx2 =

Z

∂+D
[F ·n](x1,x2)ds

DIMOSTRAZIONE. Anche il teorema della divergenza segue dalle formule di Gauss-Green, infatti ponendo (B,A) = F le (5.1) sommate ci permettono di scrivere
Z

D
div[F] (x1,x2)dx1dx2

Z

D
[∇ · F] (x1,x2)dx1dx2 =

Z

D
(∂1F1+∂2F2)dx1dx2 =

Z

∂+D
F1dx2–F2dx1 =

Z

∂+D
(–F2,F1)·(T1,T2)ds =

Z

∂+D
(F1,F2)·(–T2,T1)ds =

Z

∂+D
F·nds

visto che la normale uscente da D, cioè il vettore n, può essere ottenuto dal vettore T, il versore tangente alla frontiera ∂D percorsa in senso antiorario, tramite
una rotazione di π/2 in senso orario.

DIMOSTRAZIONE. Includiamo a questo punto della discussione una dimostrazione alternativa del teorema della divergenza nel piano. Per raggiungere lo sco-
po considereremo un dominio particolarmente semplice descritto dal seguente disegno.

γ2

γ1

γ3

γ4

D⊆ � 2?

-

6

	

?

� -

B
BM

Mettiamo qualche puntino sulle i: innanzitutto supponiamo che la frontiera del dominio D⊆ � 2 sia una curva chiusa semplice, unione di quattro curve di classe
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C1 aventi le seguenti parametrizzazioni:

γ1 = {(a,–t), t ∈ [–d(a),–c]}
γ2 = {(t,c), t ∈ [a,b]}
γ3 = {(b, t), t ∈ [c,d(c)]}
γ4 = {(–t,d(–t)), t ∈ [–b,–a]}

con d ∈ C1[a,b] funzione strettamente crescente tale che d(x1)≥ c.
Osserviamo subito che D è un dominio normale rispetto ad entrambe le variabili e che possiede un solo ”lato” non rettilineo: γ4. Le varie frecce rappresentate
nel disegno indicano i versori normali esterni al dominio su γi, i = 1, ...,4, e il verso antiorario di percorrenza del bordo ∂D, come espresso anche dalle para-
metrizzazioni dei singoli cammini. Entriamo nel vivo della seconda dimostrazione ricordando la definizione di alcuni oggetti che useremo. Scrivendo il campo
vettoriale per esteso F(x1,x2) =

F1(x1,x2),F2(x1,x2)
� possiamo scrivere la sua divergenza per esteso nel seguente modo

divF(x1,x2)
� = ∇ · F(x1,x2)

� = ∂1F1(x1,x2) + ∂2F2(x1,x2)

Inoltre possiamo scrivere i versori ni (i = 1, ...,4), le normali uscenti dal dominio sui tratti che compongono la frontiera ∂D. Dal disegno segue immediatamente
che

n1 = (–1,0) n2 = (0,–1) n3 = (1,0)

Il calcolo di n4 è leggermente più elaborato, poiché γ4 = {(–t,d(–t)) , t ∈ [–b,–a]}, sappiamo calcolare facilmente il versore tangente alla curva che si scrive nel
seguente modo

T4 =

�
–1,–d′(–t)

�

p
1 + |d′(–t)|2

a questo punto si ottiene il versore normale alla curva semplicemente scambiando le componenti e cambiandone di segno una nel seguente modo

n4 =

�
–d′(–t), 1

�

�
1 + |d′(–t)|2

�1/2

ci si può convincere che sia la scelta giusta provando a ragionare sulla figura precedente o scrivendo la matrice relativa alla rotazione di π/2 in senso orario.
A questo punto possiamo cominciare a scrivere per esteso gli integrali coinvolti in (5.2). Usando il fatto che D è un dominio normale rispetto ad entrambe le
direzioni degli assi coordinati e le proprietà di additività dell’integrale possiamo scrivere

Z

D
∇ · F(x1,x2)dx1dx2 =

Z

D
(∂1F1(x1,x2) + ∂2F2(x1,x2))dx1dx2 =

Z

D
∂1F1(x1,x2)dx1dx2 +

Z

D
∂2F2(x1,x2)dx2dx1

=
Z b

a



Z d(x1)

c
∂2F2(x1,x2)dy


dx1 +

Z d(a)

c



Z b

a
∂1F1(x1,x2)dx1


dx2 +

Z d(b)

d(a)



Z b

d–1(x2)
∂1F1(x1,x2)dx1


dx2

252



�� ��

Si noti, nell’ultimo passaggio, l’uso della funzione d–1, l’inversa di d, per scrivere l’integrale di ∂1F1 integrando prima in x1 e poi in x2.
Ricordando il teorema fondamentale del calcolo integrale, le proprietà di additività e usando la sostituzione y = d(x) nell’ultimo termine, otteniamo le seguenti
relazioni

Z

D
divF(x1,x2)

�dx1dx2 =
Z b

a

F2(x1,d(x1)) – F2(x1,c)
�dx1 +

Z d(a)

c

F1(b,x2) – F1(a,x2)
�dx2 +

Z d(b)

d(a)

Z b

d–1(x2)
∂1F1(x1,x2)dx1dx2

=
Z b

a
–F2(x1,c)dx1 +

Z d(a)

c
F1(b,x2)dx2 +

Z d(a)

c
–F1(a,x2)dx2 +

Z b

a
F2(x1,d(x1))dx1 +

Z d(b)

d(a)

�
F1

b,x2
� – F1

�
d–1(x2),x2

��
dx2

=
Z b

a
–F2(x1,c)dx1 +

Z d(b)

c
F1(b,x2)dx2 +

Z d(a)

c
–F1(a,x2)dx2 +

Z b

a

�
F2(x1,d(x1)) – F1 (x1,d(x1))d′(x1)

�
dx1

A questo punto procediamo con l’integrale curvilineo. Ricordando la definizione di integrale di linea e che ∂D è unione di 4 curve regolari, possiamo scrivere le
seguenti uguaglianze.

Z

∂D

F(x1,x2) ·n
�ds =

Z –c

–d(a)
–F1(a,–t)dt +

Z b

a
–F2(t,c)dt +

Z d(b)

c
F1(b, t)dt +

Z –a

–b

–F1(–t,d(–t))d′(–t) + F2(–t,d(–t))�
1 + |d′(–t)|2

�1/2
�
1 + |d′(–t)|2

�1/2 dt

=
Z d(a)

c
–F1(a,s)ds +

Z b

a
–F2(t,c)dt +

Z d(b)

c
F1(b, t)dt +

Z b

a

�
F2(s,d(s)) – F1(s,d(s))d′(s)

�
ds

dove abbiamo usato anche il cambio di variabile s = –t in alcuni degli integrali di linea (si ricordi che gli integrali di linea che non coinvolgono il versore tangente
non cambiano di segno cambiando parametrizzazione). Dal confronto delle uguaglianze ottenute segue la tesi.

OSSERVAZIONE 5.4 Dopo aver provato il teorema (per ben due volte!) possiamo fare alcune semplici osservazioni. Il caso di un triangolo è un caso particolare
dell’enunciato provato, basta considerare la funzione d affine con d(a) = c. Si noti che nella dimostrazione abbiamo fatto uso dell’invertibilità di d: se d non
è strettamente crescente (o decrescente) è possibile ugualmente usare la dimostrazione precedente spezzando il dominio in maniera opportuna, come nel
disegno che segue.

D1 D2 D3

In generale vogliamo ricondurci, in qualche modo, al caso trattato nel teorema 5.3 e per farlo procediamo nel seguente modo. Consideriamo tutti i punti
{pi}i=1,...,n della frontiera di D che delimitano i vari tratti di classe C1 e tracciamo le rette parallele agli assi coordinati passanti per ognuno dei punto pi. In questo
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modo abbbiamo tracciato un reticolo irregolare sul nostro dominio, e D resta suddiviso in rettangoli interni e sottodomini con tratti curvilinei. Osserviamo che
il teorema della divergenza vale su tutti questi nuovi sottodomini ottenuti, nel caso siano dei rettangoli o dei domini come quelli considerati nei precedenti
disegni (si veda la proposizione 5.3). Poiché l’integrale della divergenza è la somma degli integrali sui sottodomini (per l’additività dell’integrale), mentre nei vari
integrali curvilinei di flusso si elidono tutti i contributi ”interni”, la tesi è provata, almeno per tutti i domini del piano per cui si sappia fare la divisione descritta
sopra.

A questo punto abbiamo gli strumenti necessari per generalizzare il teorema di Poincaré agli aperti semplicemente connessi del piano.

TEOREMA 5.5 Sia F un campo vettoriale di classeC1(A,� 2) definito in un apertoA semplicemente connesso. Allora F è conservativo se e solo se è irrotazionale
in A.

DIMOSTRAZIONE. La condizione necessaria segue dal teorema 4.10. Occorre provare la condizione sufficiente che è equivalente a provare che, per ogni curva
regolare a tratti, chiusa e semplice γ, risulta

Z

γ
F · Tds = 0

e applicare il teorema4.8 che caratterizza i campi conservativi. Fissata γ, sia D⊂ A il dominio limitato che ha γ come frontiera. Tale dominio esiste perché A ”non
ha buchi”. L’esistenza di D può essere dimostrata rigorosamente e questo risultato prende il nome di teorema di Jordan. Supponiamo che γ abbia orientamento
antiorario. Dal teorema di Stokes

Z

γ
F · Tds =

Z

∂+D
F · Tds =

Z

D
[rot(F)]3 dx1dx2 = 0

e l’ultimo integrale vale zero perchè F è irrotazionale.

5.2 Analisi vettoriale nello spazio

Adesso possiamo enunciare il teorema della divergenza nella sua versione più generale.

TEOREMA 5.6 (DELLA DIVERGENZA (DIM.V.OSTROGRADSKIJ E J.C.F. GAUSS)) SiaD⊆ � n unaperto limitato con frontiera di classeC1 a tratti e siaFun campo
vettoriale di classe C1 A;� n� con A un aperto contenente la chiusura diD, allora vale

(5.3)
Z

D
div[F] (x)dx =

Z

D
∇ · F(x)dx1dx2dx3 =

Z

∂D
(F ·n)(x)dσ

DIMOSTRAZIONE. da scrivere
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OSSERVAZIONE 5.7 Se Î il sostegno di una superficie regolare con rappresentazione parametrica x : D⊆ � 2 −→ � 3 con x(u) = (x1(u1,u2),x2(u1,u2),x3(u1,u2))
biunivoca tra D e Î allora x(∂D) = ∂Î . Se γ(t) = (u1(t),u2(t)) è una rappresentazione parametrica della frontiera ∂D allora x(γ(t)) è una rappresentazione
parametrica del bordo ∂Î.

TEOREMA 5.8 (DEL ROTORE (DI G.G. STOKES)) Sia (x,D) una superficie regolare semplice di classeC2 di sostegnoÎ⊆ � 3 eF ∈ C1(A,� 3) un campo vettoriale
definito su un aperto A tale cheÎ⊆ A⊆ � 3, allora vale

Z

Î
[rot(F) ·n](x)dσ =

Z

∂+Î
(F · T)(x)ds

DIMOSTRAZIONE. La dimostrazione consiste essenzialmente nello scrivere per esteso i due integrali che compaiono nella tesi, usare attentamente il teore-
ma di derivazione delle funzioni composte, e verificare la loro uguaglianza, grazie al teorema di Stokes nel piano precedentemente provato (teorema 5.2).
Cominciamo con l’integrale di superficie

Z

Î
[rot(F) ·n]dσ =

Z

D
rot(F)(x(u)) · (∂1x(u)∧ ∂2x(u))du

=
Z

D

�
∂2F3 – ∂3F2,∂3F1 – ∂1F3,∂1F2 – ∂2F1

� · ∂1x2∂2x3 – ∂1x3∂2x2,∂1x3∂2x1 – ∂1x1∂2x3,∂1x1∂2x2 – ∂2x1∂1x2
�du

=
Z

D
(∂2F3 – ∂3F2)(∂1x2∂2x3 – ∂1x3∂2x2) + (∂3F1 – ∂1F3)(∂1x3∂2x1 – ∂1x1∂2x3) + (∂1F2 – ∂2F1)(∂1x1∂2x2 – ∂2x1∂1x2)du

adesso affrontiamo l’integrale di linea, assumendo di avere la seguente parametrizzazione regolare del bordo ∂+D⊆ � 2 γ(t) = u(t) = (u1(t),u2(t)), con t ∈ [a,b].
Dall’osservazione 5.7 sappiamo che x(γ(t)) è una parametrizzazione regolare a tratti del bordo di Î, quindi, ricordando la definizione di integrale di linea, il
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teorema di Schwarz e il teorema 5.2, abbiamo
Z

∂+Î
(F · Tx)ds =

Z

∂+Î
F(x(γ(t))) · ddtx(γ(t))dt =

Z b

a
F(x(γ(t))) ·

�
∇x1(γ(t)) · u′(t),∇x2(γ(t)) · u′(t),∇x3(γ(t)) · u′(t)

�
dt

=
Z b

a

�
F(x(γ(t))) · (∂1x1(γ(t)),∂1x2(γ(t)),∂1x3(γ(t))),F(x(γ(t))) · (∂2x1(γ(t)),∂2x2(γ(t))∂2x3(γ(t))),0

�
· γ ′(t)dt

=
Z

∂+D
(F · ∂1x,F · ∂2x,0) · Tγds =

Z

D
rot(F · ∂1x,F · ∂2x,0) · e3du =

Z

D
[∂1(F · ∂2x) – ∂2(F · ∂1x)]du

=
Z

D
[∂1(F1∂2x1 + F2∂2x2 + F3∂2x3) – ∂2(F1∂1x1 + F2∂1x2 + F3∂1x3)]du

=
Z

D

h
∇F1∂1x∂2x1 + F1∂12x1 +∇F2∂1x∂2x2 + F2∂12x2 +∇F3∂1x∂2x3 + F1∂12x3 –∇F1∂2x3 – F1∂12x1 –∇F2∂2x∂1x2 – F2∂12x2 –∇F3∂2x∂1x3 – F1∂12x3

i
du

=
Z

D

h
(∂1F1∂1x1 + ∂2F1∂1x2 + ∂3F1∂1x3)∂2x1 + (∂1F2∂1x1 + ∂2F2∂1x2 + ∂3F2∂1x3)∂2x2 + (∂1F3∂1x1 + ∂2F3∂1x2 + ∂3F3∂1x3)∂2x3

– (∂1F1∂2x1 + ∂2F1∂2x2 + ∂3F1∂2x3)∂1x1 – (∂1F2∂2x1 + ∂2F2∂2x2 + ∂3F2∂2x3)∂1x2 – (∂1F3∂2x1 + ∂2F3∂2x2 + ∂3F3∂2x3)∂1x3
i
du

=
Z

D

h
∂2F1∂1x2∂2x1 + ∂3F1∂1x3∂2x1 + ∂1F2∂1x1∂2x2 + ∂3F2∂1x3∂2x2 + ∂1F3∂1x1∂2x3 + ∂2F3∂1x2∂2x3 – ∂2F1∂2x2∂1x1

– ∂3F1∂2x3∂1x1 – ∂1F2∂2x1∂1x2 – ∂3F2∂2x3∂1x2 – ∂1F3∂2x1∂1x3 – ∂2F3∂2x2∂1x3
i
du

confrontando con l’integrale calcolato precedentemente abbiamo la tesi.

TEOREMA 5.9 (Alcune identità utili) Date u,w ∈ C2(Ò ) e F ∈ C2(Ò ,� 3) valgono le seguenti identità
Z

Ò
Éw(x)dx =

Z

∂Ò
∂nwdσ

Z

Ò
udiv(F)dx = –

Z

Ò
∇u · Fdx +

Z

∂Ò
uF ·ndσ

Z

Ò
uÉwdx = –

Z

Ò
∇u ·∇wdx +

Z

∂Ò
u∂nwdσ

Z

Ò
[uÉw–wÉu]dx = +

Z

∂Ò
[u∂nw–w∂nu]dσ

TEOREMA 5.10 SianoA un aperto semplicemente connesso di� 3 e F un campo vettoriale di classeC1(A,� 3). Allora F è conservativo se e solo se è irrotazionale.
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6 equazioni differenziali

In questo capitolo riportiamo alcuni enunciati (non tutti completi di dimostrazione) relativi alla teoria di base delle equazioni differenziali ordinarie, tale pre-
sentazione della teoria è largamente lacunosa: di fatto contiene i soli risultati le cui dimostrazioni vengono presentate a lezione. Uno qualsiasi dei testi indicati
in bibliografia è sicuramente necessario per una visione organica e completa dello studio delle equazioni differenziali ordinarie.
Nella seconda sezione discutiamo in dettaglio un certo numero di esercizi con i quali intendiamo rivisitare parte della teoria o accennare a qualche risultato più
avanzato (alcune delle metodologie presentate hanno validità molto più ampia di quella del singolo esercizio in esame). Infine, nella terza parte, proponiamo
alcuni risultati classici relativi all’equazione di Poisson, cioè ad una delle più ”semplici” equazioni alle derivate parziali.
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6.1 esistenza (ed unicità) di soluzioni

In questi appunti vogliamo studiare il problema di Cauchy per un’equazione differenziale ordinaria del primo ordine, ovvero il seguente problema differenziale

(6.1)

u′(t) = f(t,u(t))
u(t0) = u0

dove la funzione u è l’incognita del problema, mentre f, u0 e t0 sono noti. In particolare vogliamo provare che (6.1) possiede un’unica soluzione (ovviamente
se alcune ipotesi sono verificate!) e di tale importante risultato forniremo due differenti dimostrazioni.
Cominciamo con alcuni risultati tecnici utili alla dimostrazione del nostro teorema di esistenza ed unicità.

PROPOSIZIONE 6.1 Sia f una funzione continua, allora u è soluzione di classe C1 di (6.1) se e solo se u è una soluzione continua della seguente equazione integrale

(6.2) u(t) = u0 +
Z t

t0
f(s,u(s))ds

DIMOSTRAZIONE. Supponiamo che u sia una soluzione di classe C1 di (6.1), allora per il teorema fondamentale del calcolo integrale abbiamo che

u(t) = u(t0) +
Z t

t0
u′(s)ds = u0 +

Z t

t0
f(s,u(s))ds

da cui segue la tesi.
Viceversa se u è una soluzione continua di (6.2) abbiamo che f composta con u è ancora una funzione continua e, sempre per il teorema fondamentale del
calcolo integrale, segue che u è di classe C1 essendo una primitiva di una funzione continua, inoltre abbiamo che

u(t0) = u0 +
Z t0

t0
f(s,u(s))ds = u0 e u′(t) = d

dt

"
u0 +

Z t

t0
f(s,u(s))ds

#
= f(t,u(t))

e la dimostrazione è conclusa.

TEOREMA 6.2 (T.H. GRONWALL) Siano c una costante reale non negativa e u,v : (a,b)→ � due funzioni continue e non negative tali che

v(t)≤ c +
������

Z t

t0
u(s)v(s)ds

������ ∀t ∈ (a,b)

Allora

v(t)≤ ce|U(t,t0)| dove U(t, t0) =
Z t

t0
u(s)ds
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DIMOSTRAZIONE. Cominciamo osservando che la funzione U(t, t0) è la primitiva della funzione continua u nulla in t = t0. Il teorema fondamentale del calcolo
integrale garantisce l’esistenza di una tale funzione. Consideriamo t> t0 e poniamo

z(t) = c +
������

Z t

t0
u(s)v(s)ds

������ = c +
Z t

t0
u(s)v(s)ds

a causa della non negatività di u e v. Dalla precedente definizione, dalla continuità delle funzioni integrande e dall’ipotesi segue che

z′(t) = u(t)v(t)≤ u(t)z(t)

il che implica che

d
dt

h
z(t)e–U(t,t0)

i
= e–U(t,t0)�z′(t) – z(t)�≤ 0

Dunque abbiamo provato che z(t)e–U(t,t0) è una funzione non crescente, da questa informazione ricaviamo che

z(t)e–U(t,t0) ≤ z(t0) = c

da cui la tesi. Il caso t< t0 si prova (più o meno) in maniera analoga.

TEOREMA 6.3 (DELLE ITERAZIONI SUCCESSIVE (C.E. PICARD & E.L. LINDELÖF)) Sia A⊆ � 2 un insieme aperto con (t0,u0) ∈ A e f ∈ C(A,� ). Siano r1, r2 > 0
due costanti reali tali che il rettangolo R = [t0 – r1, t0 + r1]× [u0 – r2,u0 + r2] sia contenuto nell’aperto A e che esista L> 0 tale che

|f(t,u) – f(t,w)|≤ L|u –w|

per ogni t ∈ [t0 – r1, t0 + r1] e u,w ∈ [u0 – r2,u0 + r2].
PostoM =maxR |f(t,u)|, esiste ε> 0 tale che il problema di Cauchy (6.1) possiede un’unica soluzione u ∈ C1[t0 – ε, t0 + ε], con ε = min{r1, r2/M}.

DIMOSTRAZIONE. Abbiamo provato precedentemente che (6.1) è equivalente all’equazione integrale (6.2), sfrutteremo questa caratterizzazione per dimo-
strare l’esistenza del problema differenziale mostrando l’esistenza di un unico punto fisso dell’equazione integrale. La strategia che seguiremo consiste nei
seguenti passi

i. l’equazione integrale (6.2) permette di costruire una successione per ricorrenza di soluzioni approssimate,

ii. la successione definita converge uniformemente ad una funzione, soluzione di (6.2),

iii. la soluzione trovata è l’unica soluzione del problema di Cauchy (6.1).

i. Definiamo una successione di funzioni per ricorrenza, nel seguente modo


u0(t) = u0
uk+1(t) = u0 +

Z t

t0
fs,uk(s)

�ds
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e cerchiamo di studiarne le proprietà salienti usando dei ragionamenti per induzione. Prima di tutto dobbiamo mostrare che le funzioni uk sono tutte definite
su uno stesso intervallo non vuoto, su cui studieremo le proprietà di convergenza della successione. Per fare questo dovremo (eventualmente) restringere R in
modo da essere sicuri che il grafico di tutti i termini della successione viva in uno stesso rettangolo, sempre centrato nel punto (t0,u0), interamente contenuto
in A. Osserviamo subito che

|u1(t) – u0|≤
Z t

t0
|fs,uk(s)

�|ds≤M|t – t0|≤Mε

quindi |u1(t) – u0| ≤ r2 se ε = min{r1, r2/M}, cioè restingendo (solo se necessario) un po’ il rettangolo R. Se pensiamo che la precedente disuguaglianza valga
per uk, cioè che |uk(t) – u0|≤ r2 per ogni t ∈ [t0 – ε, t0 + ε] segue che

|uk+1(t) – u0|≤
Z t

t0
|fs,uk(s)

�|ds≤M|t – t0|≤Mε

perché stiamo supponendo che il grafico di uk si trovi in R, e poiché tutti i termini della successione (per induzione) verificano la stessa disuguaglianza, abbiamo
provato che tutte le funzioni della successione sono definite in [t0 – ε, t0 + ε], con ε = min{r1, r2/M}.
ii. Per provare la convergenza della successione di funzioni proveremo la seguente maggiorazione

(6.3) |uk+1(t) – uk(t)|≤M
Lk|t – t0|k+1
(k + 1)!

per induzione. Osserviamo subito che (6.3), per k = 0, si riduce a

|u1(t) – u0|≤
Z t

t0
|fs,u0

�|ds≤M|t – t0|

ed è vera per il conto precedente. Per provare il passo induttivo ragioniamo come segue

|uk+1(t) – uk(t)|≤
Z t

t0
|fs,uk(s)

� – fs,uk–1(s)
�|ds≤ L

Z t

t0
|uk(s) – uk–1(s)|ds≤ L

Z t

t0
MLk–1|s – t0|k

k! ds = MLk|t – t0|k+1
(k + 1)!

(si noti che nella terza disuguaglianza abbiamo usato l’ipotesi induttiva). A questo punto possiamo provare che la successione converge, mostrando che
converge totalmente la serie degli incrementi successivi. Infatti vale

uk+1(t) = u0 +
k¼

j≥1

�
uj+1(t) – uj(t)

�

allora, grazie alla (6.3), abbiamo che

∥uk+1 – uk∥∞ = sup
|t–t0|≤ε

|uk+1(t) – uk(t)|≤M
Lkεk+1
(k + 1)!
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il che ci permette di ottenere che

∥uk+p – uk∥∞ ≤ ∥uk+p – uk+p–1∥∞ + ... + ∥uk+1 – uk∥∞ ≤
M
L

k+p¼

j=k

(Lε)j+1
(j + 1)! ≤

M
L

+∞¼

j=k

(Lε)j+1
(j + 1)!

essendo la serie convergente la sua coda è infinitesima per k≫ 1, quindi la successione è di Cauchy in (X,∥ · ∥∞) con X = C[t0 – ε, t0 + ε], che è uno spazio
metrico completo, quindi possiamo concludere che esiste u ∈ X tale che

∥uk – u∥∞ −→ 0 per k−→ +∞

per concludere che u è soluzione di (6.2) (e quindi di (6.1)) dobbiamo mostrare che si può passare al limite nella formulazione integrale, sappiamo che

uk+1(t) = u0 +
Z t

t0
f(s,uk(s))ds

e che

uk+1(t)−→ u(t) per ogni t ∈ [t0 – ε, t0 + ε]

inoltre vale

0≤
������

Z t

t0
[f(s,uk(s)) – f(s,u(s))]ds

������≤
Z t

t0
|f(s,uk(s)) – f(s,u(s))|ds≤

Z t

t0
L |uk(s) – u(s)|ds≤ L∥uk – u∥∞|t – t0|≤ Lε∥uk – u∥∞

e siccome la successione converge uniformemente, per k−→ +∞, troviamo che

u(t) = u0 +
Z t

t0
f(s,u(s))ds

e l’esistenza di (almeno) una soluzione è provata.
iii. L’unicità della soluzione è una conseguenza del teorema di Gronwall (teorema 6.2): supponiamo che esistano u e w due soluzioni distinte dell’equazione
differenziale

u′(t) = f (t,u(t))

con f funzione lipschitziana (di costante L) nella seconda variabile e che soddisfano il dato iniziale

u(t0) = u0 w(t0) = w0

Possiamo applicare il teorema 6.2 alla funzione h(t) = |u(t) –w(t)|≥ 0. Infatti vale

h(t = |u(t) –w(t)| =
������(u0 –w0) +

Z t

t0
[f(s,u(s)) – f(s,w(s))]ds

������≤ |u0 –w0| + L
Z t

t0
|u(s) –w(s)|ds = |u0 –w0| + L

������

Z t

t0
h(s)ds

������
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quindi segue che

|u(t) –w(t)|≤ |u0 –w0|eL|t–t0|

Quest’ultima disuguaglianza prova il problema di Cauchy (6.1) (con l’ipotesi di lipschitzianità) possiede un’unica soluzione, infatti se u(0) = w(0) seguirebbe che
0≤ |u(t) –w(t)|≤ |u0 – u0|eL|t–t0| = 0, cioè u(t) = w(t) per ogni t!
La precedente disuguaglianza mostra anche che soluzioni aventi dato iniziale ”vicino” evolvono restando ”ragionevolmente” vicine, infatti se |u0 – w0| ≤ ε
otteniamo che 0≤ |u(t) –w(t)|≤ εeL|t–t0|. Quindi la soluzione dipende con continuità dal dato iniziale.
A questo punto inseriamo una seconda versione del teorema di esistenza ed unicità della soluzione del problema di Cauchy.

TEOREMA 6.4 (A.L. CAUCHY & R.O.S. LIPSCHITZ) Sia A ⊆ � 2 un insieme aperto con (t0,u0) ∈ A e f ∈ C(A,� ). Siano r1, r2 > 0 due costanti reali tali che il
rettangolo R = [t0 – r1, t0 + r1]× [u0 – r2,u0 + r2] sia contenuto nell’aperto A e che esista L> 0 tale che

|f(t,u) – f(t,w)|≤ L|u –w|

per ogni t ∈ [t0 – r1, t0 + r1] e u,w ∈ [u0 – r2,u0 + r2] (per brevità nel seguito diremo che f è una funzione lipschitziana nella seconda variabile).
PostoM =max |f(t,u)| in R, allora esiste ε> 0 tale che il problema di Cauchy (6.1) possiede un’unica soluzione u ∈ C1(t0 –ε, t0 +ε), con ε<min{r1, r2/M, 1/L}.

DIMOSTRAZIONE. La dimostrazione consiste essenzialmente nel provare che la formulazione integrale (6.2) ha un’unica soluzione. Introduciamo lo spazio
metrico

X = {u ∈ C[t0 – ε, t0 + ε] : sup |u(t) – u0|≤ r2}

dotato della distanza dell’estremo superiore, cioè

d(u,w) = sup |u(t) –w(t)| per ogni u,w ∈ X

Questo spazio metrico è completo perché è un sottoinsieme chiuso di uno spazio metrico completo.
Adesso consideriamo la seguente applicazione definita su X

z = T(w) = u0 +
Z t

t0
f(s,w(s))ds

Naturalmente z è una funzione continua e vale

|z(t) – u0|≤
Z t

t0
|f(s,w(s))|ds≤M|t – t0|<Mε< r2

cioè z ∈ X, il che significa che T manda X in sé stesso.
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A questo punto il teorema si riduce a provare che T ha un unico punto fisso, e la tesi segue dal provare che T è una contrazione (si veda il teorema ??). Siano
v,w ∈ X e y = T(v), z = T(w), allora possiamo scrivere

|y(t) – z(t)| =
������

Z t

t0
[f(s,v(s)) – f(s,w(s))]ds

������≤
Z t

t0
|f(s,v(s)) – f(s,w(s))|ds≤ L

Z t

t0
|v(s) –w(s)|ds≤ Lεd(v,w)

Si noti che, nel primo membro, t ∈ [t0 – ε, t0 + ε] è totalmente arbitrario, quindi passando all’estremo superiore nella disuguaglianza otteniamo

sup |y(t) – z(t)| = d(y,z)≤ Lεd(v,w)

cioè

d(y,z) = d(T(v),T(w))≤ Lεd(v,w)

e, siccome per ipotesi Lε < 1, possiamo affermare che l’operatore T possiede un unico punto fisso, cioè che l’equazione integrale (6.2) ha un’unica soluzione,
cioè che (6.1) ha un’unica soluzione e la tesi è provata.
I teoremi precedentemente discussi mostrano che, sotto opportune ipotesi, il problema di Cauchy per un’equazione differenziale possiede sempre una sola
soluzione. Tale soluzione è, però, una soluzione locale, cioè una soluzione definita in un intervallo la cui ampiezza dipende (essenzialmente) dalle proprietà
della funzione f e dagli strumenti impiegati nella dimostrazione. In realtà è spesso possibile prolungare tale soluzione su intervalli di ampiezza maggiore, una
soluzione che non è ulteriormente prolungabile viene detta globale o massimale. Gli enunciati che seguono mostrano alcuni risultati sulla prolungabilità (o
meno) delle soluzioni locali.

TEOREMA 6.5 Consideriamo il problema di Cauchy (6.1) e sia la funzione f definita inA = (a,b)×� ⊆ � 2, supponiamo inoltre che per ogni compatto K⊆ (a,b)
esistano due costanti ci = ci(K), con i = 1,2, tali che

|f(t,u)|≤ c1 + c2|u| per ogni t ∈ K e per ogni u ∈ �

Allora la soluzione è prolungabile ad una soluzione definita in tutto (a,b) (si noti che non è richiesto che l’intervallo (a,b) sia limitato!).

TEOREMA 6.6 Sia u una soluzione massimale di (6.1) definita su (a,b). Per ogni compatto K ⊆ A ⊆ � 2 esiste δ = δ(K) > 0 tale che per ogni t < (a + δ,b – δ) il
punto (t,u(t)) non appartiene a K.

TEOREMA 6.7 Sia u una soluzione del problema di Cauchy (6.1) e sia la funzione f ∈ C1(A) con A = (a,b)×� ⊆ � 2, supponiamo che esista c> 0 tale che

|u(t)|≤ c per ogni t

allora la soluzione è prolungabile ad una soluzione definita in tutto (a,b).
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6.2 Sistemi lineari di equazioni differenziali

In questa sezione ci interesseremo di sistemi lineari, cioè di sistemi di equazioni differenziali del seguente tipo
(6.4) x′(t) = A(t)x(t) + f(t)
con A ∈ C0 ((a,b),Mn(� )) e f ∈ C0

(a,b),� n�, dove abbiamo –∞≤ a< b≤ +∞.
Osserviamo subito che, per i teoremi provati precedentemente tutte le soluzioni del sistema (6.4) sono globali, cioè hanno come dominio tutto l’intervallo
(a,b). Scriviamo anche il relativo sistema lineare omogeneo
(6.5) x′(t) = A(t)x(t)
come possiamo dedurre dal risultato che segue, i due sistemi sono strettamente collegati tra di loro.

TEOREMA 6.8 Siano x e y due soluzioni di (6.4), allora la funzione (x – y) è soluzione del sistema omogeneo (6.5).

DIMOSTRAZIONE. La dimostrazione dell precedente affermazione è, di fatto, una conseguenza diretta della linearità del sistema e dell’operazione di deriva-
zione, infatti abbiamo

x(t) – y(t)�′ = x′(t) – y′(t) = A(t)x(t) + f(t) – A(t)y(t) – f(t) = A(t)x(t) – y(t)�

il che conclude la prova.
Il precedente risultato si rivela di una certa importanza nella risoluzione di sistemi lineari, perché indica la strategia che si è rivelata più efficacie nella ricerca di
soluzioni, tipicamente la strategia si riconduce a determinare tutte le soluzioni del sistema omogeneo a cui poi aggiungere una qualsiasi soluzione del sistema
completo, in questa maniera si ottengono tutte le soluzioni del sistema completo.

DEFINIZIONE 6.9 Siano {x1, ...,xn} ∈ C1(a,b) un insieme di n funzioni (non tutte nulle), diremo che tali funzioni sono LINEARMENTE DIPENDENTI se esistono n
numeri reali {λ1, ...,λn} ∈ � n (non tutti nulli), tali che

n¼

j=1
λjxj(t) = λ1x1(t) + ... +λnxn(t) = 0 per ogni t ∈ (a,b)

Diremo che le funzioni sono LINEARMENTE INDIPENDENTI se la precedente relazione è vera solo nel caso in cui λ1 = ... = λn = 0.

Il prossimo risultato che dimostriamo quantifica, in un certo senso, il numero e la struttura delle soluzioni di un sistema lineare ed omogeneo di equazioni
differenziali.

TEOREMA 6.10 SiaW =
n
x ∈ C1((a,b),� n) soluzione di x′(t) = A(t)x(t)

o
, alloraW è un sottospazio vettoriale di dimensione n ed esiste un’applicazione lineare

e biettiva traW e � n.
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DIMOSTRAZIONE. La strategia della dimostrazione è decisamente semplice: verificheremo rapidamente che W è uno spazio vettoriale, per poi costruiremo
l’applicazione richiesta dalla tesi, di cui mostreremo le proprietà di linearità, iniettività e suriettività.
Per rivelare la struttura di W consideriamo x,y ∈We λ,µ ∈ � e consideriamo la funzione φ(t) = λx(t) +µy(t), per la proprietà di linearità della derivazione e del
prodotto tra matrici otteniamo che

φ′(t) = λx′(t) +µy′(t) = λA(t)x(t) +µA(t)y(t) = A(t)[λx(t) +µy(t)] = A(t)φ(t)

quindi φ ∈W, e l’insieme si rivela essere un sottospazio vettoriale di C1((a,b),� n).
Assegnato x0 ∈ � n e scelto arbitrariamente t0 ∈ (a,b), sia x(t) = x(t; t0,x0) l’unica soluzione del problema di Cauchy

(
x′(t) = A(t)x(t)
x(t0) = x0

e definiamo la seguente applicazione

T : � n −→ W
x0 7−→ T(x0)(t) := x(t; t0,x0)

Osserviamo subito che l’applicazione è ben posta, visto che sono soddisfatte tutte le ipotesi del teorema di Picard e Lindelöf, per cui ad ogni punto x0 dello
spazio possiamo associare un’unica funzione di W. Mostriamo che l’applicazione T è lineare: consideriamo due punti distinti x0,x1 ∈ � n e le relative soluzioni
T(x0)(t) = x(t; t0,x0) e T(x1)(t) = x(t; t0,x1). Mostrare che l’applicazione è lineare significa verificare che

T(λx0 +µx1)(t) = λT(x0)(t) +µT(x1)(t) ∀λ,µ ∈ � ∀x0,x1 ∈ � n

Siccome, per la linearità dell’operazione di derivazione, vale
�
λT(x0)(t) +µT(x1)(t)

�′ = λ �T(x0)(t)
�′ +µ [T(x1)(t)]′ = λA(t)T(x0)(t) +µA(t)T(x1)(t) = A(t)

�
λT(x0)(t) +µT(x1)(t)

�

e abbiamo anche che
�
λT(x0)(0) +µT(x1)(0)

� = λx0 +µx1
possiamo concludere che la funzione λT(x0)(0)+µT(x1)(0) risolve il sistema differenziale (6.5), quindi appartiene allo spazio vettorialeW, inoltre realizza, come
dato iniziale, la combinazione lineare (λx0 +µx1) e per l’unicità della soluzione del problema di Cauchy possiamo dedurre che

T(λx0 +µx1)(t) = λT(x0)(t) +µT(x1)(t)

infine l’arbitrarietà dei coefficienti λ,µ e dei punti x0,x1 prova la linearità dell’operatore T.
L’unicità della soluzione del problema di Cauchy (o la linearità dell’operatore) implica anche che se x0 = O allora T(O)(t)≡Oper ogni t ∈ (a,b) e questa proprietà
equivale all’iniettività di T, quindi non resta che provare la suriettività, per poter affermare che abbiamo costruito un isomorfismo tra spazi vettoriali.
Sia x(t) = x(t; t0,x0) ∈ W una soluzione del sistema (6.5), ovviamente esiste una n-pla di scalari {λ1, ...,λn} tale che x0 = x(t0) = λ1e1 + ...λnen, dove i vettori
{e1, ...,en} costituiscono la base canonica di � n. Allora possiamo considerare in W i vettori {T(e1)(t), ...,T(en)(t)}, per definizione sappiamo che risolvono il
sistema di equazioni differenziali lineare, e per i precedenti ragionamenti anche ogni loro combinazione lineare, per cui possiamo scrivere

λ1T(e1)(t) + ... +λnT(en)(t) = T(λ1e1 + ... +λnen)(t) = T(x0)(t)
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e (come prima!) l’unicità della soluzione del problema di Cauchy ci permette di dire che x(t) = λ1T(e1)(t) + ... + λnT(en)(t) = T(x0)(t) ovvero di provare che T è
suirettivo, e quindi un isomorfismo. Si noti che dalla dimostrazione deduciamo anche che

dim(W) = n e che W = span{T(e1)(t), ...,T(en)(t)}

Osserviamo che il precedente risultato mostra che l’insieme delle soluzioni di un sistema omogeneo di equazioni differenziali lineari ha una naturale struttura
di spazio vettoriale reale di dimesione pari al numero delle equazioni (o al numero delle funzioni incognite), e abbiamo già osservato che la conoscenza di
una qualsiasi soluzione del sstema completo ci permette di ottenere tutte le soluzioni del sistema non omogeneo. In un linguaggio un poco più geometrico
possiamo dire che W è uno spazio vettoriale e costituisce la giacitura di uno spazio affine rappresentato dalle soluzioni di (6.4).
Osserviamo anche che, in generale, non siamo in grado di risolvere un sistema di equazioni differenziali lineare, tranne il caso in cui la matrice è a coefficienti
costanti, cioè A(t) = A ∈Mn(� ). Il precedente teorema ci dice che se troviamo n soluzioni del sistema linearmente indipendenti allora abbiamo una base per
lo spazio vettoriale delle soluzioni.

DEFINIZIONE 6.11 Siano {x1, ...,xn} un insieme di n soluzioni del sistema omogeno (6.5), la matrice che si ottiene affiancando le soluzioni xi come colonne di
una matrice

X(t) = (x1(t)|...|xn(t))

viene detta matrice di soluzioni.

DEFINIZIONE 6.12 Un sistema di n soluzioni di (6.5) linearmente indipendenti costituiscono un SISTEMA FONDAMENTALE di soluzioni. La matrice di soluzioni
composta da un sistema fondamentale viene detta MATRICE FONDAMENTALE, se tale matrice verifica la relazione X(t0) = In ∈ Mn(� ) diremo che è una
MATRICE FONDAMENTALE SPECIALE al tempo t0. A volte indicheremo una tale matrice usando la notazioneU(t; t0).

Proviamo alcuni risultati utili,

TEOREMA 6.13 Se {x1(t), ...,xn(t)} sono n soluzioni di (6.5), allora la relativa metrice di soluzioni X(t) risolve la seguente equazione differenziale matriciale

X′(t) = A(t)X(t)

Analogamente se si considera una matrice X(t) soluzione della precedente equazione differenziale, ogni sua colonna xj(t) è soluzione del sistema omogeneo
(6.5).

DIMOSTRAZIONE. La dimostrazione di questo risultato segue facilmente dalle definizioni di prodotto tra matrici e tra matrice e vettore (il prodotto riga per
colonna, per intenderci) e dal fatto che l’operatore di derivazione lavora su ogni singola componente di una matrice, per linearità. Quindi possiamo scrivere

A(t) =
h
Ajk(t)

i
j,k=1,...,n X(t) =

h
Xjk(t)

i
j,k=1,...,n X′(t) =

h
X′jk(t)

i
j,k=1,...,n
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da cui segue che

h
X′jk(t)

i
= X′(t) = A(t)X(t) =

h
Ajk(t)

i h
Xjk(t)

i
=


n¼

i=1
Aji(t)Xik(t)




La relazione ottenuta è la dimostrazione delle affermazioni contenute nella tesi. Infatti nel primo caso è sufficiente pensare che lamatrice di soluzioni è costruita
affiancando le soluzioni come colonne per cui Xjk = (xk)j è il j-simo elemento della k-sima soluzione, e osservando che la relazione è soddisfatta per k fissato e
resta vera al variare dell’indice. La seconda affermazione segue dal fissare l’indice k nella precedente uguaglianza matriciale.

TEOREMA 6.14 Una famiglia di soluzioni {x1(t), ...,xn(t)} del sistema omogeneo (6.5) è linearmente dipendente in C1((a,b),� n) se e solo se esiste un tempo
τ ∈ (a,b) tale che i vettori {x1(τ ), ...,xn(τ )} sono linearmente dipendenti in � n.

DIMOSTRAZIONE. Siano τ ∈ (a,b) e {λ1, ...,λn} ⊆ � (non tutti diversi, ma al contempo non tutti nulli) tali che λ1x1(τ ) + ... + λnxn(τ ) = O. Allora, per l’unicità
della soluzione del problema di Cauchy, possiamo dedurre che la funzione x(t) = [λ1x1(t) + ... + λnxn(t)] è soluzione di (6.5) e assume come dato iniziale, per
t = τ , il vettore nullo, quindi x(t) = O per ogni t ∈ (a,b). L’implicazione opposta è semplicemente una riscrittura della condizione di dipendenza lineare per
t = τ .

TEOREMA 6.15 La matrice fondamentale specialeU(t; t0) del sistema omogeneo (6.5) è l’unica soluzione del seguente problema di Cauchy
(
X′(t) = A(t)X(t)
X(t0) = In

Inoltre, per ogni x0 ∈ � n, la funzione x(t) = U(t; t0)x0 è l’unica soluzione del problema di Cauchy
(
x′(t) = A(t)x(t)
x(t0) = x0

DIMOSTRAZIONE. La prima affermazione segue facilmente dalla definizione di matrice fondamentale speciale, infatti essendo fondamentale risolve l’equa-
zione differenziale matriciale, il fatto che U(t0; t0) = X(t0) = In è una conseguenza del significato di speciale. Infine l’unictà segue (come sempre) dal teorema di
Picard e Lindelöf, visto che il sistema è lineare e quindi il campo vettoriale localmente lipschitziano.
Per provare la seconda parte dell’enunciato è sufficiente effettuare un paio di semplici verifiche. Per definizione

x(t) = U(t; t0)x0 allora x(t0) = U(t0; t0)x0 = Inx0 = x0

e anche

x′(t) = �U(t; t0)x0
�′ = U′(t; t0)x0 = A(t)U(t; t0)x0 = A(t)x(t)

il che conclude la dimostrazione.
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PROPOSIZIONE 6.16 SIa X(t) una matrice fondamentale speciale del sistema omogeneo (6.5), allora segue che

U(t; t0) = X(t)X–1(t0)

DIMOSTRAZIONE. Anche questa proposizione non è particolarmente difficile da dimostrare, infatti dobbiamo verificare che la matrice U(t; t0) = X(t)X–1(t0)
risolve l’equazione differenziale matriciale e, ricordando il teorema 6.13, abbiamo

U′(t; t0) = X′(t)X–1(t0) = A(t)X(t)X–1(t0) = A(t)U(t; t0)

inoltre vale

U(t0; t0) = X(t0)X–1(t0) = In
e il ragionamento è concluso.

TEOREMA 6.17 (FORMULA DI J.M.C. DUHAMEL) La soluzione del sistema (6.4)
(
x′(t) = A(t)x(t) + f(t)
x(t0) = x0

dove A ∈ C0((a,b),Mn(� )) e f ∈ C0((a,b),� n) (con –∞≤ a< b≤ +∞), si può rappresentare tramite la seguente espressione

x(t) = X(t)X–1(t0)x0 +
Z t

t0
X(t)X–1(s)f(s)ds

dove X è una qualsiasi matrice fondamentale del sistema omogeneo associato (6.5).

DIMOSTRAZIONE. Sappiamo che, detta X(t) una matrice fondamentale del sistema omogeneo, tutte le soluzioni di (6.5) possono essere descritte dalla
seguente formula

xom(t) = X(t)X–1(t0)x0
in cui abbiamo usato i risultati precedenti per avere una matrice fondamentale speciale ed un’espressione che contenga anche l’informazione del dato iniziale
del problema di Cauchy che ci interessa risolvere.
Dunque il problema è completamente risolto se riusciamo a costruire una soluzione del sistema completo con dato iniziale nullo. Per fare questo cerchiamo
una soluzione imponendo la seguente forma

s(t) = X(t)c(t) da cui s′(t) = X′(t)c(t) + X(t)c′(t)

ricordando che X(t) è una matrice fondamentale e imponendo che la soluzione del sistema completo abbia questa espressione, otteniamo

s′(t) = X′(t)c(t) + X(t)c′(t) = A(t)X(t)c(t) + X(t)c′(t) = A(t)X(t)c(t) + f(t)
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semplificando otteniamo il seguente sistema per il vettore incognito c(t)

c′(t) = X–1(t)f(t) cioè c(t) =
Z t

t0
X–1(s)f(s)ds

il che conclude la dimostrazione.

I risultati raccontati in questo paragrafo sono, per necessità, solo l’essenziale dello studio dei sistemi lineari omogenei, dove essenziale significa lo stretto
necessario per affrontare la teoria che sarà presentata nelle pagine che seguiranno. Il lettore interessato può, naturalmente, consultare i testi nella bibliografia
per soddisfare la sua sete di sapere.

6.3 Sistemi lineari autonomi

Sappiamo che � n è uno spazio di Banach, lo spazio delle applicazioni lineari e limitate (o continue) dello spazio in sé è in genere indicato dal simboloL(� n), in
realtà ogni operatore dello spazio può essere rappresentato tramite una matrice quadrata appartenente allo spazioM(� n), e nel seguito penseremo sempre
gli operatori identificati con una matrice.

OSSERVAZIONE 6.18 Sia A ∈Mn(� n) e definiamo una successione nello spazio delle matrici nel seguente modo

Aj :=
j¼

k=0

1
k!A

k = A0 + A + 12A
2 + ... + 1j!A

j j ∈ �

notiamo che si tratta di una successione di Cauchy, infatti vale




Aj



 =











j¼

k=0

1
k!A

k










≤

j¼

k=0

1
k!




Ak



≤

j¼

k=0

1
k! ∥A∥

k

da cui segue che

∥Aj – Aj+p∥ =











j+p¼

k=j

1
k!A

k










≤

j+p¼

k=j

1
k! ∥A∥

k ≤
+∞¼

k=j

1
k! ∥A∥

k

l’ultima sommatoria scritta è la coda di una serie convergente, il cui limite è e|A|, essendo la maggiorazione indipendente dall’indice j e infinitesima per N che
tende a +∞, l’affermazione è provata.
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DEFINIZIONE 6.19 Definiamo il limite della successione {Aj}, introdotta nell’osservazione precedente, comeMATRICE ESPONENZIALE di A

eA := lim
j−→+∞

Aj =
+∞¼

k=0

Ak
k!

PROPOSIZIONE 6.20 (PROPRIETÀ DELLA MATRICE ESPONENZIALE) Sia A ∈Mn(� n) e eA la matrice esponenziale risultante, allora
i. eOn = In ∈Mn(� n),
ii. A,B ∈Mn(� n)matrici che commutano (cioè AB = BA) allora eA+B = eAeB,
iii. la matrice esponenziale eA è sempre invertibile e

h
eA

i–1 = e–A,
iv. A,C,C–1 ∈Mn(� ) allora eCAC

–1 = CeAC–1.

DIMOSTRAZIONE. i. Ricordando la definizione di matrice esponenziale e scrivendola, in particolare, per la matrice nulla On otteniamo che

Oj = In +On +
1
2O

2
n + ... +

1
j!O

j
n = In per ogni j ∈ �

il che prova l’affermazione.
ii. Sempre ricorrendo alla definizione di matrice esponenziale, ricordando la formula di Newton delle potenze di un binomio e grazie al fatto che AB = BA,
possiamo scrivere

(A + B)j =
j¼

k=0

1
k! (A + B)

k =
j¼

k=0

1
k!

k¼

p=0

 
k
p

!
ApBk–p =

j¼

k=0

k¼

p=0

Ap
p!

Bk–p
(k – p)!

come prima, passando al limite per j−→ +∞, si ottiene la tesi.
iii. Siccome vale On = A –A, e siccome A e –A commutano, per il punto ii abbiamo che

In = eOn = eAe–A = eA
h
eA

i–1

iv. Sempre dalla definizione discende che

(CAC–1)j = In + (CAC–1) +
1
2 (CAC

–1)2 + ... + 1j! (CAC
–1)j = In + (CAC–1) +

1
2 (CAC

–1)(CAC–1) + ... + 1j! (CAC
–1)...(CAC–1)

= In + (CAC–1) +
1
2CA

2C–1 + ... + 1j!CA
jC–1 = CInC–1 + (CAC–1) +

1
2CA

2C–1 + ... + 1
N!CA

NC–1

= C
"
In + A +

1
2A

2 + ... + 1j!A
j
#
C–1 = CAjC–1 per ogni j ∈ �
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la tesi si ottiene per j−→ +∞.

PROPOSIZIONE 6.21 SiaM ∈Mn(� n), allora l’operatore eAt è derivabile in tutto � e vale

d
dte

At = AeAt

Si noti che eAt è la matrice fondamentale speciale (con t0 = 0) del precedente sistema! In generale si ha cheU(t; t0) = eA(t–t0).

DIMOSTRAZIONE. Per quanto dimostrato nella proposizione precedente possiamo scrivere

eA(t+h) – eAt
h =

"
eAh – I
h

#
eAt =



+∞¼

k=1
Akhk–1


e

At =


A


I +

+∞¼

j=k–1=1
Ajhj





e

At = [A(I +Mh)]eAt −→ AeAt

quindi il limite del rapporto incrementale esiste e vale la formula della tesi. Si noti che abbiamo usato il fatto che At e Ah sono delle matrici che commutano.

TEOREMA 6.22 (FORMA CANONICA DIM.E.C. JORDAN) Sia A ∈Mn(� ) allora è sempre vero che esiste un cambio di base (indicato con C) tale cheM = CBC–1
con

B =




B1 . . . 0
... . . . ...
0 . . . Bk




dove BJ =




λj 1 0
... . . . 1
0 . . . λj




con λj ∈ � (gli 1 compaiono solo quando mg(λj)<ma(λj)). Seℑ(λj) , 0 allora esiste un indice i per cui vale λi = λj.

commenti vari, particolare spiegare la questione del rapporto tra martici inMn(� ) e inMn(� ) e relativa diagonlizzazione in blocchi (triangolari in � , ”semi-
triangolari” in � ).

LEMMA 6.23 Data A ∈Mn(� ), risultano equivalenti le seguenti affermazioni
i. lim
t−→+∞

∥eAt∥L = 0,
ii. lim
t−→+∞

x(t) = 0 per ogni soluzione del sistema x′(t) = Ax(t).

317



�� ��

TEOREMA 6.24 (CRITERIO DI STABILITÀ) Sia A ∈Mn(� ), allora sono equivalenti le seguenti proprietà
i. lim
t−→+∞

x(t) = 0 per ogni soluzione del sistema x′(t) = Ax(t),
ii. Re(λ)< 0 per ogni λ ∈ σ(A).

TEOREMA 6.25 (CRITERIO DI LIMITATEZZA) Sia A ∈Mn(� ), allora ogni soluzione del sistema x′(t) = Ax(t) è limitata se valgono le seguenti,
i. Re(λ)≤ 0 per ogni λ ∈ σ(A),
ii. ogni autovalore λ ∈ σ(A) con Re(λ) = 0 è regolare.

TEOREMA 6.26 (CRITERIO DI INSTABILITÀ) Sia A ∈Mn(� ), allora sono equivalenti le seguenti proprietà
i. lim
t−→+∞

|x(t)| = +∞ per (quasi) ogni soluzione non banale del sistema x′(t) = Ax(t),
ii. Re(λ)> 0 per almeno un λ ∈ σ(A).

6.4 Equazioni lineari del secondo ordine a coefficienti costanti

In questo paragrafo vogliamo tentare di descrivere la dinamica generata da un sistema differenziale lineare planare (cioè un sistema di due equazioni in due
incognite), quindi un sistema del tipo

x(t) = Ax(t) con A ∈M2(� )

La discussione si svolgerà in vari punti, analizzando i differenti modi in cui può presentarsi lo spettro della matrice.
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PROPOSIZIONE 6.27 Data A ∈M2(� ) e σ(A) = {λ1,λ2} abbiamo che
i. Se λ1 , λ2 o λ1 = λ2 = λma esiste una base di autovettori (l’autovalore λ ha molteplicità algebrica e geometrica pari a 2), allora nella opportuna base di � 2

(quella composta dagli autovettori della matrice) vale A = CBC–1 e

eAt = CeBtC–1 dove B =
 
λ1 0
0 λ2

!
e eBt =

 
eλ1t 0
0 eλ2t

!

ii. Se λ1 = λ2 = λ e la molteplicità geometrica vale solo 1, allora nella opportuna base di � 2 vale A = CBC–1 e

eAt = CeBtC–1 dove B =
 
λ 1
0 λ

!
e eBt = eλt

 
1 t
0 1

!

iii. Se λ1 = a + ib e λ2 = a – ib, allora nella opportuna base di � 2 vale A = CBC–1 e

eAt = CeBtC–1 dove B =
 
a –b
b a

!
e eBt = eat

 
cos(bt) –sin(bt)
sin(bt) cos(bt)

!

DIMOSTRAZIONE. da scrivere

6.5 Sistemi non lineari

In queste pagine intendiamo fornire una traccia di studio riguardo alcuni argomenti affrontati a lezione, di carattere un po’ più avanzato, che non sempre sono
presenti nei testi didattici. In ogni caso tutti gli argomenti dati per noti sono reperibili nei testi citati in bibliografia (in particolare in [?]). Il protagonista indiscusso
delle nostre attenzioni sarà il seguente sistema di equazioni differenziali ordinarie autonome

(6.6) x′(t) = f (x(t)) con x ∈ � n e t ∈ (a,b)

di volta in volta scriveremo le ipotesi più specifiche sul campo vettoriale f ∈ C1(A,� n) (con A⊆ � n aperto), sulla dimensione n ∈ � del sistema e sull’intervallo
(a,b)⊆ � . In alcuni casi è possibile che le ipotesi possano essere leggermente indebolite, ma eviteremo di accanirci nella ricerca della massima generalità...
Osserviamoanche che alcune definizioni della sezione precedente si estendono, senza alcuna fatica, a sistemi di dimensionemaggiore, in particolare il concetto
di regione positivamente invariante, si punto stabile o instabile per linearizzazione e le definizioni di ω-limite e attrattore. Il lettore è, in ogni caso, invitato a
riscrivere le definizioni con la notazione corretta.

DEFINIZIONE 6.28 Il punto p ∈ � n si dice punto di equilibrio o punto critico (o anche punto singolare) per il campo vettoriale f se f(p) = O, mentre si dice punto
regolare se f(p) ,O.
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Si noti che i punti critici del campo vettoriale f corrispondono alle soluzioni stazionarie di (6.6), sono esattemente i punti di equilibrio del sistema di equazioni
differenziali.

TEOREMA 6.29 (DI RETTIFICABILITÀ LOCALE) Sia x0 ∈ A un punto regolare per f ∈ C1(A,� n), allora esistono un aperto V ⊆ A contenente il punto x0 ed un
diffeomeorfismo ψ tra V e un opportuno intornoW di O tale che, per ogni ξ ∈ V, la funzione z(t) = ψ (x(t,ξ)) risulta essere l’unica soluzione del problema di
Cauchy

(6.7)
(
z′(t) = e1
z(0) = ψ(ξ)

DIMOSTRAZIONE. Si consulti [?].

TEOREMA 6.30 Un punto stabile (per linearizzazione) è asintoticamente stabile.

TEOREMA 6.31 (P. HARTMAN E D.M. GROBMAN) Sia x0 ∈ A un punto singolare per f. Se la matrice jacobiana Jf(x0) è iperbolica, allora esistono un intorno
V⊆ A del punto x0 ed un omeorfismoψ traV e un opportuno intornoW diO tale che, per ogni ξ ∈ V, la funzione z(t) = ψ (x(t,ξ)) risulta essere l’unica soluzione
del problema di Cauchy

(6.8)
(
z′(t) = Jf(x0)z(t)
z(0) = ψ(ξ)

DIMOSTRAZIONE. Si veda, per esempio, [13].

6.6 Alcuni sistemi planari quadratici

Continuiamo lo studio di alcuni (particolarmente significativi) esempi di sistemi di due equazioni differenziali con campo vettoriale (al più) quadratico studiando
i modelli di Lotka-Volterra. Nella sezione successva, facendo tesoro delle osservazioni fatte, cercheremo di inquadrare lo studio di sistemi planari in un quadro
teorico più organico e strutturato, per quanto possibile.
Le equazioni di Lotka-Volterra descrivono un sistema ecologico di interazione tra una specie di predatori e una specie di prede su cui facciamo le seguenti
ipotesi:
i. la preda è l’unica risorsa del predatore, in assenza di prede i predatori tendono all’estinzione;
ii. la velocità di crescta della popolazione dei predatori è legata alla possibilità di predazione, quindi supponiamo che sia proporzionale al numero di incontri tra
prede e predatori, cioè al prodotto del numero di prede per il numero di predatori;
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iii. la velocità con cui diminuisce la popolazione delle prede a causa dei predatori è (come sopra) proporzionale al numero di incontri tra prede e predatori, cioè
alla possibilità di essere predati;
iv. il cibo disponibile per le prede è costante (e positivo) in assenza di predatori, quindi la crescita della popolazione di prede è proporzionale alla popolazione
stessa (crescita malthusiana).
Indicando con x(t) il numero di prede e con y(t) il numero di predatori all’istante t, e supponendo di poter operare con funzioni sufficientemente regolari, ci
riconduciamo a studiare il seguente sistema planare

(6.9)
(
x′(t) = f(x(t),y(t)) = x(t)[a – by(t)]
y′(t) = g(x(t),y(t)) = y(t)[cx(t) – d]

Tutti i parametri biologici di proporzionalità coinvolti nel sistema sono positivi, cioè a,b,c,d > 0, ma difficilmente misurabili in natura: daltronde è vero che
tutti gli ecosistemi reali possiedono una complessità maggiore di quello che descrivono le due equazioni differenziali di sopra...
Ricordiamo che siamo interessati esclusivamente a soluzioni non negative e limitate, cioè tali che esista M > 0 per cui siano soddisfatte le disequazioni
0≤ x(t),y(t)≤M per ogni valore di t, quindi ci interessa la dinamica del sistema ristretta nel primo quadrante del piano.
Cominciamo identificando i punti di equilibrio del sistema, cioè le soluzioni (ci interessano solo quelle non negative, ma non ce ne sono altre) del seguente
sistema algebrico

(
x[a – by] = 0
y[cx – d] = 0 che sono O = (0,0) e E =

 
d
c ,
a
b

!

Chiaramente i due equilibri sono due soluzioni stazionarie del sistema (6.9), O è il sistema in assenza di popolazioni mentre E descrive un sistema in cui
c’è coabitazione delle due specie biologiche. Notiamo che, al contrario di quanto visto per le singole equazioni del primo ordine, la conoscenza di soluzioni
stazionarie non ci permette di dedurre stime a priori sulle altre soluzioni, questo perché la topologia di � 2 è più ricca (e complicata) di quella di � e avere un
risultato analogo al teorema della barriera per sistemi (teorema ??) è più difficile.
Per studiare la natura dei punti critici trovati calcoliamo la matrice jacobiana del campo vettoriale del sistema nei punti di equilibrio

J(x,y) =
 
a – by –bx
cy cx – d

!
J(O) =

 
a 0
0 –d

!
J(E) =

 
0 –bd/c
ac/b 0

!

È immediato accorgersi che O è un punto di sella, visto che la matrice è diagonale e gli autovalori sono discordi, quindi ha un carattere genericamente repulsivo
(tranne rispetto alla direzione individuata dal autovettore relativo all’autovalore –d, cioè e2) rispetto alla dinamica del sistema.
J(E) ha due autovalori immaginari (coniugati) puri: per un sistema lineare questo implicherebbe che intorno al punto critico il sistema genera delle traiettorie
ellittiche, ma per un sistema non lineare due autovalori immaginari puri non permettono di concludere nulla: il fatto che la parte reale degli autovalori sia nulla
rende cruciale l’effetto dei termini di ordine superiore al primo. Per cui non possiamo dire altro, se non che la natura del punto critico deve essere studiata con
strumenti più raffinati.
Per il momento effettuiamo alcuni esperimenti numerici, sperando che il calcolatore suggerisca qualcosa di interessante relativamente alla dinamica generata
da (6.9). In particolare produciamo alcune orbite e alcuni grafici delle soluzioni del sistema.
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Le immagini ottenute sembrano indicare che il sistema generi, più omeno sempre, soluzioni periodiche e, conseguentemente, orbite chiuse nel piano delle fasi,
che si svolgono intorno ad un punto di equilibro che deve essere necessariamente E: questo suggerisce anche che E sia un centro, dinamicamente parlando.
Questa osservazione non è in contrasto con quanto detto prima, infatti le orbite non sembrano ellissi, quindi i termini non lineari hanno un ruolo importante
nella dinamica del sistema.
Per dimostrare la precedente affermazione possiamo procedere nel seguente modo: consideriamo un generico punto p ∈ (0,+∞)2 ⊆ � 2 e consideriamo
il problema di Cauchy relativo a (6.9) con p come dato iniziale. Osserviamo che, lungo tutti i punti di una traiettoria non stazionaria, almeno una delle due
componenti del campo vettoriale tangente deve essere non nulla. Allora, per il teorema della funzione implicita, possiamo supporre che la traiettoria della
soluzione sia (intorno a p) il grafico di una funzione y(x), e, per il teorema di derivazione della funzione inversa, possiamo scrivere la seguente equazione a
variabili separabili

dy
dx =

y′(t)
x′(t) =

y(x)[cx – d]
x[a – by(x)] =

y(x)[cx – d]
x[a – by(x)] =

"
c – dx

#

"
a
y – b

# da cui a ln(y) – by + dln(x) – cx = C0 (x,y) ∈ (0,+∞)2

La relazione ottenuta è l’equazione cartesiana dell’orbita percorsa dalle traiettorie del sistema (6.9), la costante d’integrazione C0 è determinata scegliendo
esplicitamente il punto iniziale p: si noti che le curve ottenute sono ben definite ovunque, questo perché non hanno punti singolari ed è sempre possibile
(localmente) poterle descrivere come grafici di funzioni, sempre per il teorema di Dini.
In alternativa è possibile supporre che le orbite siano linee di livello di una funzione H(x,y) = F(x) + G(y) e procedere come segue

d
dt

�H(x(t),y(t))� = d
dt

�F(x(t)) + G(y(t))� = F′(x(t))x′(t) + G′(y(t))y′(t) = F′(x(t))x(t)[a – by(t)] + G′(y(t))y(t)[cx(t) – d] = 0

e dal precedente calcolo ricaviamo che, a meno di una costante, deve valere la seguente relazione

F′(x(t)) x(t)
[cx(t) – d] = –G

′(y(t)) y(t)
[a – by(t)] = 1
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da cui possiamo ottenere che

F(x) = cx – dln(x) e G(y) = by – a ln(y) (x,y) ∈ (0,+∞)2

riottenendo l’espressione precedente, che descrive analiticamente le curve di livello di H su cui si svolgono le traiettorie del sistema.
Per uno studio più puntuale osserviamo che esistono quattro rette, dette nullocline, lungo le quali una delle componenti del campo vettoriale si annulla:
precisamente i due assi e le rette {x = d/c} e {y = a/b}, queste due rette costituiscono il luogo dei punti in cui le orbite hanno vettore tangente orizzontale o
verticale e la cui intersezione è il punto critico E. Disegnando alcuni vettori tangenti all’immagine di una soluzione si ottiene un grafico qualitativamente simile
al successivo, che dà un’idea del perché le soluzioni abbiamo orbita chiusa.

x

y

y = a/b

x = d/c

E

Proviamo a formalizzare i ragionamenti fatti finora: consideriamo il problema di Cauchy relativo a (6.9) con dato iniziale (x(0),y(0)) = (p1,p2) con p1 > d/c e
p2 > a/b, finché la traiettoria resta nel quadrante individuato dalle relazioni {x> d/c,y> a/b} abbiamo che x′(t)< 0 e y′(t)> 0, e da questo ricaviamo che

d
dt ln(x(t)) =

x′(t)
x(t) = a – by(t)≤ a – bp2 = –r< 0 e integrando ln(x(t)) – ln(p1)≤ –rt

esplicitando l’espressione abbiamo che

d
c ≤ x(t)≤ p1e

–rt

quindi, in tempo finito, x raggiunge il valore d/c e la traiettoria passa nella semistriscia {0 < x < d/c,y > a/b}. Ripetendo questo argomento è possibile
dimostrare che la soluzione ruota, in senso antiorario, intorno ad E e siccome deve muoversi su una curva di livello chiusa della funzione coercitiva H, deve
descrivere un’orbita chiusa, percorrendo una traiettoria periodica. Il calcolo precedente ha un’ulteriore implicazione, poiché vale

d
dt ln(x(t)) = a – by(t) e integrando troviamo ln(x(t)) – ln(p1) = at – b

Z t

0
y(s)ds
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scegliendo t = τ il periodo della traiettoria, per cui vale x(τ ) = p1, otteniamo la media della popolazione dei predatori y :=
1
τ

Z τ

0
y(s)ds = ab .

In modo analogo, sfruttando l’altra equazione del sistema, è possibile calcolare la media x.

6.7 Sistemi non lineari planari

Consideriamo il sistema planare del primo ordine

(6.10)
(
x′(t) = f(x(t),y(t))
y′(t) = g(x(t),y(t))

Classificare il punto di equilibrio O significa determinare se le soluzioni generate dal problema di Cauchy con un dato iniziale vicino al punto critico tendono ad
avvicinarsi o meno all’equilibrio. In generale possiamo ragionare nel seguente modo: supponiamo di avere a che fare con un sistema del tipo

(
x′(t) = f(x(t),y(t))
y′(t) = g(x(t),y(t))

con f,g ∈ C2(� ), che possieda un equilibrio P(x0,y0). Il fatto che P sia un punto critico del campo vettoriale, cioè un equilibrio del sistema, significa che risolve
il sistema di equazioni, f(x0,y0) = g(x0,y0) = 0. Sia (x∗,y∗) un dato iniziale tale che (x0 – x∗)2 + (y0 – y∗)2 < ε e x(t),y(t) la soluzione del problema di Cauchy,
allora possiamo scrivere


x′(t) = f(x(t),y(t)) = f(x(t),y(t)) – f(x0,y0)≃∇f(x0,y0) ·

�
x(t) – x0,y(t) – y0

�

y′(t) = g(x(t),y(t)) = g(x(t),y(t)) – g(x0,y0)≃∇g(x0,y0) ·
�
x(t) – x0,y(t) – y0

�

dove abbiamo approssimato la differenza usando l’espansione in polinomio di Taylor al primo ordine e trascurando gli ordini successivi. Ovviamente questa
approssimazione è ragionevole solo per tempi piccoli, cioè fino a quando possiamo pensare la traiettoria vicina all’equilibrio. Introducendo le variabili ξ(t) =
x(t) – x0 e η(t) = y(t) – y0 il precedente sistema diventa

(
ξ′(t) = ∂1f(x0,y0)ξ(t) + ∂2f(x0,y0)η(t)
η′(t) = ∂1g(x0,y0)ξ(t) + ∂2g(x0,y0)η(t)

o, in notazione matriciale,
 
ξ(t)
η(t)

!′
= J(f,g)(x0,y0)

 
ξ(t)
η(t)

!

Diremo che l’equilibrio P è stabile se (ξ(t),η(t)) −→ P, e siccome il sistema è lineare è facile verificare che il comportamento asintotico della traiettoria
(ξ(t),η(t)) dipende dagli autovalori di J(f,g)(x0,y0). Questa definizione di stabilità non è l’unica presente in letteratura ed è, più precisamente, detta stabilità
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per linearizzazione, in particolare vale che l’equilibrio è stabile se gli autovalori della matrice hanno parte reale negativa, altrimenti l’equilibrio può non essere
stabile.
Nello studio di equazioni differenziali in una sola incognita è frequente ottenere esistenza di soluzioni globali grazie al teorema della barriera (vedi il teorema ??),
cioè tramite una stima a priori che ci assicura che l’immagine della soluzione è contenuta in un insieme della retta reale su cui il secondomembro dell’equazione
è globalmente lipschitziano.
Avendoa che fare con sistemi di equazioni differenziali questa ideadeve essere rivisitata e opportunamente generalizzata. In particolare vedremocomeconcetti
quali limitatezza delle soluzioni, stime a priori e proprietà di positività delle soluzioni sono differenti sfaccettature di una stessa idea: tutti queste proprietà
qualitative di alcune traiettorie dei sistemi richiedono che la soluzione abbia valori in opportuni sottoinsiemi di � 2. Una possibile strategia che dimostra la
validità di questo genere di proprietà si basa sul concetto di regione invariante. Nel seguito delle note ci concentreremo (quasi esclusivamente) su sistemi
planari.

DEFINIZIONE 6.32 Un sottoinsieme D ⊆ � 2 è POSITIVAMENTE INVARIANTE per un sistema di equazioni differenziali se ogni soluzione (x(t),y(t)) che verifica
(x(t0),y(t0)) ∈ D per qualche t0 è tale che (x(t),y(t)) ∈ D per ogni t≥ t0.

Analogamente è possibile definire insiemi negativamente invarianti. Un sottoinsieme è invariante se è positivamente enegativamente invariante. L’intersezione
e l’unione di insiemi positivamente (o negativamente) invarianti è ancora positivamente (o negativamente) invariante. In quel che segue, siamo interessati
all’evoluzione per tempi successivi all’istante iniziale e quindi ci interesseremo solo di insiemi positivamente invarianti.

DEFINIZIONE 6.33 Il luogo dei punti {(x,y) : f(x,y) = 0} o {(x,y) : g(x,y) = 0} si dice NULLOCLINA del sistema e individua i punti dello spazio in cui il campo f
è parallelo ad uno degli assi coordinati. Si noti che le intersezioni di 2 nullocline (relative alle differenti componenti del vettore f) individuano punti di equilibrio
del sistema.

TEOREMA 6.34 (I.O. BENDIXSON E H.C.R. DULAC) SiaD⊆ � 2 aperto semplicemente connesso e (f,g) ∈ C1(D,� 2)un campovettoriale, se esiste una funzione
h di classe C1(D) tale che

divh(x,y)f(x,y),h(x,y)g(x,y)� , 0 per ogni (x,y) ∈ D

allora non esistono orbite periodiche di (6.10) contenute nell’apertoD.

DIMOSTRAZIONE. Supponiamo, per assurdo, che esista un’orbita chiusa semplice (x(t),y(t)) di (6.10) con sostegno γ contenuto nell’aperto D. Essendo il
dominio semplicemente connesso sappiamo che γ = ∂E con E⊆ D aperto, dal teorema della divergenza segue che
Z

E

�
∂1(hf)(x,y)+∂2(hg)(x,y)

�dxdy =
Z

∂E
hf(x,y),g(x,y)�·nds =

Z

γ
h(x(t),y(t))f(x(t),y(t)),g(x(t),y(t))�·n(t)ds =

Z b

a
h(x(t),y(t))f(x(t),y(t)),g(x(t),y(t))�·(y′(t),–x′(t))dt = 0

La relazione ottenuta è in contraddizione con le ipotesi, infatti il campo h(x,y)(f(x,y),g(x,y)) ha divergenza sempre differente da 0 in D, quindi il suo integrale
in E deve risultare o positivo o negativo.
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DEFINIZIONE 6.35 Nel seguito chiameremo ciclo limite la traiettoria (o orbita) di una soluzione periodica di un sistema di equazioni differenziali.

TEOREMA 6.36 (J.H. POINCARÉ E I.O. BENDIXSON) Sia (f,g) ∈ C1(D) un campo vettoriale nel piano con punti singolari isolati e supponiamo che D ⊆ � 2 sia
positivamente invariante. Allora le traiettorie determinate dalle soluzioni di (6.10) con dato iniziale inD tendono
i. o a un punto singolare,
ii. o a un’orbita periodica,
iii. o all’unione di punti singolari e di curve (omocline e/o eterocline) che connettono tali punti.

Noi dimostreremo una versione parziale di questo importante risultato, cioè il seguente enunciato.

TEOREMA 6.37 (J.H. POINCARÉ E I.O. BENDIXSON) L’orbita descritta da una soluzione periodica di un sistema planare contenuta in un dominio D
semplicemente connesso contiene almeno un punto critico.

DIMOSTRAZIONE. DA SCRIVERE
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