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LE EQUAZIONI DI MAXWELL

Il punto di partenza del nostro viaggio € costituito da quattro famose equazioni: le equazioni di Maxwell. Per il momento scrivere

legge di Gauss per il campo elettrico  ®s (E) = %
(0]
legge di Gauss per il campo magnetico @5 (B)=0
legge di Faraday-Neumann I (E) = _A(DASt(B)
Ads (E
legge di Ampére-Maxwell I(:(B) = ug |it +€0 Ast( )}

Le precedenti relazioni vanno lette nel seguente modo: ¥ C R3 & una superficie chiusa nello spazio, il simbolo @ indica il flusso del campo (elettrico o magne-
tico) attraverso tale superficie, Qt & la somma algebrica delle cariche racchiuse all'interno di ¥ ed € € la costante dielettrica del vuoto. I' indica la circuitazione
del campo (elettrico o magnetico) lungo la linea chiusa & C R3, $ & una qualsiasi superficie dello spazio avente G come bordo, it & la somma algebria delle
intensita di corrente concatenate con [ e ug € la permeabilita magnetica del vuoto. Il simbolo A indica la variazione della quantita che segue la lettera greca.
Questo sistema di quattro equazioni racchiude in sé le leggi fondamentali dellelettromagnetismo e sono una delle conquiste scientifiche pitl importanti del
genere umano, almeno fino alla fine del XIX secolo. Eppure la loro scrittura in questa forma presenta alcune criticita, in particolare nel calcolo dei flussi e delle
circuitazioni, la cui definizione operativa non € di facile uso. Lo scopo recondito di questo corso & quello di rendere in grado il lettore e la lettrice di saper
riscrivere in forma matematicamente migliore le equazioni di Maxwell, di apprezzarne pienamente il significato e, soprattutto, di essere in grado di manipolare
attivamente le equazioni, al fine di calcolare quantita rivelanti, dedurre informazioni o previsioni utili.

E ben noto che nessun testo in commercio risponde a tutte le esigenze del docente, e questo & ancor piti vero per un testo vorrebbe presentare esaurientemente
i principali argomenti dellanalisi vettoriale moderna, venire incontro alle esigenze delle studentesse e degli studenti, riuscire a proporre un percorso ragionavole
e calibrato per le ore a disposizione che risultano sempre inferiori alle necessita sia ideali che reali...

Queste note sono il risultato piu recente di lunghe riflessioni su cosa (e come!) presentare agli studenti di "Analisi Vettoriale” del corso di laurea triennale in
Fisica dell'Universita di Roma La Sapienza, su come integrare la teoria con esercizi che stimolino la riflessione in modo da facilitare lassimilazione di concetti,
idee, tecniche e che facciano lavorare i discenti senza scoraggiare o stancare eccessivamente.

Ogni capitolo richiama definizioni, teoremi (alcuni dei quali con dimostrazione) e tutti gli strumenti necessari per la risoluzione dei relativi esercizi, anche se la
presentazione é ridotta allessenziale. Gli esercizi e i problemi presentati illustrano e ampliano la teoria esposta e sono completamente svolti, nella speranza che
stimolino una rilettura dei precedenti risultati di teoria affrontati portando ad una rielaborazione consapevole e sicura. Pensiamo infatti che la teoria dovrebbe
proporre strumenti per la risoluzione di problemi (o, pit banalmente, di esercizi) e che questi dovrebbero proiettare luce sul significato dei teoremi e sul modo
corretto di interpretarli e memorizzarli.

Gli argomenti di queste note sono cosi organizzati.

Il promo capitolo espone alcuni concetti relativi agli spazi normati e ad alcune questioni di carattere topologico o metrico, con particolare interesse allo spazio
euclideo R".

Il secondo capitolo contiene un'introduzione al calcolo differenziale per funzioni di pit variabili a valori reali e vettoriali, con particolare enfasi ai concetti di
curve e superfici dello spazio. Il calcolo differenziale viene poi applicato al problema della ricerca di massimi e minimi liberi e vincolati.
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La misura e lintegrale di Lebesgue in R" & un argomento che € irrinunciabile per il corso di laurea in Fisica, a causa dei successivi corsi in cui si introducono
i rudimenti della meccanica quantistica, e costituisce il contenuto del terzo capitolo. Vengono sviluppati le idee di misura, di integrazione e provati i classici
risultati di passaggio al limite sotto il segno di integrale. Infine viene introdotta la definizione degli spazi di Lebesgue.

Il calcolo integrale € largomento principale del quarto capitolo. Nella prima parte vengono definiti gli integrali curvilinei di funzioni e di campi vettoriali e
vengono affrontate le questioni legate allesistenza del potenziale di un campo vettoriale e allesattezza delle forme differenziali lineari. Nella seconda parte
viene esposta la teoria dell'integrale secondo Lebesgue con applicazioni al calcolo di aree, volumi, masse, baricentri e momenti d’inerzia di solidi. Nellultima
parte del capitolo si considerano integrali superficiali di funzioni e di campi vettoriali con applicazioni al calcolo del flusso di un campo vettoriale attraverso una
superficie.

Il quinto capitolo tratta dei teoremi fondamentali del calcolo integrale e differenziale per i campi vettoriali ossia il teorema della divergenza e il teorema del
rotore, prima considerati nel piano e poi nello spazio. Al termine del capitolo & possibile trovare alcuni approfondimenti teorici che solitamente non compaiono
nei testi di analisi vettoriale.

ILsesto (ed ultimo) capitolo riporta i principali risultati relativi alla teoria di base delle equazioni differenziali ordinarie. Vengono discussi in dettaglio alcuni esempi
con lo scopo di rivisitare parte della teoria o accennare a qualche risultato pit avanzato. Nellultima parte del capitolo vengono proposti alcuni risultati classici
relativi allequazione di Poisson.

Desideriamo infine ringraziare tutti gli aspiranti fisici che hanno segnalato refusi, presentato soluzioni originali ai quesiti proposti, discusso e fatto domande:
continuate cosi!

23 gennaio 2025

EM
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1 RICHIAMI DI TOPOLOGIA E GEOMETRIA

Tutte le disquisizioni che faremo nel corso delle pagine successive si svolgeranno in alcuni ambienti che godono di interessanti e cruciali proprieta, quindi &
doveroso iniziare rammentando alcuni concetti che sono alla base dellanalisi in pit dimensioni.

1.1 spazi vettoriali

DEFINIZIONE 1.1 Uno spazio vettoriale reale e un insieme non vuoto V, i cui elementi sono detti vettori, su cui sono definite due operazioni

addizionetravettori perogniv, w € Vesisteu € Vtalecheu = (v +Vv),
moltiplicazioneperscalare perogni) € Reogniv € Vesistev € Vtalechev = Aw.

Tali operazioni godono di varie proprieta

i. laddizione é associativa, cioé per ogniu,v,w € V vale (u+v) +w=u+(v+w),
ii. laddizione € commutativa, cioé per ogniu,v € Vvaleu+v=v+u,

iii. esiste O € V tale che O +w = w, perogniw €V,

iv. per ogniw € Vvale lw=we Ow = O,

v. perogniu,w € V e perogni X € R, abbiamo A(u+w) = Au + Aw,

vi. per ogniv € V e perogni \, i € R, segue (X + u)v = Av + uv,

vii. per ogniv € V e perogni \, . € R, vale che (Au)v = A(uv).

Si osservi che la definizione resta valida se sostituiamo il campo reale R con il campo complesso C. Gli spazi vettoriali sono stati i protagonisti dei corsi di
geometria del primo anno, per cui non ci dilungheremo su di essi, tranne per un paio di esempi che torneranno utili.
Come primo esempio proponiamo lo spazio vettoriale che pit frequentemente incontreremo, cioé

sex,y € R" allora W= (X+Y) = (Xq, 0, Xn) *+ (Y40 e Y5) = (X1 # Y1, e X0+ Y,)

N fy = v, P
R™:= {x=(x, ... xn) : i € Reoni=1,..., n} sex € R"eh € R allora W = AX = A(Xq, -, Xn) = (AXq, oo, AXp)

chiameremo indifferentemente gli elementi di IR™ vettori o punti, il perché sara chiaro pit avanti. Ricordiamo che dim(R") = n.
Un altro esempio notevole & il seguente: dato [a, b] C R intervallo chiuso e limitato, definiamo lo spazio delle funzione continue e due operazioni come segue

sef, g € CO[a,b] allora (f+g)(x) := f(x) + g(x)perognix € [a, b]

0 . . . . :
C7la.b]:= {f:[a.b] — R :feontinuain(a,bl} sef € COla, ble € R allora (AF)(x) := M(x)perognix € [a, b]

E abbastanza facile verificare che C°[a, b] soddisfa la definizione di spazio vettoriale, ed € anche interessante provare che dim(C%[a, b]) = +co (& sufficiente
mostrare che i monomi del tipo x" sono linearmente indipendenti). Incontreremo altri spazi vettoriali pit avanti, nel proseguio del nostro percorso.
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DEFINIZIONE 1.2 Sia V uno spazio vettoriale, una funzione || - ||y : V. — R si dice norma se
i. ||v|ly > O perogniv € Ve ||v|ly = O se e solo se v = O (positivita),

ii. |2w]|y = |\|||w]||y per ogniw € Ve X € R (1-omogeneita),

iii. [[v+wlly < |lwlly + |lv|lv per ogniv,w €V (disuguaglianza triangolare).

E possibile dotare lo spazio vettoriale R" di molte norme, i casi pili noti sono

n

Il = xq] +# [xa] = ) I

i=1

n 12 n
] 2 perx € R
Il = 11| = 2 o0 = [Dxi }
i=1

[[Xlloc = max x|
i=1,....n

la norma || - ||; & detta norma euclidea ed € la norma standard (almeno per noi) in R", spesso verra indicata senza alcun pedice, cioé scriveremo ||x|| invece di
|IX||2- La norma || - ||1 & invece nota come norma del tassista o di Manhatthan.
Lo spazio delle funzioni continue CO[a, b] & usualmente equipaggiato con la seguente norma

[flloo == max_[f(x)]  perf e COla,b]
x€[a,b]

DEFINIZIONE 1.3 Sia V uno spazio vettoriale su R, una funzione (-|-)y : V x V — R si dice prodotto scalare se
i. (w|v)y = (v|w)y per ogniv,w € V (simmetria),

ii. Aw|v)y = (w|Av)y = A(w|v)y perogniv,w € V e \ € R (omogeneita),

iii. (w +u|v)y = (w|v)y + (u|v)y per ogniv,w,u €V (linearita),

iv. (w|w)y > O perogniw € V e (w|w)y = O se e solo se w = O (positivita).

Lesempio principale di spazio dotato di prodotto scalare & R" che possiamo dotare del prodotto scalare euclideo

n

(X|y)gn :=x-y = inyi x,y € R"
i=1

nelle prossime pagine proveremo ad illustrare alcuni risultati essenziali riguardo agli spazi metrici e agli spazi normati. Altri prodotti scalari notevoli in R" sono
le funzioni del tipo

n
(x]y)m =x-[My] = Zminin doveM = (mii)i in € Mnn(R)
o =

& possibile provare che tale applicazione definisce effettivamente un prodotto scalare se e soltanto se la matrice M & simmetrica e definta positiva.
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OSSERVAZIONE 1.4 Si noti che un qualsiasi prodotto scalare induce sempre una norma sullo spazio vettoriale, grazie alla seguente espressione
I := [6cx)"2

in particolare & possibile verificare che

Il = 1l = [0 = [(xixy |2 doveln = () {1) =]

ij=ten i#]

OSSERVAZIONE 1.5 E sempre possibile introdurre un concetto di lunghezza (o distanza tra punti) avendo a disposizione una norma ed uno spazio vettoriale.
Pensando i vettori anche come punti di uno spazio geometrico possiamo introdurre la seguente definizione

dy(u,w) = [Jlu—wlly perogniu,w € V

& immediato verificare che le proprieta della norma, implicano le seguenti proprieta per la distanza dy

i. dy(u,w) > O per ogniu,w € V e dy(u,w) = O se e solo se u = w (positivita),

ii. dy(u, w) = dy(w, u) per ogni u,w € V (simmetria),

iii. dy (v, w) < dy/(v, u) +dy(u, w) per ogni v,u,w € V (disuguaglianza triangolare).

Tali proprieta esprimono le caratteristiche a cui, generalmente, si pensa parlando di distanze o lunghezze e, come vedremo tra poco, sono alla base di una
definzione piu matematica di tale concetto

1.2 spazi metrici

Abbiamo visto nelle pagine precedenti che, avedo una norma, & possibile introdurre un concetto di distanza tra due punti o, se si preferisce, di lunghezza di un
segmento di estremi dati. Proviamo a generalizzare questo concetto, per isolarne le caratteristiche salienti.

DEFINIZIONE 1.6 Uno spazio metrico e una coppia (X, d) dove X e un insieme non vuoto (i cui elementi saranno chiamati punti) e d : X x X — R é una funzione
chiamata distanza (o anche metrica) che soddisfa le seguenti richieste:

i.d(x,y) > O perognix,y € Xed(x,y) = O se e solo se x =y (positivita) ,

ii. d(x,y) = d(y, x) per ogni x,y € X (simmetria),

iii. d(x,y) < d(x,z) +d(z,y) per ogni x,y, z € X (disuguaglianza triangolare).

Il primo esempio di spazio metrico che abbiamo incontrato € l'insieme dei numeri reali con la distanza indotta dal modulo: d(x, y) = |x—y/: le verifiche delle
proprieta i. ii. e iii. sono abbastanza facili. Analogamente anche (R", || - ||) € uno spazio metrico, ma su questa affermazione torneremo piu avanti. Si noti che
& sempre possibile definire distanze diverse su un qualsiasi spazio, infatti abbiamo gia visto che & possibile dotare R" di pili norme, e (conseguentemente) di
piu distanze.
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Un esempio un po bizzarro, e per alcuni versi degenere, € il seguente: sia X = () un insieme arbitrario e definiamo

1 sex=
dD(X'y)={ 0] sex=;I

E facile verificare che dp & una metrica. Le proprieta i. e ii. sono chiaramente verificate e per quanto riguarda la iii. abbiamo che se x = y non c'é nulla da
dimostrare. Se x = y, basta provare che dp(x, z) + dp(z,y) > 1per ogni x, y e z nello spazio X, con x =y, fatto questo che risulta essere vero, essendo almeno
uno tra i valori dp(x, z) e dp(y, z) uguale a 1 (non possono essere entrambi nulli, perché si avrebbe x = z e z = y per la ., da cui x = y). La distanza dp si chiama
distanza discreta.

OSSERVAZIONE 1.7 (METRICA INDOTTA) Un'osservazione utile, per quanto elementare, € che ogni sottoinsieme E di uno spazio metrico (X, d) € a sua volta uno
spazio metrico con la metrica indotta dalla restrizione della distanza alle coppie di E. Cio€, se poniamo dg : E x E — R definita dg(x, y) := d(x, y), allora (E, dg)
€ uno spazio metrico.

Per esempio, ogni sottoinsieme di R pud essere considerato uno spazio metrico con la metrica indotta dal modulo.

Nei primi corsi di analisi matematica € usuale introdurre l'insieme dei numeri reali R e i suoi assiomi. Adesso vogliamo concentrarci sulla proprieta di com-
pletezza: questa proprieta caratterizza l'insieme dei numeri reali rendendoli differenti, in qualche senso, dall'insieme dei numeri razionali Q. Tale assioma si
é rivelato indispensabile per dimostrare tutti i principali risultati del primo corso di analisi, quali il teorema dei valori intermedi, il teorema di Weierstrass, il
teorema fondamentale del calcolo integrale... Le implicazioni dellaffermazione che R & completo nellanalisi matematica rendono necessaria una riflessione e
una rivisitazione del significato di completezza, perché vorremmo estendere tale concetto ad altri spazi. La definizione di completezza pud essere formulata
tramite vari assiomi, per esempio

ASSIOMA 1.8 (PROPRIETA DI ARCHIMEDE) Per ogni coppia di numerirealia > O eb > O esiste N € IN tale che Na > b.

ASSIOMA 1.9 (DI G.F.L.P. CANTOR) Sia [ay, bi] C R, per ogni k € N, un intervallo non vuoto, tale che [ay.1, by.1] C [ay, bi] per ognik € N, allora

()2 bid = 0

keN

ILlimite principale della formulazione della completezza di R (enunciata tramite l'assioma degli intervalli incapsulati) risiede nel fatto che si basa sulla particolare
struttura unidimensionale R. Tuttavia, le implicazioni che la proprieta di completezza ha in R sono chiaramente condivise da altri insiemi, quali per esempio
il campo dei numeri complessi € o lo spazio euclideo R3 (o, pill in generale, R™). Ma cosa vuol dire esattamente che € o R3 sono spazi completi? Di seguito
diamo una formulazione equivalente della proprieta di completezza di R, che & basata sul concetto di successione e che é facilmente estendibile a situazioni
ben piu generali, quali C, R" e tante altre ancora, cioé spazi vettoriali o metrici in cui non ha senso parlare di intervalli.

Una successione di numeri reali € una funzione a valori reali di dominio N, quindia : N — R (per cui a(k), per k € IN, sono i valori della successione).
Generalmente una successione puo essere indicata con una scrittura del tipo {ay }en. © anche {a(k)} e € talvolta scriveremo {a,} C R per indicare che i
valori della funzione a sono assunti nei numeri reali.

Ricordiamo la definizione di successione convergente e di sottosuccessione.
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DEFINIZIONE 110 Una successione {ay } é convergente se esiste p € R per cui vale
perognie > O esisteN(¢) € N tale che lay—p| < e perognik > N(e)

In questo caso si scrive
ay—p  oppure

im a =p
k—+oc0

DEFINIZIONE 1.11 Data una successione di numeri reali {a, } e una successione di numeri naturali strettamente crescente k(O) < k(1) < k(2)..,, la successione
a’ = {ayj) }ien si chiama sottosuccessione di {ay }c € si scrivea’ C a.
In altre parole, una sottosuccessione a’ C a & la composizione della funzione a con una funzione strettamente crescente k: N — I,
a'=aok coe  a'=(ayq) ) @) )

E noto che una successione € convergente se e solo se tutte le sue sottosuccessioni convergono (sempre allo stesso limite), inoltre un fatto significativo
riguarda le successioni limitate, per le quali esiste sempre una sottosuccessione convergente, come mostriamo nella prossima proposizione. Ricordiamo che
una successione {a } si dice limitata se lo € come funzione, ossia se esiste M > O tale che |a| < M per ogni k € IN.

TEOREMA 112 (DI B.P).N. BoLzANO E K.T.W. WEIERSTRASS) Ogni successione di numeri reali limitata possiede una sottosuccessione convergente.

DIMOSTRAZIONE. Sia {a,} una successione limitata e sia M > O tale che =M < a; < M per ogni k € IN. Applichiamo il cosiddetto metodo di bisezione: sia
[ag, bgl =[-M, M] e consideriamo la seguente proprieta (P) per gli intervalli chiusi e limitati |

(P)  a el perinfinitindicik

Chiaramente (P) vale per [ag, bgl. A partire da [ag, bo] si definisce una successione di intervalli chiusi incapsulati in modo ricorsivo procedendo secondo il
seguente algoritmo di bisezione: si divide lintervallo [an, bn] in due meta, I” = [an, (an + bn)/2] e I" := [(an + bn)/2,bn] e, se I” soddisfa la proprieta (P), allora si
pone [an.1, bs.q] = I7; altrimenti, necessariamente I* contiene infiniti termini della successione, cioé soddisfa la proprieta (P), e si pone [a.1, bp.] = 1.

La procedura di bisezione produce una successione di intervalli incapsulati [an, bn] tali che la proprieta (P) vale per ogni intervallo [an, bn]. In particolare, dato
che ci sono infiniti termini della successione in ogni intervallo [an, bn], possiamo trovare una successione crescente di indici k(O) = O < k(1) < k(2)... tale che
ay(n) € [an, bn] per ognin.

Sia A = (Mhenlan, bnl, si noti che tale reale esiste, per lassioma di Cantor, ed € unico per la proprieta archimedea dei reali. Allora la sottosuccessione {ayy) }
converge a X perché per ogni n si ha che

bo—-ag
2n

da cui la conclusione segue dal teorema del confronto per successioni. n

ag(n) = Al < bn—an =
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DEFINIZIONE 1.13 (SUCCESSIONE DI CAUCHY) (a) C IR é una successione di Cauchy se per ogni € > O esiste un indice K = K(e) € IN tale che
lag.j—al < ¢ perognik > Keperognij € N
Il primo risultato che vogliamo mostrare €
PROPOSIZIONE 1.14 (CONVERGENZA DELLE SUCCESSIONI DI CAUCHY) In R una successione é di Cauchy se e solo se é convergente.
DIMOSTRAZIONE. Supponiamo che {a;} C R sia una successione convergente e sia p € R il suo limite. Dalla definizione di limite sappiamo che per ogni
€ > O esiste N(g) € N tale che
lag—pl <e perognik > N(e)
Allora possiamo scrivere
|3~ 2| = [y =P +P—ay| < [awj—pl+[p-a <2¢  perognik > N(e) j€ N

La disuguaglianza ottenuta prova che {a,} € di Cauchy (con K(e) = N(e/2).
Viceversa, sia {ay } una successione di Cauchy; allora dalla definizione abbiamo che esiste Kg tale che

|agj—ay| <1 perognik > Kq
In particolare, la successione {a, } & limitata in quanto
lay| < lag|+...+[ag,| +1 perognik € N

Per la Proposizione 1.12 esiste una sottosuccessione convergente {ay(,) } ad un punto p € R. Per concludere il ragionamento € sufficiente provare che tutta la
successione {ay } converge a tale limite. Sia € > O; per definizione di limite (per {ay)}) e di successione di Cauchy (per {3 }) esistono due indici naturali K; e
K, tali che

g —pl < e perognik(n) > Ky
laj—ayl <€ perognik > K;,j € N

Allora, per ogni k > max{Kj, K5}, sia n tale che k(n) > k e stimiamo come segue
la—pl < lag—ay(m) | + |akn) —pl < 2¢

Larbitrarieta di € ci permette di affermare che ay — p, concludendo la dimostrazione. n

TEOREMA 1.15 (ESISTENZA DELLESTREMO SUPERIORE) Lassioma di convergenza delle successioni di Cauchy e la proprieta archimedea implicano lesistenza
dellestremo superiore di insiemi non vuoti e superiormente limitati.
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DIMOSTRAZIONE. Sia E C R un insieme non vuoto e superiormente limitato. La dimostrazione procede tramite il cosiddetto metodo di bisezione: o esiste
max(E) (nel qual caso la dimostrazione & conclusa), oppure esistono due successioni di reali {an} e {bn} tali che a, non & un maggiorante di E e b, € un
maggiorante di E per ogni n € IN, inoltre il metodo di bisezione garantisce che {an} sia crescente e {bn } decrescente. In particolare, le successioni {an } e {bn}
sono successioni di Cauchy, perché risulta che

bo—-ap
2n

|ansj —an|, [bpsj—bn| < bn—an = perognij € N

quindi lipotesi che le successioni di Cauchy sono convergenti permette di affermare che {an} e {bn} sono convergenti. Inoltre, dato che by —an = (bg—ag)/2",
per la proprieta di Archimede si ha che

A 2n=, i b

Chiamiamo ( tale limite: la dimostrazione si conclude provando che . = sup(E). Per definizione di maggiorante abbiamo che
x < bn perognix € E

e, passando al limite, otteniamo

X< perognix € E

il che prova che 1. & un maggiorante. Inoltre, per costruzione a non € un maggiorante, per cui per ogni n esiste x, € E tale che an < xp. In particolare, non puo
esistere un maggiorante X con X < y, infatti, si ha che

im an= lim xn= lim by=p
n—00 n—o00 n—-00

e, dato che apn < xn < A < u per ogni n, deduciamo la contraddizione

n—o0

TEOREMA 1.16 (REGOLARITA DELLE SUCCESSIONI MONOTONE) Ogni successione monotona e limitata & una successione di Cauchy.

DIMOSTRAZIONE. ... ]

E un fatto notevole che la completezza dei numeri reali possa essere caratterizzata dalla convergenza delle successioni di Cauchy e dalla proprieta di Archimede,
cioé che scegliere come assioma Cantor o Cauchy €, sostanzialmente, indifferente in IR, come potremo affermare dopo aver provato il seguente enunciato.

TEOREMA 1.17 (CARATTERIZZAZIONE DELLA PROPRIETA DI COMPLETEZZA) Lassioma di convergenza delle successioni di Cauchy implica il principio degli
intervalli incapsulati di Cantor.
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DIMOSTRAZIONE. Consideriamo una successione di intervalli incapsulati, cioé di intervalli chiusi e limitati tali che [an, bn] D [an.1, bns1] per ognin € IN, e osser-
viamo che le successioni {an } e {bn} sono successioni di Cauchy, perché sono successioni limitate e monotone, quindi convergenti per il teorema precedente.
Allora abbiamo che

an — a0 < by «— by
A questo punto segue che
0 # [aco, boo] C [an,bn]  perognin € N

il che conclude la prova. n

Alla luce delle considerazioni fatte sulla completezza di R € naturale definire uno spazio metrico completo come uno spazio in cui ogni successione di Cauchy
é convergente. Come abbiamo gia osservato questa definizione sara indipendente dallordinamento dei reali e non necessita di alcuna struttura legata agli
spazi vettoriali: di fatto & essenzialmente una definizione di caarttere metrico, che necessita solo della proprieta di Archimede dei reali, per poter parlare di
successioni infinitesime in erre e della definizione di distanza.

A questo scopo premettiamo alcune definizioni e osservazioni sulle successioni negli spazi normati.

DEFINIZIONE 118 i. Sia (X, || - ||x) uno spazio normato. Una successione di punti in X & una funzione a: N — X, solitamente denotata con {a; } C X.
ii. Una successione {a, } C Xsi dice convergente se esiste un punto p € X tale che

lim [lay—pllx =0
k— 00
iii. Una successione {a, } C Xsi dice di Cauchy se per ogni € > O esiste K(€) € N tale che
lagj—axllx <& perognik > K(e)eperognij € N
OSSERVAZIONE 119 | limiti delle successioni sono sempre unici, infatti se avessimo che ay — p e ay — q, allora per la disuguaglianza triangolare avremmo
che
lp=all < llp=acl +[lax=all  perognik e N
da cui
lp=all < lim [lp—ac+[ac—ql]=0
k—s 00
il che implicap =q.
OSSERVAZIONE 1.20 Dal punto ii. della definizione precedente segue che per ogni € > O esiste un naturale N(¢) tale che

lay—pll <e  perognik > N(e)
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Allora, per ogni k > N(e) e per ogni j € N, per la disuguaglianza triangolare si ha che
lag = a.jll < llag=pll + Ip—ay.ll < 2¢

cioé {a,} e di Cauchy.
Sottolineiamo esplicitamente che il viceversa non € sempre vero: per esempio, in (Q, | - ||2) non € vero che ogni successione di Cauchy & convergente.

La convergenza delle successioni di Cauchy € un criterio che pud essere usato per definire il concetto di completezza in uno spazio metrico generale, come
proponiamo nella successiva definizione.

DEFINIZIONE 1.21 Uno spazio normato (X,

- |Ix) si dice completo se ogni sua successione di Cauchy é convergente.

1.3 spazi normati completi

Gli esempi considerati fino ad ora, ossia R" e gli spazi di funzioni continue C°[a, b], possiedono una struttura di spazi vettoriali: i loro punti sono anche vettori,
e possono essere sommati tra di loro e moltiplicati per uno scalare. Questa & una classe importante di spazi metrici, per i quali (come abbiamo osservato) la
metrica usuale & indotta da una norma, che gioca lanalogo ruolo della lunghezza o del modulo di un vettore.

DEFINIZIONE 1.22 Uno spazio normato é una coppia di oggetti (X, || - ||x), dove X uno spazio vettoriale reale e || - ||x : X — R & una norma.

Abbiamo gia osservato che uno spazio normato € anche uno spazio metrico introducendo la seguente funzione distanza
dx(x,y) = [Ix=yllx

Infatti, tale applicazione € non negativa e nulla solo se x = y per la definizione di norma (positivita), inoltre la simmetria segue dallomogeneita della funzione,
dx(x,y) = [x=yllx = [[ =ty =X)lx = [ = lly =x[lx = ly =x[lx = dx(y.x)

Infine la disuguaglianza triangolare discende dalla terza proprieta
dx(x,y) = [x=yllx = [[x=z+z=yllx < [[x=z[]x + [|z=yllx = dx(x,2) + dx(z, y)

E anche utile osservare che valgono le seguenti disuguaglianze

[IX[lx = [x=y+ylix < lIx=ylix+llyllx e lylx=lly=x+xlx < [ly=xllx+[x[lx

da cui possiamo dedurre che

[Ixlx = lIyllx| < Ix-yllx
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In altri termini, la funzione norma & continua rispetto alla metrica dy e, pit precisamente, € lipschitziana con costante di Lipschitz 1. In uno spazio normato
faremo sempre riferimento alla distanza indotta dalla norma, a meno che non sia specificato diversamente.

DEFINIZIONE 1.23 Gli spazi normati completi (rispetto alla metrica indotta dalla norma) sono detti spazi di Banach.

DEFINIZIONE 1.24 Dato uno spazio vettoriale X e due norme || - || e || - ||, definite di esso, diremo che le due norme sono equivalenti se esistono due reali positivi
O < ¢« < c* taliche

Cillulla < [lully < c*lulla  perogniu € X

Se si interpreta il concetto di norma come una sorta di funzione lunghezza associata ad ogni vettore dello spazio X, il fatto che le due norme siano equivalenti
significa che le due misurazioni danno sempre risultati confrontabili, in particolare il fatto pit importante € che successioni di Cauchy rispetto alla distanza
indotta da una norma sono successioni di Cauchy anche rispetto alla distanza indotta dall’altra norma. Quindi (X, || - ||a) & completo se e soltanto se & completo
X, - [lp).

Questo principio é stato utilizzato nella dimostrazione della completezza di (R", dy) e (R", dw): infatti, entrambe le metriche sono indotte da una norma e
sono equivalenti alla norma euclidea.

Questa conclusione non é fortuita ma deriva dal fatto che tutte le norme in uno spazio finito dimensionale sono equivalenti. Per provare cio, iniziamo con
alcune osservazioni generali sulle norme in spazi finito dimensionali.

OSSERVAZIONE 1.25 (NORME IN R") Sia || - ||« una generica norma in R" e si consideri la metrica euclidea || - ||, = || - || in R™ (ossia la metrica indotta dal prodotto
scalare euclide). Allora si osserva quanto segue.
i. Sia {ey, .., en } la base canonica di R", per ogni x = (X1, ..., Xn) € R" si ha che

X/l = [[x1€1+ . ¥ Xnen [ < [xq[[ler]ls + .t Ixnlllenlls < X7+ +xq/llerllZ .+ len]l = CIx]l2

dove C* = /| |&;]|2 +...+ ||en||2, e dove si & usata la proprieta triangolare delle norme nella prima disuguaglianza e Cauchy-Schwartz nella seconda.
ii. Ne segue che tutte le norme in R™ sono funzioni continue per la topologia indotta dalla metrica euclidea: infatti, dai calcoli precedenti si evince che

Xl =Nyl < lIx=ylls < C*lx=yll2

da cui la continuita.

TEOREMA 1.26 (EQUIVALENZA DELLE NORME IN SPAZI FINITO DIMENSIONALI) Tutte le norme in uno spazio finito dimensionale sono equivalenti: in formule, se
Il llaell- |l sono due norme in R", allora esistono costanti O < c, < c* tali che

Cllxlla < [Ixllp < c*[Ixlla  perognix € R™
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DIMOSTRAZIONE.  E sufficiente dimostrare che tutte le norme sono equivalenti ad una norma data, per esempio alla norma euclidea || - |
norme € una relazione di equivalenza. Infatti, se esistono costanti O < c(a)« < c(a)* e O < c(b)« < c(b)* tali che

2, perché quella tra

c(@)«lIxlla < [xll2 <c@[IXlla,  cb)lIxllp < [IXll2 < c(b)*[IX|la  perognix € R"

allora si deduce che le due norme || - [[a e | - [|, sono equivalenti, perché

c(a)« c(a)*

— Xl < X[y < ——|X
Ixlla < s < - Xl

H n
<o) perognix € R

Basta quindi dimostrare l'equivalenza di una norma generica || - ||« con || - ||2. A questo proposito, ricordiamo due fatti importanti

i. la sfera di raggio 1, S"™" = 8B(0, 1) = {x € R" : ||| = 1}, & un sottoinsieme compatto di (R, || - ||,) (perché chiuso e limitato),

ii. la norma || - ||« € una funzione continuain (R", | - ||5).

Allora, per il Teorema di Weierstrass la funzione || - || assume massimo e minimo in S™': vale a dire, esistono costanti O < ¢, < C* < +oo tali che

c < |lzfl« < C* perogniz € S™

Preso quindi un generico punto x = O, si ha che x/||x||; € S"™" e applicando la disuguaglianza appena mostrata a z = x/||x||; deduciamo che

X

[Ix[l2

da cui segue lequivalenza delle norme. [

i < |lzfl« =

OSSERVAZIONE 1.27 (CONVESSITA DELLA NORMA) La proprieta triangolare della Definizione 1.22 implica che una norma € una funzione convessa, infatti pos-
siamo scrivere

[+ (A= 2)y [l < I+ 1= Xyl = MIx[[+ (1=A)]ly[l  perognix,y € X,x € [0, 1]
E un fatto generale che le funzioni convesse in R™ sono continue (pili precisamente localmente lipschitziane).

Consideriamo ora uno spazio vettoriale H equipaggiato con un prodotto scalare (-|-)y, allora possiamo associare al prodotto scalare una funzione || - ||y : H —
[0, +00) definita come segue

IX[l4 = VXX xeH

dal teorema che segue discende, tra molti altre proprieta, che || - |4 € una norma.

16
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TEOREMA 1.28 Sia H uno spazio munito di prodotto scalare (-|-)y. Allora valgono i seguenti fatti:
i. disuguaglianza di Cauchy-Schwartz

(lw)n| < [lullnllwlln  perogniu,w € H
ii. disuguaglianza triangolare
Juswlln < [lully Wy perogniu,w € H
iii. identita del parallelogrammo

2 2 2 2 .
lu+wllf+ lu=wld =2(llul+IIwl})  perogniuweH

DIMOSTRAZIONE. i. Consideriamo la seguente funzione di una variabile reale
o(t) = (u+tw|u+tw)y = ||U+tWH|2-| teR

osserviamo subito che, essendo una norma al quadrato, la funzione produce solo valori non negativi, inoltre la simmetria e la linearita del prodotto scalare ci
permettono di scrivere che

0 < (1) = [|u+ w5 = [[ul[f + 2t(ulw)y + ||

La funzione ¢ & una funzione quadratica convessa (possiamo anche dire che il suo grafico & una parabola con la concavita verso lalto) e il suo minimo assoluto
e lordinata del vertice, dunque abbiamo che

(uw)gy 5 [uliBlwlE = (ujw)

2
Iwlli =

. o wg )2 2(ulw)
Oértglngwt)-d)[ ]—IUIIH T

H
wig, "
H

[ Il Iwli3

e la non negativita del numeratore implica la disuguaglianza di Cauchy-Schwartz.
ii. Usiamo la disuguaglianza di Cauchy-Schwartz dimostrata in i. per ottenere che

I+ vl[F = (u+viu s ) = @+ 2V)p + @IV = (Ul 200+ VTG < 11+ 20ullalwll+ IVIE = Ol )
iii. Per verifica diretta, scrivendo per esteso il primo membro dell'identita, si ha che

e v+ lu=vIIE = (uevius vy + (u=viu=v)i = Uu)y + 204 + @IV W= 204 + VG = 2000y 2000 = 2 (1l + V)

DEFINIZIONE 1.29 Uno spazio vettoriale munito di prodotto scalare (H, (-|-)y) e completo rispetto alla metrica indotta si chiama spazio di Hilbert.
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ESEMPIO 1.30 Lo spazio euclideo R" con lusuale prodotto scalare

n

Xy=) X

k=1
€ uno spazio di Hilbert. Approfondiremo il suo studio nelle prossime pagine.

Ci sono spazi di Banach che non sono spazi di Hilbert, cioé norme che non sono generate da prodotti scalari, e noi ne abbiamo gia incontrato qualcuno, come
mostra la seguente osservazione.

OSSERVAZIONE 1.31 (R", |- |l) e (R™, || ||s0) Non sono spazi di Hilbert. E sufficiente mostrare che non vale la proprieta del parallelogramma: considerati i vettori
(1,0,0,..,0)e(0,1,0,...,0), abbiamo

v+ lu=v]f =22+22 =8 = 4=2(1+1) = 2([|u]]? + [vI|?)

lusviZe+ lu=v]|3 =12 12 =2 4= 201+1) = 2(|Jull3, + Iv]1%)

1.4 lospazio R"

In questa pagina e nelle successive introduciamo alcuni esempi fondamentali di spazi metrici completi. Il primo che analizziamo € quello degli spazi euclidei,
il piano, lo spazio o pit in generale lo spazio a n dimensioni. R" & linsieme delle n-ple di numeri reali, detti anche vettori,

R™ := {x = (X{, ., Xn) : X1, ., Xn € R}

Ricordiamo che in questo spazio € definito il prodotto scalare euclideo

n

X-y = (X|]y)gn = inyi perognix,y € R"
i=1

e che la norma o il modulo di un vettore x & il numero

2 2 _
X oppure x5 =x-x

n
(I = [lx[l2 =
-1

La distanza euclidea tra due punti di R" € definita dal modulo della loro differenza

n

1/2
dy(x,y) = |Ix=yll; = {Z(xi —yi)Zl perognix = (Xq, .., Xn), Y = (yq, . ¥y) € R"
i=1



AV EM

in sostanza la distanza euclidea d; & quella per cui vale il teorema di Pitagora generalizzato a uno spazio di n dimensioni.
Come abbiamo visto nel caso del piano euclideo, la dimostrazione che d, costituisca di fatto una metrica non & del tutto evidente, a questo scopo, dimostriamo
un'importante disuguaglianza (che ritroverete in svariati altri contesti nel corso dei vostri studi).

TEOREMA 1.32 (DISUGUAGLIANZA DI A.L. CAUCHY & K.H.A. SCHWARTZ) Dati due puntip = (py,....p,) €9 =(qy,...9,) € R", si ha

n

n
0 ) i<y (pP+a?) = lpl3+ lal3]
1 i=1

n

(12) ) Ipail <

i=1

n 1271 n 112
Zp?} [Zq?} - Ipll2llallz
1 i=1

DIMOSTRAZIONE. La prima formula si ottiene sommando rispetto all'indice i = 1, ..., n le disuguaglianze
1
Ipicil < i(PiZ +Cliz)
evidentemente vere essendo equivalenti alla disuguaglianza (|p;| — |q;)> > O. Abbiamo gia dimostrato la disuguaglianza di Cauchy-Schwartz nel paragra-

fo precedente, ma riportiamo una seconda prova, visto limportanza della disuguaglianza. Cominciamo osservando che & vera se (py,...,p,) = (O,..,0) o se
(91, --.9p,) = (0, ..., 0). Negli altri casi applichiamo la (1.1) ai vettori u = (uy, ..., un) € W = (wy, ..., wn) definiti da

Ui=& e i=i i=1,...,n
Pl ql
Per definizione si ha che } 7, ui2 =y wi2 =1, per cui da (1.1) otteniamo
= pail _ v
il b LI uw;i| <1
L_Tpllql~ 2ol <
che ¢ la tesi di (1.2). []

La quantita che compare al membro sinistro della disuguaglianza di Cauchy-Schwarz € il prodotto scalare tra due vettori di R™:
n
P-q=) pg P.9ER"
i=1
Per cui in maniera compatta possiamo scrivere le disuguaglianze (1.1) e (1.2) nella forma

1 2 2
lp-al <llpll-llqll < i(llpll +|lqll )

19
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Utilizzando la disuguaglianza di Cauchy-Schwartz, & possibile verificare che || - ||; € una norma. La positivita e lomogeneita non richiedono una dimostrazione,
mentre, per la disuguaglianza triangolare, possiamo procedere come segue: siano X = (Xq, ..., Xn), Y = (Y1, ... Yg) € Z = (21, ..., Zn) tre punti di R" e scriviamo

(13) x=yl3= Z Z(x.—z.u. Z[ (4=2)7 + 206 =2)(zi~y) + @~y = Ix=zl3 + [z=y[3+2 ) (i-z)(zi~y))
i=1

i=1

Applicando la disuguaglianza di Cauchy-Schwartz al terzo addendo, si ha
n n W2/ n 12
Z(Xi_zi)(zi_Yi) < [Z(Xi_zi)z] [Z(Zi_Yi)z] = [x=z2[[lz=yll
i=1 i=1 i=1
che unitaa (1.3) da
Ix=yl3 < lIx=z]3+ 2=yl +2|x=z[2llz=Yl2 = [IIx=2ll2 * [lz=yl]2]?

che é la disuguaglianza triangolare, a meno di una estrazione di radice quadrata.
PROPOSIZIONE 1.33 (R", || - ||2) & uno spazio di Hilbert.

DIMOSTRAZIONE.  Sia {x } € R" una successione di Cauchy, ossia, per ogni ¢ > O esiste un indice K = K(¢) € N tale che

172
<e perognik > Keperognij € N

n

. . \2
o=l = {Z(x‘k—x'k+j)

i=1

dove abbiamo usato la convenzione di scrivere in apice le componenti dei punti di R per non confonderle con l'indice della successione: x = (X', ..., x") € R™,
per cuiin particolare si ha x = (x] ..., x1") € R".

Allora, se fissiamo un indice ig € {1,..., n}, la successione formata da tutte le componenti ig-esime dei punti xy, {x:(o} (k e lindice della successione), & una
successione di Cauchy, in quanto

n 12
|x;(o Loﬂ\ < [Z[xk qu] l = I} =Xjll2 < € perognik > Keperognij € N

i=1
Usando la completezza di R, possiamo affermare che esiste xiooO € R tale che

) lim xLO =x9 perogniig =1,...,n
—0Q0

Abbiamo quindi trovato il candidato limite X = (X!, ..., x2) € R".

20
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Per completare la dimostrazione mostriamo che ||x, — X || converge a zero: infatti, si ha che

n 172 n
i oz i |3 o) o[ o

12
=0

1.5 lo spazio C%[a, b]

Uno degli esempi di spazio metrico completo pit rilevanti in questo corso € quello delle funzioni continue definite in un intervallo [a,b] C R con la norma
uniforme.

DEFINIZIONE 1.34 Sia [a,b] C R un intervallo chiuso e limitato, definiamo lo spazio delle funzione continue
COa,b] = {f: [a,b] — R: fcontinua}
equipaggiato con la norma uniforme

Ifll oo == max_{[f(x)|} perognif € COa,b]
x€l[a,b]

La definizione di metrica uniforme é ben posta perché negli intervalli [a, b] chiusi e limitati ogni funzione continua per il teorema di Weierstrass ha massimo:
in particolare, dato che |[f| & una funzione continua, perché composizione di funzioni continue, max,c, ] |f(x)| esiste.

Come al solito, € necessario verificare che effettivamente ||- || o soddisfa le proprieta di una norma. La verifica della positivita e della simmetria sono immediate
e ci concentriamo sulla disuguaglianza triangolare. Date f, g, h € CO[a, b], sia xg € [a, b] un punto di massimo per il modulo della differenza tra f e g, allora

If—gllco = max {|f(x)—g(x)|} = [f(xo) —g(xo)|
x€[a,b]

Allora, utilizzando la disuguaglianza triangolare in R, otteniamo che

If=glloo = [f(x0) —8(x0)| < [f(x0) —h(x0)| + [h(x0) ~g(xo)| < sup {[f(x)=h(x)[}+ sup {|h(x)=g(x)|} = [[f=h][ec +[h—glleo

x€la,b] x€[a,b]

Non & un caso il fatto che usato lo stesso simbolo per le metriche || - || o in R e in CO[a, b]: lanalogia risiede nella definizione della distanza come massimo dei
valori, dove nel primo caso il massimo & preso sulle coordinate, mentre nel secondo al variare del punto x nell'intervallo [a, b], quasi che i punti dell'intervallo
fossero le infinite coordinate del punto f € CO[a, b].

Quello che segue & uno dei risultati pit importanti di tutto il corso.
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TEOREMA 1.35 Sia [a, b] un intervallo chiuso e limitato. Allora, lo spazio metrico (Co[a, bl | - ||Oo) é completo, ossia tutte le sue successioni di Cauchy sono
convergenti.
DIMOSTRAZIONE. Sia {f| } C Co[a, b] una successione di Cauchy: cioé,

perognie > OesisteK = K(¢) € N taleche IIfi —fk+j||oo = rrEa)é] [fi () —fk+j(x)| < gperognik > K(e)ej € N
x€[a,

Per ogni xg € [a, b], quindi, vale che

Ifc(x0) = fisj(x0)| < sup [fi(x) = fi.j ()| < € perognik > K(e)ej € N
xel

Ne segue che per ogni xg € [a, b] la successione di numeri reali {f, (xo)} € R & di Cauchy. Per la completezza di R, esiste Ly, € R tale che
lim fk(Xo) = LXO
k—s 00

Il candidato limite € quindi la funzione f : Xg — Lx,. Dimostriamo adesso che f,, appartiene allo spazio COa, b]. A tal proposito fissiamo un punto generico
zg € [a, b] e dimostriamo la continuita di f in zg (dallarbitrarieta di zg seguira la continuita di fo, su tutto [a, b]).

Sia e > 0 e K=K(e) € N come nella definizione di successione di Cauchy, dalla continuita di f, si ha che esiste § = §(g) > O tale che |fx(zg) —fk(x)| < € per ogni
|zo —x| < 4. Allora, possiamo concludere che per ogni x € [a,b] con |zg —x| < § vale

[foo(z0) = foo (X)| < [foc(z0) = fi(z0) | + Ifk(z0) =i (X)] + [fi (X) = Foo (X)]

fic(z0) ~fi(zo) | + fic(z0) = fic(¥) + im0 ~fic ()]

= lim
j—00
< limsup [[fi.j = filloo + [Tk (zo) = i ()| + limsup ||, fi[[oo < 3€

j—>o0 j—>o0

dove abbiamo usato la condizione di successione di Cauchy per {f| } e la continuita di fg in zg. In particolare, data larbitrarieta di € > O, segue la continuita di
foo- Infine, mostriamo che fy converge a f, rispetto alla norma || - || .o: per ogni € > O sia K(¢) come nella definizione di successione di Cauchy e, perognik € N,
sia x, € [a, b] tale che

[Ifoo = ficlloo = Max_[foo(}) =fi (x)] < [foo (Xi) = Fic (X )]
x€[a,b]
Allora si ha che per ogni k > K(e)

[[foo =Ficlloo = [foo (xm) = Fic M| < [Foo (xm) = Fieej (XM * [Fieaj (Xm) = Fie XM < [Foo (xp) = Fieaj XD # [[iesj = Ficlloo < €+ =26
a patto che k sia abbastanza grande. Dallarbitrarieta di € possiamo concludere che ||foo —fi||cc — O. ]
OSSERVAZIONE 1.36 Infine, ritorniamo sull'ipotesi di chiusura e limitatezza dell'intervallo [a, b]. Se consideriamo un intervallo | non chiuso e limitato, le funzioni

continue su | non sarebbero necessariamente limitate (si pensi, per esempio, alla funzione 1/x per x € (0, +o0)) per cui la norma uniforme || - ||c potrebbe non
essere definita, nel senso che il massimo non solo non esiste, ma addirittura lestremo superiore sia +oc.
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Lo spazio giusto da considerare & quindi quello delle funzioni continue e limitate definite su un intervallo | C R
Cg(l) = {f:] — R: fcontinuaelimitata}
con la norma uniforme

If—glloo = sup{|f(x) —g(x)|}  perognif,g € C2(I)

x€l

Il pedice , nella notazione Cg(l) viene dall'inglese e sta per bounded (che vuol dire limitato). Se l'intervallo | = [a, b] & chiuso e limitato, allora per il teorema di
Weierstrass tutte le funzioni continue in [a, b] ammettono massimo e minimo, e quindi sono limitate, per cui Cg([a, b]) non é altro che il piu familiare insieme
delle funzioni continue C°[a, b] e lestremo superiore nella definizione di | - ||o & in realta un massimo.

Generalizzando le dimostrazione fatte prima, € possibile verificare che (CS(I), Il - lco) € uno spazio di Banach.

TEOREMA 1.37 Sia | C R un intervallo, allora, lo spazio normato (Cg(l), I lloo) € uno spazio di Banach.

1.6 funzioni continue e lipschitziane

Di fondamentale importanza € la nozione di funzioni continue tra spazi metrici, € avranno un ruolo rilevante nel resto del corso. La definizione di funzione
continua & del tutto analoga a quella introdotta per le funzioni di variabile reale.

DEFINIZIONE 1.38 (FUNZIONI CONTINUE) Siano (X, || - ||x), (Y,
€ > O esiste § = §(e, xg) > O tale che

-|ly) due spazi normati e sia xg € X. Una funzione f : X — Y si dice continua in xq se per ogni

(1.4) |If(x)—f(xo)lly <€ perognix € Xtaleche [IXx=xollx <6

Una funzione continua in tutti i punti di X si dird semplicemente continua.
Il seguente teorema mostra come la nozione di continuita sia equivalente alla continuita per successioni (anche detta continuita sequenziale).

TEOREMA 1.39 Siano (X, || - [|x), (Y,
i. f é continua;
ii. per ogni successione convergente {x,} C X, con X, — Xoo, Si ha che f(x;) — f(xo0).

- |ly) due spazi normati e f : X — Y una funzione. | seguenti enunciati sono equivalenti:
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DIMOSTRAZIONE. [iimplicaii] Sia X, — X~. Per la continuita di f, per ogni ¢ > O esiste § > O tale che (1.4) vale. Inoltre, dato che x, — X0, esiste un intero
No(g) tale che |x, — X |lx < & per ognik > Ng(g). In particolare, dalla continuita di f segue che

X = Xoollx < & implica [If(x) = f(xo0) Iy < € perognik > Ng(g)

Dallarbitrarieta di € > O si conclude che f(x;) — f(x0).
[ii implica i] Supponiamo per assurdo che f non sia continua: allora esiste un punto xg e un numero € > O tali che, per ogni § della forma ¢ = 1/k, esiste almeno
un punto xy € B(xg, 1/k) = {p € X: ||xo —pllx < 1/k} tale che ||f(x,) —f(xg)|ly > €. Chiaramente x, — xg, ma f(x,) /— f(xg), contraddicendo ii. ]

Tra gli esempi piui significativi di funzioni continue ci sono le isometrie tra spazi normati.

DEFINIZIONE 1.40 (ISOMETRIA) Una funzionef: (X, |- |[x) — (Y, || - |ly) € una isometria se f é suriettiva e

Ix=yllx = IF6) = f(y)[ly perognix, y € X

Si noti che le isometrie sono necessariamente funzioni iniettive (f(x) = f(y) implica che ||[x—y||x = O, ossia x = y per le proprieta della norma), cioé sono delle
biezioni. In particolare, 1. (Y,dy) — (X, dx) € anchiessa una isometria.

Le isometrie sono funzioni continue: per ogni ¢ > O basta prendere ¢ = ¢ per verificare la continuita.

Due spazi metrici tra i quali esista una isometria sono del tutto equivalenti dal punto di vista delle proprieta degli spazi normati (potremmo anche dire: della
geometria degli spazi normati).

DEFINIZIONE 1.41 Una funzione f: (X, || - [[x) — (Y, || - lly) tra due spazi normati si dice lipschitziana se esiste una costante L > O tale che

[0~ f(ylly <LIx—ylx  perognix.y € X

E facile verificare che le funzioni lipschitziane sono continue: nella definizione di continuit, per ogni € > O basta scegliere § = /L. Il numero

f(x)—f
= sup 100l
x2y€X x=yllx

rappresenta la pit piccola costante L per cui vale la maggiorazione nella definizione. Una classe particolare di funzioni continue da uno spazio in se stesso sono
le contrazioni, ovvero funzioni lipschitziane di costante di Lipschitz strettamente minore di 1, cosi dette perché di fatto “contraggono” tutte le distanze tra le
coppie di punti.

1.7 topologia di R"
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Sebbene uno spazio metrico sia univocamente descritto dalla sua metrica, alcune sue proprieta vengono espresse in maniera piu efficace guardando opportuni
sottoinsiemi dello spazio stesso, come accade, per esempio, con la nozione di continuita, come vedremo a breve. Con questo intento, introduciamo la nozione
di topologia di uno spazio metrico e definiamo alcuni concetti che hanno a che fare con la geometria dei sottoinsiemi degli spazi metrici.

Consideriamo (R", || - ||), sia p € R™ un punto dello spazio e r > O un reale positivo, denotiamo con B(p, r) la palla di centro p e raggio r > O cioé l'insieme

B(p.1):= (x € R": [lp—x] <]

Si noti che per definizione la palla B(p, r) non & mai vuota, perché contiene sempre (almeno) il suo centro p.

DEFINIZIONE 1.42 (INSIEMI APERTI E CHIUSI) i. Un insieme A C R" si dice aperto se per ogni xg € A esiste r > O tale che B(xg,r) C A.
ii. Un insieme C C Xsi dice chiuso se il suo complementare C¢ = R™ \ C é aperto.
La famiglia degli insiemi aperti, cioé T = {A C X : Aaperto}, si chiama topologia dello spazio R".

L'insieme vuoto e lintero spazio R" sono insiemi aperti e chiusi per definizione. Infatti, la definizione di aperto & banalmente verificata per A = () perché non
esiste nessun xg € () e, analogamente, é verificata per A = R" perché ogni palla B(xg, r) & per definizione un sottoinsieme di R". Dato che (¢ = R" e anche che
[R"]€ = (), ne deriva che sono anche chiusi.

DEFINIZIONE 1.43 (PUNTI INTERNI) Sia A C R™. Un punto xg € A si dice interno ad A se esiste r > O tale che B(xg,r) C A.

Quindi, un sottoinsieme A C IR™ & aperto se tutti i suoi punti sono punti interni.
OSSERVAZIONE 1.44 Un insieme che non € aperto non & necessariamente chiuso: la negazione dellaffermazione A é aperto é la seguente:
A non é aperto se e solo se esiste xg € Achenonsiaunpuntointerno

Se Xg € A non & un punto interno, allora esiste una successione decrescente ed infinitesima {r, } C (0, +00), tale che per ogni ry esiste un punto x ¢ A tale che
X =0l < ry. Laffermazione & equivalente a dire che

A non é aperto se e solo se esiste una successione {x, } C A®=R" \ Atalechex, — xg € A

DEFINIZIONE 1.45 (PUNTI DI BORDO) Sia E C R", il bordo di E (si denota OE) é l'insieme dei punti xg € R™ tali che per ognir > O la palla aperta di centro xg
e raggio r interseca sia E che il complementare di E, in formule

Xg € OE seesolose perognir >0 B(xg.NNE=0 e B(xg,NNE =0

In altri termini un punto & di bordo se non é interno a E C R" (il che implica che ogni palla B(xg, r) interseca il complementare di E, cioé B(xg,r) NE® = O) e non
é interno al complementare di E (cioé ogni palla B(xg, r) interseca anche E, che vuol dire B(xg,r) N E = 0).

Un punto di bordo puo appartenere o meno all'insieme stesso: quando tutti punti di bordo appartengono, allora l'insieme € chiuso, come prova la proposizione
che segue.
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PROPOSIZIONE 1.46 Un sottoinsieme E C (IR", || - ||) & chiuso se e solo se OE C E.

DIMOSTRAZIONE. Se E & chiuso, allora E€ & aperto e tutti i punti di E° sono interni, per cui OE (che & costituito da punti che non sono interni né per E né per
E€) deve essere necessariamente contenuto in E. Viceversa, se OE C E, allora tutti i punti di E° sono interni: infatti, se esistesse un punto x € E€ non interno,
allora per ogni r > O si avrebbe che B(x,r) N E® = (), perché questa intersezione contiene x, e contemporaneamente B(x, r) N E = () perché il punto per ipotesi
non € interno al complementare; in altri termini x € OE, contro l'ipotesi che OE C E. |

ESEMPIO 1.47 i. Ogni palla B(p, r) € aperta: ogni punto xg € B(p,r) € interno a B(p,r). Infatti, se s = r—d(p, xg), allora s > O perché d(p,xg) < r e inoltre
B(xg,s) C B(p, r) perché

z € B(xg, s) significa d(xg,z) <s dacui d(p.z) < d(p,xg) +d(xg.z) < d(p,xg) +s=r

Per questa ragione gli insiemi B(p, r) sono anche chiamati palle aperte.

ii. Gli insiemi {x € R" : d(p, x) < r} sono chiusi e sono dette palle chiuse. La verifica di questa affermazione é analoga a quanto visto in i.

iii. Consideriamo R con la metrica usuale d(x, y) = [x—y| e siano a,b € R, a < b. Si verifica facilmente che gli intervalli (a, b) sono aperti, gli intervalli [a, b] sono
chiusi; gli intervalli (a, b] e [a, b) non sono né aperti né chiusi.

Proviamo alcune proprieta basilari degli insiemi aperti e chiusi.

PROPOSIZIONE 1.48 Sia A un insieme di indici generico e sia {Ay } »c A una famiglia di aperti. Allora, Uy A Ay € aperto. Se {Cy } e € una famiglia arbitraria
di chiusi, allora Ny Cy, é chiuso.

DIMOSTRAZIONE.  Riguardo alla prima affermazione, osserviamo subito che, se p € Uy A, allora esiste (almeno) un aperto Ay, per un certo \g € A tale che
p € Ay, Dato che A, | € aperto, per definizione esiste B(p,r) C Ay, € UxecpAn, il che prova che ununione arbitraria di aperti € aperta.

Per quanto riguarda la seconda affermazione, & sufficiente concentrarsi sugli insiemi complementari: ricordiamo che per definizione C5 sono insiemi aperti,
pﬁ.r cui per quanto appena dimostrato Uy C = A € aperto. Daltronde dalle leggi di De Morgan possiamo concludere che NxcpCy = [UXGACCA] = A éun
chiuso. .

PROPOSIZIONE 1.49 L'intersezione di una famiglia finita di aperti é aperta e [unione di una famiglia finita di chiusi é chiusa.

DIMOSTRAZIONE. Consideriamo Ay, ..., Ay insiemi aperti in R" e p € AjN...N Ay. Poiché tutti gli A; sono aperti, esiste r; > O tale che B(p, r;) C A; per ogni i.
Quindi, posto r = min{ry, .., ry} ed osservato che tale valore € positivo perché il minore di N valori positivi, possiamo affermare che B(p,r) C AjN..NAy, e
quindi lintersezione finita di aperti & aperta.

Come per il teorema precedente, la conclusione per i chiusi si deduce dalla precedente passando ai complementari: (C U... U Cy) = Cf N...N Cf, € aperto, da
cui segue che CyU... U Cy é chiuso. |

Gli insiemi chiusi di uno spazio metrico sono caratterizzati dalla proprieta di contenere tutti i limiti delle successioni convergenti contenute nell'insieme.
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TEOREMA 1.50 (CHIUSURA PER SUCCESSIONI) Sono condizioni equivalenti:
i. C C R" échiuso,
ii. ogni successione convergente {xi } C C ha limite in C, 0 meglio C 3 x;, — X allora x, € C.

DIMOSTRAZIONE. [i. implica ii.] Supponiamo che C sia chiuso e consideriamo una successione {x,} C C convergente ad un punto X~. Se X € C, dato che
C€ é aperto, esiste r > O tale che B(x~o,r) C C°. Dalla definizione di successione convergente (scegliendo ¢ = r/2) sappiamo che esiste un indice K = K(r/2) € N
tale che

X =Xoo || < perognik > K

r
2
Questo significa che x, € B(Xxo, ) € C per ogni k > K, il che € assurdo visto per ipotesi {x, } C C. Questo dimostra che l'ipotesi X, € C¢ & contraddittoria, per
cui di fatto C contiene il punto limite X.

[ii. implica i.] Come spiegato precedentemente, se C* non & aperto, esiste q € C° e x € (C°) = C con ||g—x|| < 1/k. In particolare, {x; } C C convergeaq € C,
contraddicendo ii, ne deriva che C© deve essere aperto, cioé C chiuso. ]

Cerchiamo ora di rileggere il concetto di continuita alla luce dei concetti topologici introdotti nelle ultime pagine.

TEOREMA 1.51 Siano (X, || - [|x) e (Y, || - |ly) due spazi metrici e f : X — Y una funzione. Allora, sono fatti equivalenti:
i. f é continua,
ii. per ogni aperto A C Y si ha che la controimmagine di A, ! (A) = {x € X:f(x) € A}, e aperto in X.

DIMOSTRAZIONE. [i. implica ii.] Supponiamo per assurdo che esista un sottoinsieme aperto A C Y tale che f'(A) C X non sia aperto. Questo vuol dire che
esiste un punto X € f_1(A) e una successione {xy } C (f_1 (A))c tale che x, — X~. Dalla continuita sequenziale si ha che f(x,) — f(xo0). Inoltre, dato che A
€ aperto, esiste £ > O tale che B(f(xx), €) C A. Ne segue che esiste Ng(e) € N per cui [[f(x,) —f(xo0)|ly < €, cioé f(x,) € B(f(x). €) C A, per ogni k > Ng(g). In
particolare, x; = £ (fx ) e f~ 1 (A), in contraddizone con la scelta x, € (f_ 1 (A))c.

[ii. implicai] Siae > O e xg € X. Si ricordi che la palla B(f(xg), €) & un sottoinsieme aperto. Per ii. si ha che £~ (B(f(xg), £)) C X & aperto, per cui esiste § > O tale
che B(xg, ) C f_1(B(f(xo), €)). In altri termini, per ogni x € X tale che ||x—xg||x < ¢ si ha che f(x) € B(f(xg), €), cioe ||f(x)—f(xg)||y < €. Questo prova la continuita
di f in un generico punto xg, da cui segue i. ]

In queste pagine ci interessiamo di una tra le proprieta piti importanti degli spazi metrici e dei suoi sottoinsiemi, nota con il termine di compattezza. Iniziamo
col dare le definizioni pertinenti al concetto di compattezza.
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DEFINIZIONE 1.52 Sia (X, || - ||) uno spazio normato. Un sottoinsieme K C X si dice

i. compatto se da ogni ricoprimento aperto di X si puo estrarre un sottoricoprimento finito: cioé, se data una famiglia arbitraria di aperti {Ay } e tali che
K C Uxen Ay, esiste un certo numero N € IN di elementi della famiglia A, ..., Ay taliche K C Ay, U...UAy,

ii. compatto per successioni (o sequenzialmente compatto) se da ogni successione {x; } C K si puo estrarre una sottosuccessione convergente con limite appar-
tenente a K,

iii. totalmente limitato se per ognir > O esistono N € N ed N punti {py, ..., py} C Ktali che

K C B(py. 1) U..UB(py.T)

iv. completo se e completo per la metrica restrizione (K, || - ||): ossia ogni successione di Cauchy {x,} C K ha limite in K.

OSSERVAZIONE 1.53 i. Un insieme compatto per successioni & automaticamente completo. Infatti, se K & compatto per successione, allora ogni successione di
Cauchy {x} € K deve possedere una sottosuccessione convergente in K, ma se una successione di Cauchy ha una sottosuccessione convergente, allora tutta
la successione ammette limite, per cui K & completo.

ii. La nozione di totale limitatezza puo essere formulata equivalentemente come segue: chiamiamo diametro di un insieme A C X il numero

diam(A) = sup |lp—qllx
p.geA

allora K é totalmente limitato se per ogni r > O esiste un numero N € N di insiemi Dy, ..., Dy con diametro minore di r tali che

N
kel Joy
=1

ii. Chiaramente, se un insieme & totalmente limitato, allora € limitato.

ESEMPIO 1.54 Facciamo alcuni esempi elementari al fine di illustrare i concetti introdotti.

i. (R,|-]) € completo ma non € totalmente limitato (visto che non é limitato); non € compatto per successioni (per esempio, x, = k non ha sottosuccessioni
convergenti).

ii. ((0,1),]-|) € totalmente limitato, ma non € completo, inoltre non &€ compatto per successioni (per esempio, X = 1/k € una successione di Cauchy che non ha
limite in (O, 1)).

iii. ([0, 11, |- |) € completo, totalmente limitato e compatto per successioni, (grazie al teorema di Bolzano e Weierstrass) ogni successione limitata ammette una
sottosuccessione convergente e, dato che [0, 1] € chiuso, il limite appartiene a [0, 1]).

iv. (R, dp) & limitato (ma non totalmente limitato), completo ma non & compatto per successioni: infatti x, = 1/k non ha sottosuccessioni convergenti.

Mostriamo quali implicazioni sussistono tra le diverse nozioni introdotte nella Definizione 1.52.

PROPOSIZIONE 1.55 Sia (X, || - ||) uno spazio di Banach e sia E C X. Allora (E, |

- |I) € completo se e solo se E é chiuso in (X, || - ||).
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DIMOSTRAZIONE. Se E & completo, allora ogni successione convergente in E, essendo una successione di Cauchy, ha limite in E: cioé E contiene tutti i suoi
punti di accumulazione e quindi € chiuso (si noti che per questa implicazione non abbiamo utilizzato la completezza di X!).

Viceversa, se E & chiuso, allora ogni successione di Cauchy in E & convergente in X (grazie alla completezza di X): ma dato che E é chiuso, si ha che il limite
appartiene ad E, da cui abbiamo la completezza di E. ]

PROPOSIZIONE 1.56 Sia (X, | - ||) uno spazio normato e K C X un insieme compatto. Allora K & chiuso e totalmente limitato.

DIMOSTRAZIONE. Cominciamo con il mostrare che A = K© & aperto. Fissiamo xg € A e, per ogniy € K, sia dy := ||y —Xgl|/3. Si noti che dy > O e inoltre
B(xo,dy) N B(y,dy) = ) per ogniy € K.
Chiaramente K C Uy<B(y, dy) & un ricoprimento di aperti, e siccome K & compatto esiste un insieme finito di punti {yy, .., yy} tali che

K | Bly.dy)
i=1,...N

Ponendor = min{dy1 . dyN }, abbiamo che B(y;, dyi)ﬂB(xo, r) = () perognii=1, ..., N.In particolare, KNB(xg, r) C Ui'\=11 B(y;, dyi)ﬂB(xo, r) = 0, ossia B(xg,r) C A =K.
Ogni punto xg € A & quindi un punto interno a A, cioé A é aperto. Ne segue che K = A & chiuso e per la proposizione precedente K &€ completo.

Per provare che K & totalmente limitato, fissiamo r > O e notiamo che naturalmente {B(x, r) }xck € un ricoprimento aperto di K, da cui & possibile estrarre un
sottoricoprimento finito, cioé

KC U B(x;,r)
i=1,..,N

per opportuni punti {xq, .., xy} C K, il che prova che K € totalmente limitato. n

PROPOSIZIONE 1.57 | sottoinsiemi chiusi di insiemi compatti sono compatti.

DIMOSTRAZIONE. Sia (X, d) uno spazio metrico e siano C C K C (X, d), con K compatto e C chiuso: vogliamo mostrare che allora C & compatto. A questo scopo
consideriamo {Ay } e un ricoprimento aperto di C. Per ipotesi C© & aperto e, dato che C C K, si ha che la famiglia {C%, Ay} e costituisce un ricoprimento
aperto di K.

Per la compettezza di K esiste un sottoricoprimento finito, cui possiamo aggiungere laperto C® se non fosse gia preso in considerazione: cioé K € C°UA, U
..UA,,.Dato che CC Ke CNC® =), ne segue che C C Ay, U...UA, cioé Cammette un sottoricoprimento finito e quindi & compatto. ]

COROLLARIO 1.58 Siano (X, || - ||) uno spazio normato, K C X compatto e C C X chiuso. Allora CN K é compatto.

DIMOSTRAZIONE. Per la proposizione 1.56 si ha che K & chiuso. Allora KN C & un chiuso contenuto in K, per cui il corollario segue quindi dalla proposione
precedente. n
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PROPOSIZIONE 1.59 Siano (X, || - ||) uno spazio normato, Z C K C X, con K compatto e Z infinito. Allora, esiste un punto di accumulazione di Z in K.

DIMOSTRAZIONE. Se nessun punto di K & un punto di accumulazione per Z, allora per ogni x € K esiste ry > O tale che ZN (B(x, rx) \ {x}) = (). Poiché ZC K C
UxekB(x, rx) e K & compatto, esiste un sottoricoprimento finito Z C K C Uiy NB(x, ry;). In particolare, ne segue che

Z C Uiy NBX, 1) NZ C {xq, ., XN}

perché B(x;,rx,) N Z C {x;} perognii=1,.., N, contraddicendo l'ipotesi che Z abbia infiniti elementi. ]

COROLLARIO 1.60 Ogni insieme compatto e sequenzialmente compatto.

DIMOSTRAZIONE. Sia K un compatto e {x,} C K una successione. Se limmagine della successione Z = {x : k € N} ha un numero finito di elementi, allora ne

deve esistere almeno uno che si ripete per infiniti indici e che costituisce una sottosuccessione costante, quindi convergente.

Se Z ha infiniti elementi, per la proposizione precedente Z possiede almeno un punto x, di accumulazione e quindi esiste una sottosuccessione convergente.
(]

Abbiamo mostrato che un insieme compatto & necessariamente completo e totalmente limitato da un lato, e compatto per successsioni dallaltro. Queste in
realta sono condizioni equivalenti alla compattezza negli spazi metrici.

TEOREMA 1.61 (CARATTERIZZAZIONE DEGLI INSIEMI COMPATTI) Dato uno spazio normato (X, d) e K C X, sono equivalenti le seguenti affermazioni:
i. K & sequenzialmente compatto,

ii. K & completo e totalmente limitato,

iii. K & compatto.

DIMOSTRAZIONE. [i. implicaii.] Per quanto osservato in § 1.53-i, ogni insieme sequenzialmente compatto & completo. Per cui dobbiamo solo provare che K &
totalmente limitato. Se cosi non fosse, esisterebbe r > O tale che nessuna famiglia finita di palle di raggio r & un ricoprimento di K. In particolare, fissato x; € K
arbitrariamente, si ha che B(xy, r) non ricopre K, e quindi esiste x; € K tale che ||x;—x;|| > r. Poiché neanche B(xy,r) U B(x;, r) ricopre K, deve esistere un punto
x3 € K tale che ||x;—x3]|| > r peri=1,2. Ripetendo il ragionamento otteniamo una successione (x,) C K tale che

Ixi=x|| >r  perognii,k €N

Da una tale successione non € possibile estrarre alcuna sottosuccessione convergente, e questo contraddice l'ipotesi che K sia sequenzialmente compatto.
[ii. implica iii.] Sia K completo e totalmente limitato e supponiamo per assurdo che esista un ricoprimento aperto A = {Ay } e da cui non é possibile estrarre
un sottoricoprimento finito. Essendo K totalmente limitato, esiste un numero finito di insiemi C;, ..., C\ con la proprieta che

N
KC U Cy e diam(C) <1 perognik=1,.. N
k=1
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Se fosse possibile ricoprire ognuno degli C;, con un numero finito di aperti della famiglia .4, unendo questi ricoprimenti avremmo trovato una famiglia finita
di aperti di A che ricopre K. Questo significa che esiste almeno un insieme Cy, che non puo essere ricoperto con un numero finito di aperti. Poniamo Cy, = X
e osserviamo che X; € totalmente limitato, perché X lo €. Possiamo quindi ripetere il ragionamento precedente con un numero finito di insiemi di diametro
minore di 1/2, trovando un sottoinsieme X; C X; che non pud essere ricoperto con un numero finito di elementi di .4 e ha diametro minore di 1/2. Iterando il
procedimento troveremo una successione {Xy} di sottoinsiemi di K tali che

Xi12X%X; 2. e diam(Xk) <1/k

e nessuno degli insiemi X; pud essere ricoperto con un numero finito di aperti di .A. Per ogni indice k € IN sia x; un punto di X, e osserviamo che, dato che
Xn € X, per ogni n > k, allora

[IXn = || < diam(X;) < 17k perognik < n

Quindi la successione (x) & di Cauchy e, poiché per ipotesi K € completo, esiste X, € K tale che x, — x € K.
Notiamo che X C B(xoo, 1/k) per ogni k: infatti, se x € X, e n > k, allora abbiamo che xn € Xn C Xy, da cui

[} =Xoo [l < lIX=Xnll + [xn =Xoo || < 1/k+[|xn =Xco |
Quindi, passando al limite su n — oo, concludiamo che
[IX=Xoo || < 1/k perognix € X

SiaA;, unaperto del ricoprimento A contenente X e siar > O tale che B(xoo, 1) C Ay,-Se k > 1/r, allora || x—Xso || < rperognix € X, cioé X, C B(xx,r) C Axos
e questo é assurdo perché abbiamo assunto che X non possa essere ricoperto da un numero finito di aperti in A.
[iii. implica i.] E il corollario 1.59. [ ]

Concludiamo rivedendo alcuni dei risultati gia incontrati nelle pagine precedenti, alla luce del concetto di compattezza.

OSSERVAZIONE 1.62 (COMPATTI DI R") Consideriamo (R", || - ||). Un insieme K C R" & compatto se e solo se & chiuso e limitato. Infatti, dato che (R", || - ||) &
uno spazio metrico completo, un insieme € chiuso se e solo se € completo e limitato se e solo se & totalmente limitato.

OSSERVAZIONE 1.63 (PRINCIPIO DEGLI INTERVALLI INCAPSULATI) Siano I, = [an, bn] per ogni n € IN intervalli chiusi, limitati e incapsulati, ossia tali che I,,1 C I
per ogni n € N. Allora, l'intersezione (), In € Non vuota.

Questa € una conseguenza della proposizione relativa all'intersezione di insiemi compatti e della caratterizzazione degli insiemi compatti di R fatta nellosser-
vazione 1.62.

TEOREMA 1.64 (DI B.PJ.N. BOLZANO & K.T.W. WEIERSTRASS) Una successione limitata in R™ ammette una sottosuccessione convergente.

DIMOSTRAZIONE. Sia {x,} C IR" una successione limitata, ossia esiste M > O tale che {x; } C [-M, M]" per ogni k € IN. Dato che [-M, M]" & compatto in R",
per il Teorema 1.61, & compatto per successioni, per cui possiamo estrarre da {x } una sottosuccessione convergente.

Proponiamo una dimostrazione alternativa che fa uso, soltanto, del teorema di Bolzano e Weierstrass in R usualmente studiato nei corsi di Analisi delle funzioni
scalari. n
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TEOREMA 1.65 (DI KT.W. WEIERSTRASS) Sia (X, || - ||) uno spazio normato, K C X un insieme compatto e f : K — R una funzione continua. Allora f ha un
massimo e un minimo in K, ossia esistono zq, z; € K tali che

f(zg) < f(x) <f(z4) perognix € K

DIMOSTRAZIONE. La dimostrazione procede seguendo il metodo diretto del calcolo delle variazioni:
i. si considera una successione minimizzante (che esiste per definizione di estremo inferiore):

{x} CK taleche f(x) — inf f(x)
xeK

ii. per la compattezza di K, esiste una sottosuccessione convergente, cioe esiste {x; } tale che x,;) — zg €K,
iii. usando la continuita di f, si conclude

f(zo) = lim f(x) = inf f(x)

i—o0 xeK

da cui si deduce che z( € un punto di minimo di f. Per lesistenza del massimo si ragiona in maniera analoga. ]

1.8 il teorema delle contrazioni

DEFINIZIONE 1.66 Sia (X, || - ||) uno spazio metrico. Diremo che T: (X, || - ||) — (X, | - ||) € una contrazione, se esiste un reale o € [0, 1) tale che

T =Ty <allx—y||  perognix,y € X
Il seguente teorema é il risultato principale che dimostriamo sulle contrazioni.

TEOREMA 1.67 (DELLE CONTRAZIONI DI S. BANACH & R. CAccloppPoLl) Siano (X, || - ||) uno spazio di Banach, C C X un insieme chiuso e T : C — C una
contrazione. Allora esiste un unico punto fisso di T, cioé esiste un solo punto p € C tale che

T(p)=p

DIMOSTRAZIONE. Definiamo la seguente successione per ricorrenza: prendiamo un punto xg € Cin maniera arbitraria e poniamo

Xt =T = = TH(x) = =T (xg)  keN
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in questo modo abbiamo costruito una successione di punti {x } C C, visto che limmagine di T & contenuta in C. Notiamo che vale
=Xl = [ITx0) = T¥ G| < 2l T x0) =T < -+ < o¥llxo =

In particolare, ne discende che per ognij > 1
5= Xl < 1=+ X1 =X X =X | < @ x0 =311 + & lxg =]+ + o F T g =1

(1.5)

[e.°]
. ; Xg =X
=ak(1+a+a2+...al 1)||xo—X1|| < akZa'd(xo,xQ =Ock”1o_—a1H
i=0

Dato che o € [0, 1), questo prova che (x;) € una successione di Cauchy nello spazio normato X: infatti, vale l'implicazione

X=Xl < € se k> Kgle) = {loga (FTOCE)J +1

dove le parentesi | A\ | indicano il pit grande intero minore o uguale a A € R. Siccome X & completo, C risulta completo in quanto chiuso, o possiamo dire che
esiste p € C tale che x, — p e, per la continuita delle contrazioni, T(x,) — T(p). In conclusione abbiamo che

T(p) = X)) = lm x.1=p
k—s o0

im T
k—s 00
Per lunicita, supponiamo per assurdo che esistano due punti fissi p e g: allora

lp=qll = [[TE) =T < allp-qd]
ossia
(1-a)lp—qll <O

Dato che il fattore (1— o) > O per ipotesi e che ||p—q|| > O per definizione di distanza, si ha che ||p—q]| = O, cioé che p = q. |

Si noti che lespressione (1.5) da anche una stima dellerrore che si commette nel calcolare il punto fisso, in quanto

oX[[xo, x|

X, —p|l = lim ||x =Xl <
=l = im Il < =72

Concludiamo la dimostrazione del teorema con alcuni ragionamenti cercando di illustrare, in casi pitt semplici, alcuni argomenti che abbiamo utilizzato.
Innanzitutto consideriamo una situazione particolarmente semplice ambientando il primo esempio nello spazio metrico completo (R, ||-||2) = (R, |-]). In questo
contesto possiamo identificare unapplicazione da R in sé come una funzione di una variabile reale, quindi una contrazione é una funzione f : R — R tale che

[f(x) —f(y)| < L|x—y]| conL < 1perognix,y € R
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Un punto fisso di f € una soluzione dellequazione x = f(x) o, in maniera equivalente, del sistema

y =f(x)
y =X

in questo modo possiamo osservare che gli eventuali punti fissi della funzione f sono punti comuni ai grafici delle due funzioni che compongono il sistema
precedente. Perché un tale sistema dovrebbe avere ununica soluzione, a patto che f sia una contrazione?
Le proprieta del valore assoluto, unitamente alla scelta y = O nella definizione di contrazione, ci permettono di scrivere che

[f)[ = 1f(0)] < [f(x) = f(O)| <LIx=0O[ =L|x| ~ cioé  [f(x)] <[f(O)[+L|x| perognixe R

la situazione descritta dalle disuguaglianze precedenti &€ schematizzata nella figura 5. Osserviamo che stiamo supponendo che f(O) = O, altrimenti f(0) = O e
avremmo gia trovato un punto fisso.

La disuguaglianza implica che il grafico della funzione f deve trovarsi nella regione grigia e deve passare per uno dei due punti evidenziati di coordinate
(0, £|f(0))), il grafico della retta y = x € la linea nera continua ed é facile convincersi che non é possibile evitare l'intersezione tra i due grafici, questo perché il
bordo della zona colorata ha pendenza +L con L < 1e quindi non c'é spazio sufficiente che permetta ai due grafici di evitarsi.
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2 ANALISI DIFFERENZIALE

Introduzione

2.1 funzioni scalari e vettoriali

DEFINIZIONE 2.1 (Continuita di funzioni scalari) Siaf: A C R" — R, dove A é un aperto, e p € A. Diremo che f é continua in p se per ogni ¢ > O esiste
0 =0(e,f,p) > O tale che

[f)-f(p) <e  se  [x—p[l<d

DEFINIZIONE 2.2 (Continuita di funzioni vettoriali) Sia f: A C R" — RX, con A aperto, e p € A. Diremo che f & continua in p se per ogni € > O esiste
0 =0(e,f,p) > O tale che

Ifx)=f(p)Il, <e  se [x=pll, <6

OSSERVAZIONE 2.3 Una funzione a valori vettoriali = (fy, ..., fi) : A € R" — Rk & continua in un punto p se e soltanto se ogni funzione "componente” f; : A C
R" — R & continua, peri=1,...k.

DEFINIZIONE 2.4 Siaf:A CR"™ — R, con A aperto, e p € A. Diremo che f possiede derivata nella direzione w € R" se esiste finito il seguente limite

f(p + hw) —f(p)

of .
Outlp) = 5y (P) = lim h

Nel caso in cui w = e; la derivata direzionale viene detta derivata parziale, e viene indicata con una delle seguenti notazioni

of of

(p)= =—(p)=fx(p)  peri=1..n

0if(p) = f(p) = Bef(p) = 5 - () = 5
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DEFINIZIONE 2.5 Siaf: A C R" — IR, con A aperto, e p € A. Diremo che f é differenziabile in p se esiste L = L(f, p) € R" tale che

fip+h)=[f(p) + L-h] _

0
|Ih[|—0 Il

ovvero

. o(|h)
flo+h)=f(p)+L-h+o(/|h]])  dove lim =0
. i I [h|—o [Ih]|

Diremo che f é differenziabile in A se é differenziabile in tutti i punti dellaperto.

DEFINIZIONE 2.6 Introduciamo il seguente operatore differenziale vettoriale
V = (4, ....0n)

che in seguito verra chiamato nabla.

OSSERVAZIONE 2.7 (Conseguenze della differenziabilita) Sia f: A — R una funzione differenziabile nellaperto A C IR". Allora valgono le seguenti afferma-
zioni:
i. f & continua in A, infatti, per ogni p € A abbiamo che

lim f(p+h)= lim [f(p)+L-h+o(|h])]=f

Jim #(p+h) = lim _f(p) o(|[hiD] = f(p)

ii. La funzione f & derivabile in A e, per ogni p € A, si ha L = Vf(p). Infatti possiamo scrivere che

o) = lim Prhe)=fP) - Lih+olh)

h—0 h he 0 h =L peri=1,..n

Introducendo la quantita
R(p +h) = f(p + h) —f(p) - Vf(p) - h
possiamo affermare che
f & differenziabile in p seesolose R(p +h) = o(||h||)perh — O

iii. La funzione f possiede derivate direzionali in A e si ha

(21) owf(p) = VF(p) - w
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Infatti, dalla definizione di differenziabilita e dal punto precedente, segue che

Bufip) = lim (@MW =f) - hVH(p) - w+ oh)
h—0 h

= Vf(p) -
h—0 h (p) W

iv. Il vettore Vf(p), se non € nullo, identifica la direzione di massima (e minima) crescita della funzione. Infatti dalla (2.1), per la disuguaglianza di Cauchy-
Schwartz, segue che

|Bwf(p)| = [VE(p) - w| = [VE(p)[| - [|wl| - [ cos(6)] < [[VF(p)| - [[w]| = [VE(p)]
ricordando che w € un versore. La precedente maggiorazione implica che
—[IVEp)|| < dwf(p) < IVT(p)

e il segno di uguaglianza é verificato se e solo se i vettori Vf(p) e w sono paralleli. Se w = V{(p)/||VF(p)| allora la derivata direzionale & massima, se w =
=Vi(p)/||V(p)| la derivata direzionale & minima.
v.Se p € A, la funzione f possiede iperpiano tangente al suo grafico nel punto di coordinate (p, f(p)) € R™!. Lequazione cartesiana dell'iperpiano tangente &

Xn+1 = f(p) + Vi(p) - (x—p)
ESEMPIO 2.8 Notiamo che la sola esistenza delle derivate parziali non basta a concludere che f & continua. Per esempio, la funzione di due variabili

X1X3 se XX #0
f(x1,%9) =
Ot a) 1 se XX3=0

non é continua in (O, O) pur esistendo le derivate parziali prime 8;f(O, 0) = 3,f(0, 0) = O.

Notiamo anche che la continuita e lesistenza delle derivate parziali non garantiscono la differenziabilita. Come esempio, consideriamo f(xq, x3) = v/|x1x3|, f &
continua in (O, O) e ha derivate parziali ;f(0, 0) = ,f(0, 0) = O. Perd f non é differenziabile nellorigine perché non esiste il limite

Infatti muovendosi lungo la direzione hy = h, oppure lungo gli assi coordinati si ottengono valori diversi.

A questo punto é lecito chiedersi cosa si puo dedurre dallesistenza della derivate parziali, il seguente risultato prova che condizione sufficiente affinché una
funzione sia differenziabilé é che le derivate parziali non solo esistano ma siano continue.

TEOREMA 2.9 (del differenziale totale) Siaf: A C R" — IR con A aperto, se esistono continue le derivate parziali dif in A allora la funzione é differenziabile
nellaperto.
Sinteticamente: se f € C\(A), allora f & differenziabile in A.
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DIMOSTRAZIONE. Dimostriamo il teorema nel caso n = 2. Per p € A scriviamo
f(p+h) =f(p) = f(py + hy, pa + h2) =Py, P2 + h2) + H(py. p2 + ha) = f(py. p2)
Per il teorema del valor medio (Lagrange) esistera un punto g; compreso tra p; e p; + hy tale che
f(py +h1, py + ha) =f(py. pa + ha) = Bf(qy, pa + ha)hy
Analogamente esistera un punto g, compreso tra p, e p, + h; tale che
f(p1. P2 +h2) =Py, p2) = Bxf(py, 2D
Quindi
f(p +h) = f(p) = Vi(p) - h = (Byflay, p; + h2) = Biflpy, p))hy + (B2f(py, a2) = B2 f(py, P2))h2

Abbiamo allora

f(p+h)—f(p) - Vf(p) - h h h
e e |S|31f(OI1vP2+h2)—31f(P1vP2)|H—l:|+|32f(P1.Q2)—32f(P1:P2)|mS|<91f(Q1vP2+h2)—<91f(P1va)|+|52f(P1vQ2)—62f(P1:P2)

Per la continuita delle derivate parziali di f

lim (&f(qy, p; +h2) —8if(py. py)) = O e im  (85f(py. a7) —85f(py. ) = O
[Ih|l—0 Ih]|—0

da cui si deduce che

i [fprh)=f(p)~VH(p) - h|
[Ihl|—0 [kl

-0

che implica alla tesi. n

Se indichiamo con N ,(R) lo spazio delle matrici a coefficienti reali con k righe e n colonne, possiamo presentare il seguente concetto

DEFINIZIONE 2.10 Siaf: A — R dove A C R" aperto e p € A. Diremo che f ¢ differenziabile in p se esiste una matrice M € My n(R) tale che

[f(p +h) = (f(p) + Mh) li _

0
|Ih[ln—0 lIhln

che possiamo scrivere, in maniera equivalente, anche nel seguente modo

f(p +h) =f(p) + Mh + o(||h]]) perh — O
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OSSERVAZIONE 2.11 Dato che un vettore di R¥ tende a zero se e solo se tutte le sue componenti tendono a zero possiamo dire che f & differenziabile se e solo

se lo sono le sue componenti fy, ..., ..
Indicando con Jf lo jacobiano (cio€ la matrice Jacobiana) di f definita come

(JF(P))ik = Ok fi(p) coni=1,...kej=1,...n
si ha che nella definizione 2.10 vale M = f(p).

DEFINIZIONE 2.12 Luso formale delloperatore nabla ci permette di definire alcuni operatori differenziali che operano su campi scalari o vettoriali di classe C',
o piti. Tali operatori avrano un ruolo importante nelle pagine che seguiranno.

gradiente seu € C'(R" R) abbiamo Vu:R" — R" con Vu(p) := (Gyu(p), ..., Gru(p))
divergenza seu e C'(R",R") abbiamo V-u:R" — R con (V-u)(p):=u;(p)+...+ Bnun(p)
jacobiano seu € C'(R",R") abbiamo Ju:R™ — Mnn(R) con Ju(p) := (Bui(p))i
rotore seu € C'(R3,R3) abbiamo VAu:R3—R3 con (VAu)(p):=(Byuz—83uy, d3u1—Byuz, Biuz —B7us)(p)

TEOREMA 2.13 (differenziale di funzioni composte) Sianof: A — Rk con A C RM aperto,eg: B — RP, con B C Rk aperto e f(A) C B, due funzioni
differenziabili (rispettivamente) in p € A e in f(p) € B. Allora definita la funzione h : A —> RP come h(p) := g(f(p)), abbiamo che h é differenziabile in p e vale

Jh(p) =g (f(p))Jf(p)
ovvero
k
(h(pDic= Ochi(p) = ) Bsgi(FPNAfs(p)  i=1..p k=1,
s=1

Si noti che

Jhe Mpn(R)  Jge Mpi(R)  Jf € My n(R)

DIMOSTRAZIONE. Ricordiamo il significato delle ipotesi: la funzione g é differenziabile in z se
g(q) =g(2) +)g(z)(q-2) +o(llq-z|)

Ponendo q = f(p +s) e z = f(p) otteniamo
g(f(p +s)) = g(f(p)) + Jg(f(p))(f(p + s) = f(p)) + o(||f(p + s) — f(p)][|)

Dialtra parte, per la differenziabilita di f abbiamo che

(2.2) f(p+s)="F(p)+Jf(p)s+o(|ls|)
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da cui segue

g(f(p +s)) = g(f(p)) +Jg(f(p))If(p)s +)g(f(p))o(||s||) + o(|[f(p +s) —f(p)|)
Per concludere la dimostrazione dobbiamo mostrare che
iy 1EE@NOUs])+o(f(p+)~(p)])

=0
|Is|[—0 lIsll

E evidente che

Jg(f(E))o(llsll)

o ls|)
=)g(f
R )

sl

—0 per|ls|| — O

Daltra parte, tenuto conto della (2.2), vale anche
[f(p+s)=f(P)I| < [Jf(p)sl| +o(lIs]l) < [If(p)| - [[s[| +of[Is[l) < C|s]]

con C costante positiva. Con ||A|| abbiamo indicato la norma di Frobenius della matrice A € N ,, cioé la quantita

K n 12
1Al = 2|2
i=1 j=1
Quindi
o([[f(p+s)=f(R)) _ olllf(p+s)=fP)) [f(p+s)—f(p)]
Is] " [flp+s)—f(p)] s 0 perllsl—0

perché prodotto di una quantita infinitesima, per definizione di o piccolo, e di una quantita limitata. Concludiamo che
g(f(p+s)) = g(f(p)) + Jg(f(p)If(p)s + o([sll)  perlls| — O
(]

ESEMPIO 2.14 Sia f: [a,b] C R — R3 di componenti f(t) = (x(t), y(t), z(t)) e sia g : R3 — R. Consideriamo la funzione composta F(t) = g(x(t), y(t), z(t)),
discende dal precedente risultato che se f e g sono differenziabili allora lo € anche F e si ha

F/(t) = Vg(f(t) - (1) = Oyg(x(t), y(1), z(£)x/ (t) + Bpg(x(1), (1), z(1))y’ () + B3g(x(t), y(1), (1))’ (¢)

ESEMPIO 2.15 Siano f: A —s Re h: B — R2, dove h(u,v) = (x(u,v),y(u,v)), con A|B C R2 aperti e h(B) C A due funzioni differenziabili. Consideriamo la
funzione composta F(u, v) := f(x(u, v), y(u, v)) : B — R. Allora la funzione F ¢ differenziabile in B e si ha

Ox(u,v)  Oypx(u,v)

Oy(u,v) 0yy(u,v)

= (O4f(x(u, v), y(u, v))O1x(u, v) + 85 f(x(u, v), y(u, v))B1y(u, v), Bsf(x(u, v), y(u, v))9x(u, v) + B, f(x(u, v), y(u, v)) 3, y(u, v))

VF(u,v) = (8F(u,v), 8;F(u, v)) = VI(x(u, v), y(u, v))]g(u, v) = (8f(x(u, v), y(u, v)), B, f(x(u, v), y(u,v)))
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2.2 derivate successive

Analogamente al caso di funzioni di una variabile reale, € possibile definire derivate successive anche per funzioni vettoriali.

DEFINIZIONE 2.16 Siaf:A — R, con A C R" aperto, chiameremo derivate parziali del secondo ordine di f (se esistono) le funzioni

8ifx) =8, (Bf(x)  ij=T,..n

Segue dalla precedente definzione che una funzione di due variabili ha 4 derivate seconde
611f(X) 812f(X) 821f(X) 622f(X)
mentre una funzione di tre variabili ha addirittura 9 derivate seconde
811f(X) 612f(x) 821f(X) 813f(X) 831f(X) 622f(X) 823f(x) 632f(X) 83Xf(X)
in generale una funzione f: A —: R, con A C R aperto, pud avere n? derivate seconde.
Non sempre € possibile scambiare lordine in cui si eseguono le derivate, per esempio, consideriamo
X1X2 (x12 - x%)
f(x1,x2) = x2 +x2

1%
Y per(xy,x3) = (0, 0)

se(xq,%;) = (0,0)

Siha

. 5f(0,k-5f0,00 . . h¥-k?
= lim = lim lm —— =
k—s0 k k—s0h—0 h2 + k2
_ &f(h,0)-8,f(0,0) .. . hZ-Ik2
= lim = lm lm —— =
h—s0 h h—0k—s0 h2 + k2

8,(0,0)

9,1f(0,0)

da cui segue che

021f(0, 0) = 85f(0, 0)

Il seguente teorema ci assicura perd che, per funzioni di classe C2, le derivate non dipendono dallordine in cui si eseguono le operazioni di derivazione.

TEOREMA 2.17 (di K.-H.A. Schwarz) Siaf: A — R, con A C R" aperto, una funzione di classe C2, cioé derivabile due volte con derivate seconde continue,

allora vale

aijf(x) = E}]if(x) peri,j=1,..,n
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DEFINIZIONE 2.18 Sia f: A —s R una funzione di classe C2, con A C R" aperto, allora possiamo definire la matrice delle derivate seconde

HF(x) = (hj;(x));; = (8ijf(x)) peri,j=1,..,n

ij

che chiameremo matrice hessiana. Il teorema di Schwarz puo essere enunciato dicendo che la matrice hessiana é simmetrica.

Sef: A — R édifferenziabile nellaperto A C R", allora possiede un iperpiano tangente in tutti i punti del suo grafico, il che equivale a dire che ha uno sviluppo
lineare (cioé vale la formula di Taylor al primo ordine)

f) - )+ VH(p) - tx=p)o(lx=pl)  con tim 2B -0

Se f & una funzione di classe C? possiamo, come & ragionevole pensare, migliorare lapprossimazione: consideriamo la funzione di una variabile
F(t) = f(p) + t(x—p)) pert € [0, 1]
Dato che F € C2([0, 1]) possiamo scrivere lo sviluppo di Taylor del secondo ordine per funzioni di una variabile, ottenendo
F(1) = F(0) +F'(0) + %F”(@) conf € (0,1)
Per la formula di derivazione delle funzioni composte abbiamo
F'(t) = Vf(p+t(x—p))- (x—=p) e  F"(t) = Hf(p)(x—p) - (x—p)
da cui segue, in termini di funzione f, la formula di Taylor del primo ordine con resto di Lagrange
1
(23) f(x) =f(p) + VE(p) - (x—p) + 5 (HF(E)x—p) - (x=p))  con&=p+H(x—p)

Facciamo vedere che dalla (2.3) discende la formula di Taylor del secondo ordine con resto di Peano

(24) 100 = f(p) + VF(p) - (x=p) + 5 (HF(Ex—p) - (x—p)) o Ix=p?)

dove vale

o(lx=pl2)

im >
x—p [Ix=p]

La (2.4) segue dalla (2.3) se dimostriamo che

(2.5) ((HF(€)—Hf(x) (x—p)) - (x—p) = o([Ix—p|?)
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Infatti, dalla disuguaglianza di Cauchy-Schwarz ricaviamo per una generica matrice M che

ii“‘"ijz

=1 =1

1n 12

Z Minin

i

[Mx - x| = <|M[|- x> dove||M| :=

Quindi, nel nostro caso otteniamo

1,n

1/2
|(HF(€) = Hf(x)) (x—p) - (x—p)| < e[x—p|?  con &= {Z(auf(s)—ai,-f(p)ﬂl

ij

e dalla continuita delle derivate seconde segue la (2.5).
OSSERVAZIONE 2.19 Siaf:A — R una funzione di classe C'in A C R" aperto connesso (per archi) tale che Vf = O, allora
f(p) =f(q) perognip,q € A

Se cosi non fosse potremmo costruire una curva regolare di parametrizzazione ¢ : [0,1] — A congiungente i punti p e q tali che f(p) = f(qg). Allora (per il
teorema di Lagrange e per il teorema di derivazione delle funzioni composte) seguirebbe

0 = f(p) —f(q) = f(¢(0)) - f(a(1)) = [%f(qb(t))] = VH(¢(£) - ¢'(€) = 0-¢'(€)= 0
t=¢

perché ¢(£) € A.

2.3 punti critici

DEFINIZIONE 2.20 Sia f: A — R una funzione di classe C', con A C R aperto, allora si dice che p € A é un punto critico (o stazionario) per f se
Vf(p) =0
TEOREMA 2.21 (di P. Fermat) Sia p € A C R" (insieme aperto) un punto di massimo o minimo locale per f, se f é differenziabile in p allora Vf(p) = O.

DIMOSTRAZIONE. Fissata una direzione w, la funzione di una variabile F(t) := f(p + tw) ha in t = O un punto di massimo o minimo locale. Dato che F(t) &
differenziabile in t = O deve necessariamente essere F/(0) = 8y f(p) = Vf(p) - w = O. Per larbitrarieta di w segue che Vf(p) = O. ]
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Per stabilire se un punto critico p & un estremo relativo & necessario studiare il segno della differenza f(x) —f(p), e spesso € conveniente farlo usando la formula
di Taylor. Cio conduce a studiare il segno della forma quadratica associata alla matrice hessiana Hf(p)

n
Hf(p)w - w = Zﬁljf(p)wiwj conw = (wy, ..., wp) € R"
i1

Richiamiamo alcune definizioni e proprieta delle forme quadratiche.

DEFINIZIONE 2.22 Dataf:A — R, con A C R" aperto e p € A, si dice che l'hessiano Hf(p) é una matrice
i. definita positiva se Hf (p)w - w > O, per ogni vettore w = O,

ii. definita negativa se Hf(p)w - w < O, per ogni vettore w = O,

iii. semidefinita positiva se Hf(p)w - w > O, per ogniw € R",

iv. semidefinita negativa se Hf(p)w - w < O, per ogniw € R",

v. indefinita se esistono wy, w, € R" tali che Hf(p)w; - wy > O e Hf(p)w; - w, > O.

TEOREMA 2.23 (di .. Sylvester) Indichiamo con H® il minore principale di ordine k < n estratto dalla matrice Hf(p), cioé la sottomatrice composta dalle
prime k righe e k colonne. Allora

i. Hf(p) & definita positiva se e solo se |H*| = det[H] > 0, per ognik=1,...n,

ii. Hf(p) & definita negativa se e solo se (~1)¥|HX)| > O, perognik =1, ..., n,

iii. Hf(p) é indefinita se ha un minore principale di ordine pari con determinante negativo oppure se ha due diversi minori principali di ordine dispari che sono
discordi.

TEOREMA 2.24 (test degli autovalori)

i. Hf(p) é definita positiva se e solo se tutti i suoi autovalori sono positivi,

ii. Hf(p) e definita negativa se e solo se tutti i suoi autovalori sono negativi,

iii. Hf(p) & semidefinita positiva se e solo se tutti i suoi autovalori sono non negativi,
iv. Hf(p) e definita negativa se e solo se tutti i suoi autovalori sono non positivi,

v. Hf(p) é indefinita se e solo se ha almeno due autovalori non nulli e discordi.

OSSERVAZIONE 2.25 Per stabilire se una matrice & definita, semidefinita o indefinita non serve conoscere gli autovalori, ma basta conoscere il loro segno. E
quindi utile ricordare la regola dei segni di Cartesio.
E anche utile sapere che

PROPOSIZIONE 2.26 Hf(p) é definita positiva se e solo esiste m > O tale che Hf(p)w - w > m||w||2 per ogni w € R™. Hf(p) é definita negativa se e solo esiste m > O
tale che Hf(p)w - w < —m||w/|2.
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Unfaltra condizione necessaria oltre al teorema di Fermat & data dal seguente

TEOREMA 2.27 Siano f € C2(A), con A C R aperto, e p € A un punto critico, allora
i. se p & un punto di minimo locale, allora Hf(p) € una matrice semidefinita positiva,
ii. se p & un punto di massimo locale, allora Hf(p) € una matrice semidefinita negativa.

DIMOSTRAZIONE. Dimostriamo il caso i, il caso ii segue considerando la funzione g(x) = —f(x) che ha un minimo locale in p. Per la formula di Taylor con resto
di Peano possiamo scrivere che

1
f(p) < f(x) = f(p) + VH(p) - (x—p) + 5 (Hf(p)x—p) - (x=p)) + o [Ix—p]?)
essendo p un punto critico vale Vf(p) = O, e otteniamo che

Hf(p)(x—p) - (x=p) > o||x—pl|?)
Posto x—p = tw, con ||w|| = 1la precedente relazione equivale a scrivere

2
Hf(p)w - w > %

E per t — O si ottiene Hf(p)w - w > O per ogni w € IR", cioé la matrice hessiana & semidefinita positiva nel punto p. |

TEOREMA 2.28 (test dell’hessiano) Siano f € C2(A), con A C R" aperto, e p € A un punto critico della funzione, allora
i. se Hf(p) &€ una matrice indefinita allora p é una sella,

ii. se Hf(p) &€ una matrice definita positiva (cioé ha solo autovalori positivi), allora p é un punto di minimo locale,

iii. se Hf(p) € una matrice definita negativa (cioé ha solo autovalori negativi), allora p & un punto di massimo locale.

DIMOSTRAZIONE. i. Se Hf(p) € indefinita, per il teorema precedente p non & né un punto di massimo né un punto di minimo.
ii. Per la proposizione 2.26 esiste m > O tale che Hf(p)w - w > m||w||? per ogni w € R", dalla formula di Taylor con resto di Peano

1 m m
£ ~f(p) = 5 (Hf(P)x=p) - (x=p)) +o(Iix=pI12) = T lx=p[2+o(lIx=p|[2) = (T +o(0) Ix—p]?
Sia § > O tale che, per ||x—p|| < 9, si abbia m/2 +o(1) > O, allora segue che f(x) > f(p) per O < || x—p|| < 0 cioé p & un punto di minimo locale stretto. Il caso iii

si tratta in maniera analoga. |

Se Hf(p) & semidefinita, positiva o negativa, non si pud concludere nulla. Per esempio, O(0O, O) & punto stazionario sia per f(xq, x;) = x12 + x‘z‘ che per g(xy,x;) =
x12 —x‘z‘ e, in entrambi i casi, la matrice hessiana nellorigine & semidefinita positiva. Si verifica facilmente che lorigine O & punto di minimo (assoluto) per f e

punto di sella per g.
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inserire un paio di grafici?

TEOREMA 2.29 (di K.T.W. Weierstrass) Sia f: K— R una funzione continua con K C R" compatto. Allora esistono due punti p,q € K tali che

mKin(f) =f(p) < f(x) < f(q) = ml?x(f) perognix € K

DIMOSTRAZIONE.  Sia {p;} una successione minimizzante, cioé una successione tale che

{prCK e lm f(p)=inff(x)
xeK

j—+00

Osserviamo che sotto la sola condizione K = () esistono successioni minimizzanti. Infatti, posto m := inf,ci f(x) > —oo, dalla definizione di estremo inferiore
segue che perognij=12,..esistey; € f(K) talechem <y; <m~+ } Ogni successione {p;} tale che

{pck e flp)=y; n=123..

€ dunque una successione minimizzante (il caso che inf, f(x) = —co si tratta in maniera simile). Osserviamo che non & detto che la successione minimizzante
{p;} converga. Dato che K & compatto, cioé chiuso e limitato, per il teorema di Bolzano-Weierstrass esiste una sottosuccessione {p®} convergente a p € K
per k — +c0. Per la continuita di f si ha dunque

im f(py) =f
kl:‘oo (P](k)) (p)
Dialtra parte, per definizione di successione minimizzante, si ha anche

lim f(pj) =m = inf f(x)
j—>+00 xeK

e si conclude dunque che

f(p) = m = minf(x)
xeK

Lo stesso ragionamento & vero per il punto di massimo q. ]

TEOREMA 2.30 (di K.T.W. Weierstrass) Sia f: K — R continua, con K C R" chiuso. Se f é coercitiva, cioé se vale la seguente condizione,

lim f(x) = +o0
xeKe||x||—>+oo

allora esiste p € K tale che

mKlnf =f(p)
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DIMOSTRAZIONE. Sia p; una successione minimizzante per f in K. Se {pj} non fosse limitata, a meno di sottosuccessioni, avremmo che ||pj|| — oo e dalla
ipotesi di coercivita si avrebbe allora lassurdo che

inf(f) = lim f(p;) =+o0
K n—>+00
Quindi {p;} € una successione limitata e si pud procedere come nel caso K limitato. ]

OSSERVAZIONE 2.31 | precedenti risultati di Weierstrass propongono alcune ipotesi che si rivelano sufficienti a garantire che f sia dotata di massimo e/o minimo
assoluti. Perd come € possibile identificare questi punti? Se f & differenziabile e se uno di questi punti q appartiene a K° (l'interno di K), segue dal teorema di
Fermat che Vf(qg) = O. Naturalmente il punto di massimo e/o minimo potrebbe cadere sulla frontiera 0K del dominio K. Si noti che se q € 0K (la frontiera di K)
non é vero che il gradiente della funzione nel punto deve essere nullo, quindi avremo bisogno di strumenti differenti per studiare le proprieta dei punti della
frontiera.

Per stabilire se un insieme & chiuso € utile conoscere il seguente risultato.

TEOREMA 2.32 (caratterizzazione della continuita) Sia f: R"™ — R una funzione continua, allora vale che
i. gliinsiemi {x € R" : f(x) < A} e {x € R": f(x) > u} sono aperti,

ii. gli insiemi {x € R" : f(x) < A} e {x € R" : f(x) > u} sono chiusi,

perogni A\, i € R.

Si ricordi che lunione (qualsiasi) di insiemi aperti produce sempre un aperto e l'intersezione di un numero finito di aperti produce ancora un aperto. Lunione
finita di chiusi produce un chiuso, mentre lintersezione (qualsiasi) di chiusi &€ sempre un chiuso.

DEFINIZIONE 2.33 Un insieme A C R" si dice convesso se
Ax+(1=N)y €A perognix,y € Ae X €[0,1]
Dataf: A — R, con A C R" aperto convesso, la funzione f si dice convessa se

X+ (1=A)y) < (%) + (1=N)f(y) perognix,y € AeX €[0,1]

OSSERVAZIONE 2.34 E possibile mostrare che f & convessa se e solo se 'insieme epigrafico E; € R™! definito come E := {(x,y) € A x R:y > f(x)} & convesso.

Le funzioni convesse hanno un ruolo importante in ottimizzazione. Infatti se f &€ convessa in A allora ogni punto di minimo locale € anche di minimo assoluto
per f.

OSSERVAZIONE 2.35 Lo studio della matrice hessiana fornisce un criterio per stabilire la convessita di una funzione di pitl variabili. Richiamiamo brevemente
alcune proprieta delle funzioni convesse. Sia f : A <— IR, con A aperto convesso:
i. se f & convessa allora f € continua in A,
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ii. se f & differenziabile allora f € convessa se e solo se f(x) > f(p) + Vf(p) - (x—p),
iii. se f € C2(A) allora f & convessa in A se e solo se Hf(x) & una matrice semidefinita positiva.

2.4 curve

DEFINIZIONE 2.36 Una curva in R3 & unapplicazione ¢ : [a,b] C R — R3, con ¢(t) = (x1(t), x2(t), x3(t)). La funzione p = ¢(t) é detta una rappresentazione
parametrica della curva. Se una delle tre componenti é identicamente nulla allora si ha una curva piana, contenuta in uno dei piani coordinati del sistema di
riferimento.

Una curva é continua se ogni sua componente x4(t), x5 (t), x3(t) & continua in [a, b].

Una curva é regolare se ogni sua componente é di classe C'([a, b]) e vale

16/ 0112 = [P + 02+ X302 * 0 perognit € (a,b)

Una curva é regolare a tratti se é continua in [a, b] e se é possibile dividere [a, b] in un numero finito di intervalli chiusi, all'interno dei quali ¢ é regolare, cioé ¢
deve essere un collage continuo di un numero finito di curve regolari.

Una curva ¢ si dice chiusa se ¢(a) = ¢(b), si dice semplice se ¢(t) é iniettiva in (a, b).

Al variare dit € [a, b], ¢(t) descrive un insieme 7y = $[a, b] C R3 detto sostegno della curva.

Due curve ¢ : [a,b] — R3 e 4 : [c,d] — R3 si dicono equivalenti se esiste una funzione continua e biunivoca h : [c,d] € R — [a, b] tale che

¢(h(t) =()  perognit € [c,d]

OSSERVAZIONE 2.37 Nel caso in cui ¢ e ¥ siano due curve equivalenti, possiamo anche dire che 1) € una nuova parametrizzazione della curva ¢, si noti che due
curve equivalenti hanno sempre lo stesso sostegno.

Data una rappresentazione parametrica & automaticamente assegnato un verso di percorrenza sulla curva ovvero una orientazione: ¢(a) & il punto iniziale e
¢(b) € il punto finale della curva.

OSSERVAZIONE 2.38 Per una curva regolare (a tratti) & (quasi) sempre ben definito il vettore ¢/(t) = (x{(t), X}, (t), x5(t)). Interpretando t come il tempo, si pud
pensare ¢(t) come il vettore posizione di una particella al tempo t; il sostegno -y = ¢([a, b]) & la traiettoria del moto; il vettore ¢/ (t) & il vettore velocita. Il versore

_ '
¢/ (1)

viene detto versore tangente. La retta tangente alla curva nel punto pq = ¢(tp) ha equazione parametrica

T(t)

(2.6) p(t) = p(to) + ¢’ (to)(t—to) = pg + V(to) (t—to)
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A questo punto vogliamo introdurre il concetto di lunghezza per una generica curva (anche se siamo interessati alle curve regolare a tratti, come sara chiaro pit
avanti). Come spesso accade la nostra definizione dovra fare i conti con le lunghezze che abbiamo gia definito, cioé dovra coincidere con la nozione elementare
di perimetro di un poligono, visto che i lati di un poligono possono essere interpretati come una curva regolare a tratti.

Data una partizione a = tg < t <... <ty = b dell'intervallo [a, b], poniamo p; = ¢(t;) i punti corrispondenti sulla curva ¢. La poligonale o spezzata P di vertici
Po. P1. - Pk inscritta alla curva ¢ ha lunghezza

k k
L(P)= ) llp=pptll = ) _llélt) = (el
j=1

=1

Nella figura che segue possiamo vedere rappresentato un tratto di curva regolare con una poligonale iscritta e una curva chiusa non semplice, quindi soltanto
regolare a tratti.

1.0+

P4 Ps

0.5+

Pe

P2

P

po -1.0-

Figura 2: una curva piana semplice (in viola) e una poligonale inscritta (verde) e una curva chiusa regolare a tratti

Sia L(¢) := sup{L(P)alvariaredellepoligonaliPinscritteing}, allora abbiamo

DEFINIZIONE 2.39 Se L(¢) < +oo si dice che la curva ¢ é rettificabile e si definisce L(¢) la sua lunghezza.
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TEOREMA 2.40 (rettificazione di una curva regolare semplice) Sia ¢ : [a,b] — R" una curva regolare semplice, allora ¢ é rettificabile e possiamo
calcolare la lunghezza della curva nel seguente modo

b ! b /()2 / 2 / 21/2
(2.7) L(¢)=J |¢(t)|dt=J [Ix{ (02 + x5 0)[2 + x5 (0] 2] it

E possibile dimostrare che la lunghezza di una curva non dipende dalla rappresentazione parametrica scelta. Se ¢ & una curva regolare a tratti allora ¢ &
rettificabile, perché & unione di un numero finito di curve regolari, quindi la lunghezza della curva é la somma (finita) delle lunghezze dei tratti regolari.

ESEMPIO 2.41 Sia f(x) = xsin(1/x) per x € (0,1], f(O) = O. La curva (t, f(t)) per t € [0, 1] non é rettificabile

OSSERVAZIONE 2.42 Data f : [a,b] — R di classe C', la curva del piano che ha come sostegno il grafico di f & una curva regolare di equazioni parametriche
(xq(t), %2 (1), x3(t)) = (t, f(t), 0), con t € [a, b]. In tal caso si dice che la curva é data in forma cartesiana

y=f(x) xela,b] curvainformacartesiana

La lunghezza del suo grafico € data dalla formula

b
(2.8) L(¢>)=J V1+(f (x))2dx

Una curva piana in coordinate polari & data dallequazione
o= p(6) 0 €[6g,61] curvainformapolare

che corrisponde allequazione in forma parametrica
(x(6),y(8)) = (0(0) cos(6), p(6) sin(0)) 6 € [6p,61]

La lunghezza del suo grafico & data dallespressione

2]
(29) L(g) - L "o/ + (pl6))2d8
0

E sempre possibile, tramite un opportuno cambio di variabile, parametrizzare la curva con una particolare variabile s, detta ascissa curvilinea

t
(1) - f 1¢/(W)l|du

Sihas/(t) = [|¢/(t)|| > Oin (a,b). Quindis: [a,b] — [0, L(¢)] & strettamente crescente e quindi invertibile. Indichiamo con t(s) la funzione inversa, t : [0, L(¢)] —
[a, b]. Posto ¢.(s) = ¢(t(s)) con s € [0, L(p)], la curva ¢.. € equivalente alla curva ¢ e le curve hanno lo stesso orientamento. Si ha

dg(s) _dg(t) dt _ ¢'(t(s))
ds  dt ds  |¢/s))
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da cui segue

&

(s)] = |p«(s)] =1

ds

Con ¢.(s) indichiamo la derivata rispetto a s di ¢« (s).

DEFINIZIONE 2.43 Sia ¢ : [a,b] — R3 una curva regolare parametrizzata con la sua ascissa curvilinea, e supponiamo che ¢ € C2([a, b). Indichiamo con
T(s) il versore tangente cioé

T(s) = ¢(S) =
|p(s)]

¢(s) e poiché vale (T(s) . T(s)) = %% (T(s) - T(s)) = E%

IT(s)|2=0

segue che T(s) & un vettore ortogonale al versore tangente T(s).
. 1 .
Si definisce la curvatura della curva (nel punto ¢(s)) la quantita scalare k(s) = ||T(s)|| e il versore normale alla curva il versore N(s) = @T(s).

A questo possiamo introdurre il vettore B(s) = T(s) A N(s), detto vettore binormale. | versori T(s), N(s) e B(s) costituiscono la terna intrinseca o tetraedro di
Frénet nel punto ¢(s), questi versori sono linearmente indipendenti, la terna (T, N, B) & una base dello spazio ed ha la stessa orientazione della terna canonica
(e1,e7.€3).

Si puo anche mostrare che B(s) = —7(s)N(s), introducendo la quantita scalare 7(s), detta torsione della curva.

2.5 superfici
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DEFINIZIONE 2.44 Sia K C IR? la chiusura di un aperto connesso. Una superficie regolare di IR3 é unapplicazione r : K — R3 tale che
i. ré di classe C'(K) cioé r & continua in K ed é dotata di derivate parziali continue,

ii. r & iniettiva all’interno di K,

iii. la matrice jacobiana

ar(uy, uy) Orry(ug, up)  Bary(ug, up)
JI’(U1, U2) = m = 81r2(u1, U2) 82r2(u1, Uz)
=2 or3(ug,up)  Byr(uy,uy)

ha rango 2 in ogni punto dell'interno di K. Limmagine ¥ = r(K) & un insieme di IR3 detto sostegno della superficie. Le equazioni
x =r(u) cioé (xq,%7,%3) = (rq(uq, up), rp(uy, uy), r3(uq, uz)) perogniu = (uq, up) € K

si chiamano equazioni parametriche della superficie. Nel seguito identificheremo spesso la superficie r con il suo sostegno ¥..

Se poniamo
Byr(u) = (B4r1(uy, uz), Byra(uq, uy), Hyr3(ug, us)) e B,r(u) = (8y11(uq, up), Bara(ug, up), Byr3(ug, uy))
La condizione iii equivale a richiedere che 9;r(u) e 9,r(u) siano linearmente indipendenti ovvero che sia
Oyr(u) A Byr(u) = O perogniu € int(K)
OSSERVAZIONE 2.45 Data una funzione f ¢ C'(K), possiamo interpretare il suo grafico x3 = f(x;, x;) come una superficie di equazioni parametriche
(%1(uy, uz), x9(uq, up), x3(uq, Uy)) = (uq, Uy, flug, uy)) u=(uy,upy) €K
Poiché dyr(u) = (1,0, 8yf(u)) e Byr(u) = (0,1, B, f(u)) risulta Oyr A 51 = (—=04f(u)), =8, f(u)), 1) = O, quindi la superficie &€ sempre regolare.
Le curve ottenute fissando una delle due variabili u; = Uy oppure u, = U, di equazioni parametriche
p = r(Uj, uj) oppure p =r(uy, uj)
sono dette linee coordinate e sono delle curve regolari che giacciono sulla superficie.

ESEMPIO 2.46 La sfera di centro pg e raggio R > O di R ha equazioni parametriche
(%q,%2,%3) = (xo +Rsin(¢) cos(f), yg + Rsin(¢) sin(f), zp + Rcos(¢))

conu=(¢,0) e K=[0,7] x[0,2x] Euna superficie regolare dato che si ha
184r(u) A Byr(u)||5 = R%sin(¢) > O in (O, 7)

In questo caso le linee coordinate ¢ = ¢ rappresentano i paralleli, mentre le linee coordinate 6 = 6 rappresentano i meridiani, usando un linguaggio di tipo geografico.
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Consideriamo una curva regolare -y con sostegno contenuto in K C RZ, di equazioni parametriche
v p(t) = (uy(t), up(t)) cont€[a,b]C R

passante per (ug 1, Ug 2) = (uy(tp), uz(to)). La curva regolare ottenuta componendo la parametrizzazione di ¢ con la parametrizzazione di una superficie regolare
r (definita su K), cioé ®(t) = r(us(t), u,(t)) ha sostegno contenuto in ¥, il sostegno della superficie r, passa per il punto pg = r(ug 1, ug ) € ha come retta tangente
nel punto pg la retta di equazione parametrica

(P—po) = [%r(m(t), uZ(t))] (t-to)
t=to

Per la formula di derivazione delle funzioni composte vale

d
G (u) = Byr{u (), uz (1))ug(t) + Byr(us(t), uz (1))uj (1)
quindi il vettore tangente & contenuto nel piano passante per py generato dai vettori linearmente indipendenti &;r(ug 1, ug 2) € 92r(ug 1, Ug 2) ovvero nel piano
di equazione

X1 —X0 1 X2 =X02 X3=X03
det|| Oir(ug1.up2) Oiralug1,ug2) irslug1,ug 2)
Opri(ug 1,Ug 2)  Oara(up1.up2) 9ar3lug 1. up 2)

I
o

Il piano tangente introdotto non dipende dalla particolare curva <. Dato che qualunque curva regolare tracciata su ¥ e passante per pg pud esprimersi local-
mente nella forma p = r(us(t), u,(t)), il piano di sopra contiene tutte le rette tangenti a ogni curva regolare sulla superficie passante per p. Tale piano si dice
piano tangente a ¥ nel punto pg.

Il vettore 9yr(u) A 9;r(u) € ortogonale al piano tangente, il corrispondente versore

n- Oyr(u) A Byr(u)
RENOREOT

é detto versore normale alla superficie.
OSSERVAZIONE 2.47 Nel caso di superfici in forma cartesiana x3 = f(xq, x3), il piano tangente alla superficie nel punto (xg 1. Xg 2. f(X0 1. X0 2)) ha equazione
x3 = f(xg) + V(xo) - (x=x0) = f(x0,1. X0,2) + Bif(X0 1. X0,2) (X1 = X0 1) + Bof(X0 1. X0 2) (X2 = X0 2)

e ha versore normale
- (=01f(x0), =0, f(x0). 1)

NS

E facile osservare che anche —n € un versore normale alla superficie. La scelta di uno dei due versori +n é legata al concetto di orientazione di una superficie.
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Oltre che in forma parametrica o cartesiana le superfici possono essere date in forma implicita. Sia F : A C R3 — R con F € C!(A). Sia ¥ l'insieme di livello
F(x1,x2,%3) = O, se (xp.1.X0 2.%0.3) € X e VF(xg) = O allora X coincide localmente con una superficie in forma cartesiana. Si noti che questa affermazio-
ne &, al momento, decisamente immotivata, perché non disponiamo di risultati e strumenti con cui provarla! Ritorneremo pit avanti su questo problema.
Analogamente a quanto scritto prima lequazione del piano tangente a ¥ in xg = (0.1, X0 2. X0 3) €

VF(Xo)' (X—Xo) =0 oanche (31F(Xo'1,XO'2,XO’3)(X1—X0’1)+82F(X0'1,XO'2,XO’3)(X2—Xovz)+83F(X0v1,X0’2,X0v3)(X3—Xo’3) =0

Consideriamo ancora la curva -y tracciata su .. Lascissa curvilinea

t
s(t)=f d

S, uZ(T))‘dT

rappresenta la lunghezza dell'arco descritto da r(us(7), u; (7)), per 7 € [a, t]. Si ha

(%)2 = [ 0,200 = a0, D0+ Bar(n). up o
= [|0yr(u(t), up (8) |12 ]us ()12 + 2(B1r{ug (1), ua (1)) - Or(us (1), up(E))us () (t) + (|1 (us (1), Uz (1)) 13 ]u5 (B)2

Ponendo

E@W) = lor(u, )3 F(u)=0rr(ug,up) - Gprug, up)  G(u) = [|85r(uy, up) |13
si ricava la seguente formula

ds? = E(u)du? + 2F(u)duydu; + G(u)du?
che esprime il quadrato del differenziale dell'arco su una superficie. La forma quadratica

I(u) = E(uy, up)du? + 2F(uy, up)dusdu; + Gluy, up)du?

prende il nome di prima forma quadratica fondamentale della superficie ed esprime, codifica in termini quantitativi alcune delle proprieta geometriche della
superficie stessa.

2.6 il teorema delle funzioni implicite

ESEMPIO 2.48 Sia $2 = {x = (xq,%2,%3) : N(x) = x12 +x% +x§—1 = O} C R3eF: 52 — R definita come F(x) = Dx-x con D € N3 3(R) matrice diagonale M =

diag(cy, ¢, c3) con ¢; < ¢; < c3. Si provi che esistono p, q € S tali che

F(p) = max[F(x)] e F(qg) = min[F(x)]
x€S? x€S?
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e si identifichino tali punti.

Prima di tutto notiamo che la sfera unitaria, cioé il nostro vincolo $2, & un insieme limitato (per definizione) e chiuso in quanto controimmagine del chiuso {0} C R, e
poiché la funzione F é continua in tutto R3, essendo di classe C*°(R3), il teorema di Weierstrass garantisce lesistenza di (almeno) un punto di massimo e di minimo.

A questo punto proseguiamo i nostri ragionamenti osservando che

F(x) = F(xq, X, %3) = Mx - X = (C1Xq, C2Xp, €3X3) - (X1, X2, X3) = c1x12 + czx% +C3X§ x € 52
e anche che

Q= c1[x12 +x% + xg] < c1x12 + czx% + C3X% < C3[X12 + x% + xg] =C3 perognix € 52
Dalle precedenti osservazioni possiamo concludere subito che

¢q = F(eq) = min[F(x)] e c3 = F(e3) = max[F(x)]
xeS? x€S2

quindi conosciamo gia la soluzione del problema che ci siamo postil
A questo punto consideriamo le seguenti curve regolari in R? di parametrizzazione ¢(t) = wt, con t € [-¢,€] e w € IR? versore, tali curve (pensate nel piano {x3 = 0})
hanno immagine dei segmenti passanti per il punto O. A partire dalla precedente parametrizzazione possiamo ottenere delle curve sul vincolo $2 nel seguente modo

PY(t) = (w1t,w2t, [ —w12t2 —w%tz]vz) cont € [-¢,€],w € R?

Si noti che abbiamo ricavato la terza componente di v in modo che valga (t) € $2 per ogni t e 4(0) = e3, cioé 1 descrive una curva sulla sfera passante per il polo
nord, per ogni scelta del versore w. Siamo riusciti in questo intento esclusivamente grazie al fatto che la semisfera $2 N {x3 > O} puo essere pensata come il grafico
della funzione f(x, xp) = [1=x2 =x312, con (x4, x,) € B(O, 1).

A questo punto possiamo introdurre due funzioni nel seguente modo: h(t) := F(1(t)) e k(t) := N(3(t)), per t € [—¢, €], e osserviamo che sono funzioni di classe C' e che
vale

K'(t)=0 perognit € [-¢,€], w € R2 e h(O) = max(h) dacui h'(0)=0
inoltre abbiamo, per ogni versore w € R2, che

h’(0) = VF(4(0)) - '(0) = VF(e3) - /(0) = 2(cywit, cowt, c3[1— [[w||2t21"/2) - (wy, w,, 0) = 2(0, 0, c3) - (wy, w2, O)
K'(0) = VN(%(0)) - 9/(0) = VN(e3) - /(0) = 2(0, 0, 1) - (wy, w, 0)

Queste ultime due relazioni mostrano che i vettori VF(e3) e VN(e3) devono essere paralleli, cioé proporzionali, visto che sono entrambi ortogonali a tutti i vettori dello
spazio vettoriale W = {(w;, w5, 0),w € R?} (cosa per altro evidente dalle espressioni calcolate). Questultima osservazione si rivela essere una conseguenza sempre
vera per punti critici vincolati, cioe vera per F e N qualsiasi, e suggerisce l'introduzione della funzione di Lagrange

L(x,s) = F(x)—sN(x):Ax R C R* — R

| punti critici liberi di L risultano essere punti (x, s) € R4 tali che x appatrtiene al vincolo e in tali punti i vettori VF(x) e VN(x) (derivate parziali rispetto alle sole variabili
di x) sono paralleli (s e la costante di proporzionalitd), quindi sono i punti critici di F sul vincolo {x : N(x) = O} (si veda il teorema 2.59).
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Il teorema delle funzioni implicite risponde ad alcune delle precedenti domande: per ripetere i ragionamenti dellesempio 2.48 abbiamo bisogno di poter
descrivere, almeno intorno ai punti critici di una funzione obiettivo F ristretta ai punti di un vincolo, il luogo dei punti appartenenti al vincolo come il grafico di
una funzione, in modo da ottenere una struttura regolare di cui sia possibile descrivere lo spazio tangente, cioé lo spazio dei vettori tangenti, e che tale spazio
abbia dimensione sufficientemente alta, in modo da poter dedurre il parallelismo dei vettori gradiente delle funzioni che compongono la funzione di Lagrange
L. Come primo passo verso una migliore comprensione dei risultati di Ulisse Dini, cioé del teorema della funzione implicita, proviamo a studiare un primo caso
non troppo complesso.

TEOREMA 2.49 (delle funzioni implicite in tre dimensionil) Sia F : A C R3 — R dove A C R3é&un aperto e f una funzione di classe c'(A), e Xg =
(X0,1.X0.2. X0,3) € Aun punto tale che
F(Xo) =0 e 83 F(Xo) 0

Allora esistono due costanti a,b > O tali che per ogni punto (xq,X;) € B = {(x _XO,1)2 +(xy — XO’Z)Z < az} C R?, cioé per ogni punto in un cerchio (del piano)
sufficientemente piccolo centrato in (xg 1, Xg 2), lequazione

F(x,x2,x3) =0

(dove l'incognita é la variabile x3) ha ununica soluzione x3 = $(xq, ;) che appartiene all'intervallo | = [xg 3 —b,xg 3 +b] C R. Inoltre la funzione (x;, x;) —
®(x4, x,) appartiene allo spazio C'(B, 1) e vale anche la relazione

_8XF(X, y. z(x,y)) _8yF(x, Y. z(x,y))
O:F(x,y. z(x,y))" O-F(x y, z(x,y))

Vz(x,y) = (8z(x,y), &yz(x,y)) = (

DIMOSTRAZIONE. Osserviamo subito che le ipotesti su F nel punto xg, cioé che
F(xg) =0 e &F(xg) >0

ci permettono di dedurre che esiste r; > O tale che
F(x0,1,%0,2.X0,3 1) < F(xg) =0 < F(xg,1,X0,2. X0,3+1)

Si noti che abbiamo assunto che 93F(xg) > O, questa scelta sul segno della derivata parziale non lede la generalita del discorso, come sara chiaro nel proseguio.
| teorema della permanenza del segno (applicato alla funzione F nei punti xg, (X 1. X0.2. X0,3—11) € (X0 1. X0 2. X0,3 + 1)) Ci permette di affermare che esiste un
numero reale r, > O e, conseguentemente, un cilindro C C R3, definito nel seguente modo

C= {(X1-X0’1)Z +(X2—Xo'2)2 < I’%} X {x0’3—r1 < X3 < X0.3 +r1} = Brz x|
tale che

F(x0.1.X0,2.%0,3— 1) <O <F(xp.1.X02.X0,3+r1) perogni(x;,x3) € By, e 93F(x) > O  perognix € C
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A questo punto del ragionamento possiamo osservare che, fissato (x;, x) € By,, la funzione di una variabile reale
h(t) = F(xq,x9,1) : [zg—11,Zg+1i] — R

& una funzione continua (anzi almeno di classe C') che assume valori discordi agli estermi dell'intervallo
h(xp,3=r1) =F(x0,1.%0,2.X0,3—11) < O <F(x0,1.X0,2.X0,3 +11) =h(xo 3+1)

quindi, per il teorema di esistenza degli zeri esiste x3 = @(x,%3) € | tale che F(xq, x5, ¢(x1,%3)) = O. Inoltre tale soluzione € unica, perché la funzione h &
strettamente monotona crescente in |, perché per t € | si ha che h'(t) = B3F(xq, X3, 1) > O con (x4,%5,1) € C.

Poniamo a:=r; e b := r1. A questo punto del ragionamento abbiamo ottenuto lesistenza di una funzione ¢(x, y) definita su B = B, = By, che produce valoriin |,
tale funzione ad ogniinput (x4, x;) associa un reale x, = ¢(x1, X,) unica soluzione, nell'intervallo |, dellequazione F(xq, x5, x3) = O. Per concludere la dimostrazione
dobbiamo investigare le proprieta di continuita e differenziabilita della funzione ¢.

Consideriamo i punti (x4, 3, x3) € (yq,Y,.Y3) appartenenti al cilindro C, con x3 = ¢(x1,x;) e y3 = ¢(yy,y,). Per le proprieta della funzione ¢ e per il teorema dei
valori intermedi (si ricordi che C & un insieme convesso) abbiamo che

0 = F(x1,x2.x3) = Flyy,y2.y3) = VF(v,0,8) - (X1 —y;. xa—y,.x3—y3)  con(v,0,§) € Xy
da cui, svolgendo alcuni calcoli, ricaviamo

_ oo |oiF (v o, 8 (x=xq) + B3F (v, 0, )y —yy) Flv,o.¢ ,|02F .0
|(1)(X1,X2) ¢(Y1vY2)| - ‘X3 Y3| - 63F(l/,0',$) ‘ a3F V.o, g)“ X1— 1 63F(l/ O'£ ’| X2~ YZ|

max |OyF| max |0, F|
< —— +———= Xy — < —v.)2+ —-v,)2
~ mind3F =il min &3F Ix2=yal < KO\/(X1 y1)2 + (k2 —y7)

e le disuguaglianze ottenute implicano la continuita della funzione ¢ nel generico punto (x;, x;), visto che se facciamo tendere (y;,y,;) — (x1,X7), segue che

[d(xq, x2) = Plyq,y7)| — O.
Per mostrare la differenziabilita della funzione implicita ¢ introduciamo la seguente funzione ausiliaria:

g(t) := F(xq + tly; —xq), X2, @(x1, X2) + t(ly;. X2) — d(x1, %7)))

dove t € [0,1] e (x1,x3), (Y1, X2) € By,. La funzione g & costruita come composizione di funzioni di classe C'ein piu vale che g(0) = F(xq,x;, ¢(x1,%3)) =0 e
g(1) = F(yy, X, #(y, %)) = O, allora il teorema di Rolle prova lesistenza di 7 € (O, 1) tale che

g'(1) = OF (v, %7, o)y —xq) + O3F(v, X7, o) (@lyq, X2) — (%1, %3)) = O

dove v = xq + T(y;—Xy), 0 = d(x1,%2) + T(Plyq, X2) — d(X1, X)) e si noti che abbiamo usato il teorema di derivazione delle funzioni composte.
La precedente relazione ci permette di ricavare che

. Plyg.x2) — (X1, %32) . OF(v,x,,0) O1F(x1, %2, d(xq,%7))
0 Xq)= | == | =—
1904, y1m><1 Y1—Xq Y1E>X1 03F(v,xz,0)  O3F(x1, %2, d(x1,%7))
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e il limite ottenuto, unitamente al fatto che F € C', ci permette di concludere che ¢ ha derivata parziale continua nel generico punto (x;,x;) € B, Ragionando
in modo speculare sulla funzione ausiliaria

g(t) := Fxq, Xz + tly, —x2), dlx1, X2) + t(p(xq, o) = d(x1,X2)))
possiamo concludere che ¢ € c'(B), il che (anche grazie al teorema del differenziale totale) termina la dimostrazione del teorema. ]

Osserviamo, come gia detto, che il teorema pud essere riscritto permutando il ruolo delle variabili. Per mostrare come questa possibilita complichi i possibili
enunciati equivalenti proviamo a riassumere le differenti situazioni nel seguente modo: data una funzione F € C'(A, R) definita su un aperto A C R3 e un punto
(%) € A tale che F(xg) = O, abbiamo che

se 03F(xg) =0 alloraesiste ¢(xq,x;) € C'(B,1) taleche {F(x,y,z) =0} NC={x3 = d(x1,%3)}
se 9,F(xg) =0 alloraesiste ¢(x;,x3) € C'(B,1) taleche {F(x,y,z)=0}NC={x;=d(x;,x3)}
se OiF(xo) =0 alloraesiste ¢(xy,x3) € C'(B,1) taleche {F(x,y,z)=0}NC={x=d(xg,x3}

In tutti i casi il grafico della funzione descrive (almeno nelle vicinanze del punto xg) linsieme {F(x) = O}, cioé il luogo degli zeri della funzione F.

Al crescere delle dimensioni del input e delloutput della funzione F le cose si complicano un po, consideriamo il caso in cui la funzione produca risposte
vettoriali. Fissiamo le idee considerando il caso F : A —s R2, con A C R3, questo significa che possiamo pensare la nostra funzione vettoriale come una coppia
di funzioni scalari

F(x) = (F1(x1, X9, X3), F2 (%7, X2, X3)) : A — R?

Intuitivamente possiamo dire che il luogo degli zeri di ognuna delle due funzioni F; e F, possa essere il grafico di una funzione (come nel precedente risultato)
quindi un oggetto che possiamo pensare come una superficie nello spazio tridimensionale, e questo significa che il luogo degli zeri della funzione vettoriale F,
cioé l'insieme dove sono nulle entrambe le componenti di F Z = {F;(x) = F,(x) = O} , pud essere pensato come l'intersezione di due superfici, quindi una curva.
Per precisare meglio questo ragionamento qualitativo possiamo procedere come segue: sia Xg = (X0 1.X0 2. X0,3) € Zf e supponiamo che una delle derivate
parziali di Fy in xg sia non nulla, per esempio 93F; (si ricordi che se nessuna derivata parziale ha valore diverso da O € possibile che il luogo degli zeri non abbia
alcuna struttura geometrica, come suggerisce lesempio della funzione f(xy, X, x3) = x12 + x% + x% il cui luogo degli zeri & solo il punto (O, 0, 0)). Per il teorema
precedente, almeno in un intorno del punto xg, linsieme {F;(x) = O} é descritto dal grafico di una funzione ¢3(x1, x3), e siccome per ogni x € Z¢ vale Fy(x) =0

segue anche che
G(xq,%3) = Fo(x1, %5, 93(%1,%3)) = O
e in particolare abbiamo che
G(xo) = F2(x0 1.%0,2. #3(X0 1. %0,2)) = F2(X0,1.X0 2. X0,3) = O

Per poter applicare il primo teorema che abbiamo dimostrato alla funzione G dobbiamo verificare che la sua derivata parziale, rispetto alla variabile y per
esempio, sia diversa da O, quindi grazie al teorema di derivazione delle funzioni composte e al teorema di Dini in R? possiamo calcolare
0,F203F1 —03F20,F4

O3F4

0,G(x1,%7) = 05[F7 (x1, %2, ¢3(x1,%2))] = O3 F (x1, X2, P3(x1,%2)) + O3F (1, X2, P3(X1, X)) D293 (X1, X7) =
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Se questa derivata & non nulla otteniamo lesistenza di una funzione 1/, (x), definita per x € [xg —a, xg +al, tale che

0 = G(xq, P2(x1)) = Fo(xq, 12(xq), d3(x1, Y2(x1))) = Fo(xq, ¥ (x1), 93(x1)) conz(xq) := P3(xq, Pa(xq))

e vale anche Fy(xq, ¥, (xq), 13(xq)) = O per quanto osservato prima. Quanto ottenuto conferma che é possibile descrivere Zg come l'intersezione di due grafici
di funzioni da R2 inRR, cioé (geometricamente parlando) che Z & una curva. Lipotesi cruciale per il calcolo precedente & che

0,F2(x0,1,%0,2.%0,3)03F1(x0 1. X0 2. X0,3) = 93F2 (X0 1, X0 2. X0,3) 02 F1(X0 1. X0, 2. %0,3) 2 O
e siccome vale la relazione

5'2 F1 (X) 83 F] (X)

62F2(X)83 Fi (x) —63F2(X)82F1 (x) = det[J2,3F](x) = det 62F2(X) @3 Fz(X)

possiamo concludere che un'ipotesi sufficiente per poter descrivere l'insieme degli zeri di una funzione vettoriale come grafico di una funzione vettoriale (una
curva nel caso in esame) é che il determinante della matrice jacobiana di F, rispetto alle sole variabili che dipenderanno dalle restanti, sia non nullo. Notiamo
anche che il fatto che tale determinante sia diverso da O implica che almeno una tra le derivate parziali 5,F; e 6;F, debba essere differente da O, quindi la
prima ipotesi fatta per costruire la funzione ¢; € "contenuta” nella richiesta che la matrice jacobiana sia non singolare.

Per completare il ragionamento supponiamo di aver provato che le funzioni x; —s ,(x), 13(x;) siano di classe C', e svolgiamo la seguente derivata della
funzione vettoriale

d ( Folxt, Yal0). 3(x0) ) ( O1F + B,F 1} ) + B5Frab ()
dxy \ Fa0xq, 92(x), %3(x1)) B1F3 + 023 (x1) + O3F 213 (x)

da cui otteniamo un sistema lineare per le incognite ’(/)é(X1) e wg(x1)

By 195 (xq) + B3F 13l (xq) = =44
By F 13 (xq) + B3F 95 (xq) = —B1F,

Tale sistema é risolubile, perché la matrice associata al sistema & esattamente Jy,ZF(x, y(x), z(x)) che € non singolare, cioé invertibile, per cui otteniamo che

03F101F, — 01F103F3
0,F103F, —83F16,F;

P4 (xq) =[ ](X1,1/J2(X1),1/13(X1))

01F10,F, —0,F16,F;
0,F103F; —83F10,F;

P3(x) = [ ](X1,1/Jz(x1), P3(xq))

Tutto quello che abbiamo discusso puo essere condensato nel seguente enunciato.
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TEOREMA 2.50 (delle funzioni implicite in tre dimensioni Il) SiaF:A C R3 — RZ con A C R3 insieme aperto, e F una funzione di classe C'(A), e xo € A
un punto tale che

F(xo)=0 e e  detl(J;3F](x0)) = [0,F103F; —03F19;F,1(x0) = O
Allora esistono due costanti a,b > O tali che per ogni x; € B = {xg —a < x < xq +a}, cioé sufficientemente vicino ad xg 1, lequazione
F(x1,%,x3) =0

(dove l'incognita adesso é la coppia divariabili (x5, x3)!) ha una sola soluzione (x5 = 1 (x1), X3 = ¥3(x1) che appartiene al cerchio | = {(x, _XO,Z)Z +(X3—X0, 3)2<
b2}. Inoltre la funzione x; — (15 (1), 3(x;)) appartiene allo spazio C'(B, 1) e vale anche la relazione

_ detl)y 3F1(x1, P2 (x1), P3(x1)) det[)y 2 F1(x1, %7 (x1), ¥3(x1))
detll; 3F1(x1, ¥2(x1), ¥3(x1)) detll, 3F1(x1, ¥2(x1), ¥3(x1))

wyx) = e P3(x)=—

DIMOSTRAZIONE. La dimostrazione di questo risultato & stata sviluppata (per grandi linee) nelle righe precedenti, per non appesantire il discorso omettiamo
i dettagli mancanti che saranno affrontati nella prova del caso generale. n

Sottolineiamo che la richiesta fatta sul determinante della matrice jacobiana garantisce che la variabile indipendente sia esattamente la x. Come nei casi
precedenti il ruolo della variabile indipendente non pud essere fissato a priori, in generale bisognera considerare la matrice jacobiana di F, cioé

VF1(X) )=( aXF1(X) 8yF1(X) 8ZF1(X) )
VFz(X) aXFz(X) 8yF2(X) aze(x)

e, per poter dimostrare il teorema delle funzioni implicite di Dini, supporre che la matrice abbia rango 2, cioé che esista un suo minore (sottomatrice quadrata)
2 x 2 ottenuto cancellando una delle tre colonne, che abbia determinante diverso da zero. La colonna scartata conterra le derivate parziali delle due funzioni
rispetto alla variabile che assurgera al ruolo di variabile indipendente!

JF(x1,%2,%3) =(

ESEMPIO 2.51 Assegnato il seguente vincolo
2
T= {x = (X1,X%2,%3) : [2—(x% +x%)1/Z +x§—1 = O} C R3

i. si provi che T é chiuso e limitato,

ii. si trovino tutti i punti critici, vincolati su T, della funzione f(x) = f(x1, X3, X3) = X3,

iii. si scriva il polinomio di Taylor del secondo ordine della funzione implicitamente definita da T intorno ai punti critici trovati in ii.
i. L'insieme in questione é definito come

2
T= {H(X1,X2,X3) = [2—(x12 +x%)1/2] +x§ -1= O}
essendo la funzione H € CO(R3) il nostro vincolo risulta chiuso, perché controimmagine di un chiuso in R. La sua limitatezza segue dallosservazione che

2
x5 < [2—(X12 +x§)1/2] +x3=1  implica  |x3] <1
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e analogamente
|(x12 +x%)1/2—2| <1
da cui si ottiene
-1 S(x12+x%)1/2—2§1 cioé 1§(x12+x%)1/2=r§3

la precedente disuguaglianza implica

Ix1], %21 <3 omeglio —-3<x,xp<3

Le disguaglianze provate, combinate insieme, mostrano che T C [-3,3] x [-3,3] x [-1,1] C R3, cioé che il nostro insieme ¢ limitato. E, come noto, chiuso e limitato
equivale a (sequenzialmente) compatto in R3 e in tutti gli spazi di dimensione finita.

ii. La funzione f(x;,x3,X3) = X, ha gradiente costante (e non nullo) in tutto lo spazio (esattamente Vf(xy, x3,x3) = (0,1,0) = e, per ogni (x;,x3,x3) € R3), quindi la
funzione non ha punti critici liberi. Daltronde, ponendo r = r(xq, X3) = (x12 + x%)'/ 2 ¢ ricordando che

or(xq,%9) = — e Opr(x1, %) = —=

X1 X2
r r

vale

Si noti che tale vettore non puo avere tutte le componenti nulle nei punti di T, cioé la superficie non possiede punti singolari, per cui sara possibile applicare il teorema
delle funzioni implicite in uno qualsiasi dei punti che la compongono. Come visto precedentemente i punti critici vincolati x = (x4, X5, x3) di f su T sono punti in cui il
vettore VH(xq, X3, %3) € paralello al vettore Vf(xq, X3, X3) = €, quindi sono punti le cui coordinate, per qualche c € R, sono soluzioni del seguente sistema

2 2
(x1[1—F],x2[1—?},X3)=(O,c,O) xeT
E subito evidente che x5 = O, inoltre la prima componente ci permette di scrivere che

X1 [1 - Z] =0 dacui {
r

pero non é possibile che r = 2, perché nessun x € T é tale che x12 + x% = 4 e x3 = O, quindi i punti critici vincolati sono solo i punti del tipo (O, s, 0), dove s deve essere una
soluzione dellequazione

=0
w2 yv2 =
—x1+x2-4

o O

X1
r2

[\s|—2]2=1 cioé $123.4=+1,£3
affinché il punto si trovi sul vincolo. Riassumendo i ragionamenti precedenti i punti critici vincolati di f su T sono i seguenti

a=(0-3,0) b=(0,-1,0) c=(0,1,0) d=(0,3,0)
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e, naturalmente, vale

f(@)=a;=-3= mTin(f) f(b) =by =1 f(c)=cy =+ f(d)=d; =+3= mra\x(f)

iii. Nella precedente discussione abbiamo verificato che
82H(a), 82H(b), 82H(C), 62H(d) >0

quindi intorno a tutti e quattro i punti possiamo ricorrere al teorema delle funzioni implicite per affermare che esistono 4 funzioni ¢p (x4, x3), al variare dip € {a,b,c,d},
tali che

H(X1,(f)p(X1,X3),X3) =0 perogni(x1,x2) S B(O,(S) - TRZ

con ¢p(0) = ¢p(0,0) = f(p), al variare dip € {a,b, c,d}.
Per scrivere il polinomio di Taylor del secondo ordine della funzione ¢p (x4, x3) abbiamo bisogno del gradiente e della matrice hessiana diH, avendo gia scritto VH(xq, X3, x3)
procediamo oltre, ricordando che l'hessiano deve essere una matrice simmatrica e svolgendo qualche "agile” conto abbiamo

2x2 44X
811H(X|,X2,X3)=2[1——2] 812H(X|,X2,X3)= r13 2 613H(X|,X2,X3)=O

3
2x12
azzH(X1,X2,X3)=2 1—r—3 823H(X1,X2,X3)=O 833H(X1,X2,X3)=2

Dalla teoria sappiamo che

OH(xq, dp(x1,%3),X3) 83H(x1,d)p(x1,X3),X3))

Vel x3) = (A1dp. x3). 00041 33)) (_GZH(XL Pplx1,x3),X3)" ByH(x3, Bpx1,X3), X3)

eche

[ 01H|8,H|2 — 28, HA HB, H + 855 H|8yH| 2

16; X1,X3) =— X1, Op (X1, X3), X

1dp(x1,X3) _ [5,HP (x1. @p(x1.x3), X3)
[ 813H|8,H|2 = 8,H(81,HA3H + 853HB Hy) + 857 HAHA3H

Babplxr,xg) =—| 28 |02H|“ —8,H(81,HO3 323 O1Hx) + 8,HO1HO3 :|(X1,¢p(X1,X3),X3)
i [6,H]
[ 8,9H|83H|% = 28,3HA,HA3H + 833H|8,H|?

Oabplxt x3) = —| 22 |63H| Z:E@ |_2”3 3H + 933H|5;H| }(X1,¢p(X1'X3),X3)
L 2

dalle precedenti espressioni ricaviamo innanzitutto che

019p(0,0) = 8,¢p(0,0) = 0
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cioé (0, 0) é un punto critico per ¢y, (per ognip € {a, b, c,d}), inoltre, ricordando lo sviluppo di Taylor (al secondo ordine) per funzioni in due variabili e le formule scritte
sopra, troviamo

1
9p(x1.x3) = 9p(0,0) + Vg (0, 0) - (x1.x3) + 5 [0116p(0, 0)x? + 2012p(0, O)x¢x3 + D22yp(0, O)x3 | + 0(x? +x3)

_1 1 2 |¢p(o.0)| 2 2)

1 811H(0,¢p(0.0),0) 2 822H(0,¢p(0,0),0) 2 - Xy + X +0(X2+X
2|74(0.001 " g.(0,0)(2-Igp(0.00) 2| T >

=90(0.0)77 | 3,H0, 45(0,0.0) 1 * 3,H(0, 3p(0.0).0) 3

+o(x? +x2) = ¢p(0,0)

e neivari casi p € {a,b, c,d} otteniamo le approssimazioni richeste

12 1,

1 1

Palxq,x3) =—3+ EX12 + ix% + o(x12 +x§) dplxq,x3) ==1+ §x1 - §x3 + o(x12 +x§)
1 1 1 1

Pc(xq,x3) = +1— §X12 + ix-%‘ + o(x12 + x%) dylx,z) =+3 - gx12 - Exg + o(x12 +x§)

concludiamo con una rappresentazione grafica del vincolo T, che é la seguente supefficie, detta toro, contenuta in R3.
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TEOREMA 2.52 (del valor medio in pit dimensioni) Siaf: A — R™,conA C RK aperto, una funzione vettoriale di classe C'eKC Aun compatto convesso,
allora

10 =) < [)fl« [x=yll  perognix,y € K

dove vale
k 172
2
o= vim [izz?mea%;|aafi<x)| ]

DIMOSTRAZIONE. Sia p(t) = (1—1t)y + tx una parametrizzazione regolare del segmento di estremi x e y, allora per i teoremi di Lagrange e di derivazione delle
funzioni composte abbiamo

[fi) = fi(y)| = [fi(p(M) = fi(p(O))] = | (fi(p(t)'| = [ Vfilp(to)) - (x=y)| < [[Vfi(p(to))]| - [Ix—y]| < ?S%IIVfi(q)H “lx=yll = [IViilloolIx=yll

Allora vale

Y IvAlA

160 =Fy)1 2= ) I =Fily)|? <
i=1

m
=1

Ix=y{2 < m| max | VI | Ix=yI?
i=1..m
cioé

12
1§60=Fy)|| < V| max [ V12| =yl = o =yl perognix.y € K

OSSERVAZIONE 2.53 (norme di matrici) Nel precedente risultato abbiamo introdotto una norma per la matrice jacobiana di una funzione vettoriale, in generale
se F = (Fjj) € My, ((R) abbiamo diverse possibilita. Per esempio le quantita

k

1/2
[[Fv|
Fll1:=vm max( F--z) Fll5 :=v/nm| max |[F; F||3 :== max
IFll = vim [H_m Y IFi ] IFll2 = vom L=1._.m,,-=1...k’ .,|] IFls

=1 vesk IVl

inducono norme "buone” per funzioni continue a valori in spazi di matrici (per esempio la funzione Jf quando f & di classe C') sostituendo alle entrate Fij la
norma della funzione corrispondente ||ajj|oo = max [ajj(x)|.
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TEOREMA 2.54 (delle funzioni implicite (U. Dini)) Siaf:A — R", con A C R™" aperto, una funzione di classe Ce (X0,Yo) € Atale che
f(x0.yo) =0 e det[Jyf(xo, yo)l=0

Allora esiste un intorno | € R™ di xg e un intorno ] C R" di'y, tali che, per ogni x € | lequazione nell’incognita y
f(x,y)=0

ha ununica soluzione y = g(x). Inoltre lapplicazione g che ad ogni x € | associa lunica soluzione y = g(x) € | & una funzione vettoriale g : | —s ) di classe C' e
risulta

(210) Jg) = (B = [lyix. g0 heflx,g00)

Dove abbiamo usato la notazione
Jyf(x0.Y0) = (6ykfi(xo,y0))ik coni,k=1,...n

DIMOSTRAZIONE.  Osserviamo subito che, ponendo B = [J, f(xo, yo)I™, abbiamo che
fx,y)=0 seesolose Bf(x,y) =O ovvero G(x,y) :==y—Bf(x,y) =y

quindi gli zeri di f sono esattamente i punti fissi di G. Per cui possiamo riformulare il problema nel seguente modo: vogliamo provare che esiste g € C° (E(xo, 1), Blyg. e))
tale che

G(x,g(x)) = g(x) perognix € B(xo,r) e  glxo)=Yo

| parametri €, r > O saranno fissati in modo che E(xo, r) x E(yo ,€) C A e che siano garantite delle stime che ci serviranno piu avanti. Per dimostrare il teorema
ricorreremo al teorema delle contrazioni nello spazio metrico completo

X = C%(B(xo.1).Blyo.€)) = {g € CO(Blx0.n): lg=Yolloo < €}

dove la distanza indotta é dalla norma ||f||» := max ) [f(x)|. Notiamo subito che

XEB(x=0,r
G(x0.Yo) = Yo OyG(x,y) = In—Boyf(x,y) e 0yG(xg.yg) = In—Bdyf(xp.yg) =In=Inh =On
e consideriamo la seguente applicazione (operatore) da X in sé
H:w+— H[w] dove HIw](x) := G(x, w(x)) perognix € E(xo, r)

Si noti che H[w] € una funzione continua in quanto composizione di funzioni continue: il teorema € dimostrato se riusciamo a provare che H € una contrazione.
Allora vale

[IHIW() =yoll2 = [Glx, wi)) =yoll2 < [[Glx, wlx)) = G(x, yo)ll2 + |GX, Yo) = Glx0. Yo)ll2 < 18/Gllec W) =Yg ll2 + [GX, Yo) = Glx0. Yo)ll2 < €
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a patto che r ed ¢ siano sufficientemente piccoli in modo da avere

€ 1
|G(x,yg) —Gl(x0.Yo)ll2 < 3 e 16yGlloo < 3

per continuita (si ricordi che 8y G € la matrice nulla nel punto (xg, yg)). Inoltre vale
1
IHIW](x) = HIVI(¥)||2 = [|G(x, w(x)) = Glx, v(x)) |2 < [[8yGlloc [[W(X) = V(x) [l < 5 [lw(x) = v(X)[]2

per quanto detto prima. Passando allestremo superiore per x € B(xg, ) otteniamo che H[w] € X, cioé che loperatore H agisce su X, e che H & una contrazione.
Questo implica lesistenza di un unico punto fisso, cioé di una funzione g € X che descrive (localmente) il luogo degli zeri di f.
Rimane da dimostrare che g & di classe C' in | = B(xg, r). Supponiamo che

det[oyf(x,y)] = O inl
(se non lo fosse dovremmo restringere l'intorno I). Dalla differenziabilita di f segue che per ogni € > O esiste 7(¢) tale che, se ||h|| < n(e) e | k|| < nle) allora
[[f(x+ h, g(x) + k) = f(x, g(x)) — OxF(x, g(x))h = By f(x, g(x))k[[2 < e (I[h]l5 +[k[2)

Sia per il momento Jyf(x, g(x)) = In. Posto k = (g(x + h) —g(x)), dato che per definizione f(x + h, g(x + h)) = f(x, g(x)) = O, se ||h||; < n(e) e ||g(x +h) —g(x)||, < nle)
otteniamo

(2.11) [lg(x+h)—g(x) + uf(x, gxDhll2 < e (|[hll2 + [Ig(x +h)—g(X)l|2)
Sia € =1/2in (2.11) e sia g < 71(1/2) tale che
lgx+h)=gx)l2 <n(/2)  per  |hlz <do
(si ricordi che g & continua e quindi un tale d¢ esiste sempre). Usando la disuguaglianza triangolare e la (2.11), per ||h|| < dg si ha
I+ ) =002 < g h) ~g00)+ . 0Nz I gDz < (il + g b~ 2) + s, g0l
che implica
(2.12) [lglx+h)=g(X)llz < [lhll2 (1+2{]}xf(x, gx))l| o)

Riprendiamo la (2.11). Siano € e n(g) i parametri che intervengono nella (2.11). Se || h||; < n(e)/((1+2]])f(x, g(x)) || o) allora, dalla (2.12), segue ||g(x+h)—g(x)||, < nl(e)
e dalla (2.1) e (2.12) ricaviamo

[1g0x+h) —g(x) + Jxf(x, g(x))hllz < 2ellhi[ (1+ [[JiFx, gx)l o0 )

che porta alla (2.10) nell'ipotesi Jyf(x, g(x)) = In. In generale, posto

Fx'y) = Oy F g K )
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siha

fix . g)=0 e | fx gx)=ln

E segue la (2.10) nel caso generale. ]

OSSERVAZIONE 2.55 Dal teorema delle funzioni implicite, siccome vale che

f(x,g(x))=O  perognix € |
e le funzioni coinvolte sono di classe C', dalla regola di derivazione delle funzioni composte abbiamo che

Bf(x, g(x)) +Jyf(x, g(x))og(x) =0 i=1..m
Se f ha regolarita maggiore di uno, g eredita la stessa regolarita di f. Le sue derivate successive si ottengono derivando la precedente identita e ricordando la
formula di derivazione delle funzioni composte.

TEOREMA 2.56 (della funzione inversa) Siaf: A — R, con A C R" aperto, una funzione di classe C' tale che
fly) =x e det [Jf(yo)] =0 conyg € A

allora esiste un intorno aperto A C R" diyg tale che f(A) é un aperto, f é invertibile in A e la funzione inversa é di classe c.

DIMOSTRAZIONE. Introduciamo la funzione
F(x,y) :=fy)—x (x,y)€R" x A
e osserviamo che F é di classe C' e verifica

F(x0.Yo) =flyg) =%0 =x0—X0 =0
JyF(x, y) =Jf(y) dacui det[]yF](xo .Yo) =det[Jfl(yg) = O

Quindi la funzione F verifica tutte le ipotesi del teorema delle funzioni implicite, che abbiamo dimostrato nelle pagine precedenti, nel punto (xg.yg) =
(flyg). Yo). per cui sappiamo che esistono due insiemi aperti B, intorno di xg, e |, intorno di yq, e una funzione g : B — | suriettiva di classe ', tali che

F(x,g(x)) =0 perognix € B
Notiamo inoltre che

F(x, g(x)) =f(g(x))—x=0 quindi f(g(x)) =x
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dunque la funzione g é la funzione inversa di f, cioé g(x) = f~'(x). Si noti che, dal teorema di derivazione delle funzioni composte, possiamo ricavare anche
JEN(X) =Jg(x) = =Dy F(x, gx)TF(x, g(x))
= ~DfEONTI(X) = ~0f(gbNT I = ~[If(g(x)T™

Tale relazione generalizza lespressione della derivata della funzione inversa che si incontra usualmente nei testi di analisi delle funzioni di una variabile reale.
]

2.7 massimi e minimi vincolati

Per risolvere completamente il problema della ricerca del massimo e del minimo di una funzione f in un compatto K dobbiamo studiare il comportamento
della funzione sulla frontiera di K cioé sul vincolo oK.

OSSERVAZIONE 2.57 Un caso relatvamente semplice da studiare & quando si ha a che fare con f : K — R una funzione di classe C' in A, aperto del piano
contenente K, compatto di R? tale che 8K = UL\‘:1 ¥ dove 7y, = Py ([ay, by]) & il sostegno di una curva regolare di parametrizzazione ¢y : [ay, b ] — R2 per ogni
k=1,...,N. I punti di massimo e minimo assoluti della funzione f ristretta sulla frontiera di K sono da cercarsi tra i punti di giunzione dei tratti reolari della frontiera
di K o tra i punti stazionari delle funzioni f(¢) : [a;, b, ] — R2, cioé

Pic=d@d,  Pac=d(by), .. Pic=d(t)
per ogni t; tale che %f(@((t)) " O,perk=1,..,N.

OSSERVAZIONE 2.58 Salendo di dimensione possiamo pensare che avere a che fare con un vincolo X sostegno di una superficie regolare di parametrizzazione
#(u) (con u € R C R2) contenuto in A C R3 insieme aperto e con una funzione f € C'(A). Cercare i punti critici vincolati della funzione f su ¥ equivale a studiare
la funzione composta F(u) = f(¢(u)) con u € R e a identificare i punti critici di questultima.

Dal teorema di derivazione delle funzioni composte abbiamo che

VF(u) = Vi(¢(u))]p(u)

Quindi il gradiente della funzione vincolata VF & nullo non appena il gradiente libero Vf appartiene al nucleo della matrice jacobiana della parametrizzazione
. E il nucleo di J¢ & sempre non banale, in quanto ¢ & unapplicazione da R? a valori in IR3, quindi ha nucleo almeno di dimensione 1.

In generale parametrizzare il vincolo, come fatto in questo caso e nel precedente, & un metodo che diventa sempre piu difficile da applicare al crescere della
dimensione e del numero di componenti regolari che formano il vincolo, quindi & necessario introdurre qualche idea nuova.

Se la frontiera di K & della forma 0K = {x € A : g(x) = O}, per cercare gli estremi di f sul vincolo 9K (cioé gli estremi vincolati) & utile conoscere il metodo dei
moltiplicatori di Lagrange che fornisce dei possibili candidati (si noti che non possiamo applicare il teorema di Fermat perché 0K non & mai un apertol).
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TEOREMA 2.59 (dei moltiplicatori di J.L. Lagrange) Siano f,g: A — R due funzioni di classe C', definite in A C R™ aperto, sia M = {x € A:g(x) =0} e
Xo € M tale che Vg(xg) = O (cioe xq € punto regolare per il vincolo). Allora xg € M & un estremo relativo (massimo o minimo) vincolato di f (rispetto al vincolo
M) se é un punto critico libero della funzione lagrangiana

L(x, ) = f(x) = Ag(x) (x,\) e AxR
cioé esiste \q tale che la coppia (xg, \g) € soluzione del sistema

Vi(x) = AVg(x)
gx)=0

In particolare la tesi equivale a chiedere che la matrice di ordine 2 x n

( Vi(xg) )=( Of(xg) .. Bnflxg)
Va(xg) diglxg) - Onglxo)

abbia rango 1, cioe che i due vettori gradiente siano paralleli in un punto xg € M.

DIMOSTRAZIONE. Sia, per esempio, dhg(xg) = O. Per il teorema delle funzioni implicite sappiamo che N1 pud essere visto, localmente, come grafico di una
funzioneh:B — R, con B=B(x;.r) C R exg = (x5 %0,n), definita implicitamente dalla relazione

g(x' h(x))=0  perognix’ € B C R™"
Sia¢g:(-<¢e) — B(x6, r) la parametrizzazione di una curva regolare tale che ¢(0) = xé), allora vale che P(t) = (¢(t), h(¢(t))) € la parametrizzazione regolare di

una curva su N1 passante per xq.
Poiché xg & un punto critico vincolato di f e g = O sul vincolo segue

f(P o Z@f(P ))9{(0) + Bnf(P(0)) dth(P(t))'t=o=Vf(x0)-s

d
8“’ ) Z &(P(0))¢;(0) + Ong(P(0) 4 (P(t))| = Vg(xo) - s

cons = (¢/(0), Vh(xg) -¢'(0)). Quindi abbiamo ricavato che i vettori Vf(xg) € Vg(xg) verificano alcune relazioni di ortogonalita. Siccome possiamo scegliere
¢ in modo che ¢/(0) = ; conii = 1,..., (n—1) entrambi i vettori soddisfano almeno (n —1) condizioni indipendenti di perpendicolarita, ed essendo vettori di R"
questo equivale a dire che sono paralleli (o proporzionali, come si preferisce). ]

In generale, nel caso di ottimizzazione su pit vincoli di equazioni g;(x) = ... = g, (x) = O, si pud provare il seguente enunciato
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TEOREMA 2.60 (dei moltiplicatori di J.L. Lagrange con piti vincoli) Siano f, g : A — R (coni=1,... k k < n) funzioni di classe C', A C R" aperto e M =
{x:g;(x) = 0,i=1.k}. Sia xg € M tale che la matrice jacobiana di ordine k x n

Jgixo) = (Bgilx0)), =1k j=T..n

abbia rango massimo k, cioe xq deve essere un punto di regolarita per il vincolo. Cio equivale a richiede che i vettori Vg;(xo), per j =1, ..., k, siano linearmente
indipendenti.
Allora xg € M e un estremo relativo (massimo o minimo) vincolato di f (con vincolo M) se é un punto critico libero della funzione lagrangiana

LA =F0= ) Agil) (g, ) € A x RK
i=1..k

cioé esiste un vettore \q tale che (xg, A\g) € soluzione del sistema
VE(x) = Mgh) = ) AVgix)
glx)=0 -

Cio equivale a richiedere che la matrice di ordine (k+1) x n

Vf(Xo) 61f(Xo) anf(Xo)
Vg (xo) o1gy(xo) - Ongi(xo0)

ng.(xo) o gk.(XO) ~ Ong(xo)

abbia rango k.
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3 MISURAE INTEGRAZIONE

3.1 La misura di Lebesgue

La teoria dell'integrazione secondo Lebesgue trattata nelle sezioni 3.1-3.5 € stata presa dal testo di E. Giusti [12]. Per le dimostrazioni dei risultati che abbiamo
solamente richiamato rimandiamo gli studenti interessati a questo testo.
Nel seguito chiameremo iperrettangolo o iperintervallo in R" il prodotto cartesiano di n intervalli, cioé un insieme del tipo

| = ﬁ[ai, b|]
i=1

definiamo, in modo naturale, la misura di un iperrettangolo nel seguente modo
n
mn() =m(D) = | [ (i —a) = (b1 —an)(by —ay)...on —an)
i=1

in modo da generalizzare la formula per il calcolo della misura di un usuale rettangolo. Ovviamente ogni iperrettangolo & individuato dagli iperpiani
{x=ar}  {x=bi}  {xpg=a} {xp=by} ... {xn=an}  {xn=bn}

Un'unione di iperpiani del tipo {x; = cl((j)}, conj=1,..,nek=1..N, verra detto reticolo. Un reticolo P divide R" in un numero finito di iperrettangoli piti un
numero finito di insiemi illimitati.
Chiameremo plurirettangolo lunione di un numero finito di iperrettangoli, se Y = l; Ul U... U Iy € un plurirettangolo determinato da un reticolo allora vale

m(Y) =m(ly) +... + m(ly)

Ci asterremo dal farlo, ma & possibile provare che la misura di un plurirettangolo non dipende dal reticolo che lo individua, inoltre tale misura non varia se il
reticolo viene raffinato aggiungendo altri iperpiani!

In generale due plurirettangoli Y e Z possono essere identificati dallunione degli iperrettangoli di uno stesso reticolo, da cui segue che Y U Z & ancora un
plurirettangolo e che

m(YUZ) <m(Y)+m(Z)
In particolare se YN Z = () allora
m(YUZ)=m(Y)+m(Z)

A questo punto possiamo introdurre la definizione di misura di Lebesgue limitatamente ad alcune importanti classi di insiemi.
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DEFINIZIONE 3.1 Dati A un insieme aperto e K un insieme compatto A, K C R", poniamo

m(A) =sup {m(Y) : Yplurirettangolo, Y C A}
m(K) =inf {m(Y) : Yplurirettangolo, Y D K}

OSSERVAZIONE 3.2 E possibile che m(A) = +c0, in ogni caso se A € limitato, quindi contenuto in un iperrettangolo, allora vale sempre che m(A) < +oc.
Si puo definire in maniera equivalente la misura dei compatti K

m(K) = inf {m(Y) : Yplurirettangolo, intY D K}
dove con intY siindica la parte interna di Y.

La precedente definizione ci permette di considerare degli insiemi arbitrari e di introdurre i seguenti concetti

DEFINIZIONE 3.3 Dato E C R" definiamo i concetti di misura esterna e misura interna (rispettivamente) di un generico insieme nel seguente modo

m(E) =inf {m(A) : Aaperto,AD E}
m(E) = sup {m(K) : Kcompatto, K C E}

OSSERVAZIONE 3.4 In realta la misura interna potrebbe essere "dedotta” dalla sola misura esterna, in modo da dover introdurre un solo oggetto, nel seguente
modo: dato un iperrettangolo R contenente E, si pone

m(E) = m(R)—m(R\E)

E possibile mostrare che tale definizione non dipende dalla scelta di R e che la misura interna cosi definita verifica tutti i precedenti enunciati, ma non seguiremo
questo approccio, cercando di fornire una presentazione meno generale ma piu costruttiva e chiara (almeno si spera...).

PROPOSIZIONE 3.5 Perogni E C R" vale
(3.1) m(E) <m(E)

DIMOSTRAZIONE. Siano K e A, rispettivamente, un compatto e un aperto tali che K C E C A. Sia R un plurirettangolo tale che K C R C A (si puo dimostrare
che esiste sempre un tale R). Dalla definizione 3.1 segue che

m(K) < m(A)

per ogni compatto K C E e aperto A D E. La disuguaglianza continuera a valere per lestremo inferiore sugli aperti e lestremo superiore sui compatti cioé la
tesi. |
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OSSERVAZIONE 3.6 Sia A un aperto. Dalla definizione si ha che m(A) = m(A). Inoltre, dato che i plurirettangoli sono insieme compatti, si avra

m(A) = sup {m(Y) : Yplurirettangolo,Y C A}
< sup {m(K) : Kplurirettangolo, Y C A} =m(A) < m(A)
(3.1)

Segue che m(A) = m(A) = m(A). Analogamente per i compatti K si ha che m(K) = m(K) = m(K).

DEFINIZIONE 3.7 Un insieme E C R" si dice misurabile secondo Lebesgue (semplicemente misurabile, nel seguito) se la sua misura esterna ed interna sono finite e
coincidono, e si pone

m(E) = M(E) = m(E)
e con m(E) indichiamo la misura di Lebesgue n-dimensionale dell’insieme E.

Dallosservazione precedente si ha che gli insieme aperti limitati e i compatti di R" sono misurabili. Dalla definizione di misura di un insieme segue che

TEOREMA 3.8 Un insieme E C R" e misurabile se e solo se per ogni ¢ > O esistono un aperto A ed un compatto K¢, con K¢ CE C Ac em(Ag) —m(Ke) < e.

TEOREMA 3.9 Siano E,F C R". Allora vale che m(E U F) < m(E) + m(F). Inoltre se EN F = () vale anche m(E U F) > m(E) + m(F).

TEOREMA 3.10 Siano E;, ..., E, C R" insiemi misurabili a due a due disgiunti. Posto E = U!‘:1 E; si ha che E e misurabile e vale
k
m(E)= ) m(E)
i=1

DIMOSTRAZIONE. Sia k = 2. Dato che E; N E; = (), dal teorema 3.9 si ha
m(E1 U Ez) = m(E1) + m(Ez)
Se k > 2 si procede per induzione. ]
TEOREMA 3.11 Siano E, F C R" due insiemi misurabili, allora risultano misurabili gli insiemi E UF, ENF e E\F.

DIMOSTRAZIONE. Essendo i due insiemi E ed F misurabili sappiamo che esistono due aperti A,A’ e due compatti K, K’ talicheKk CE CA K CFCA'e
m(A\K), m(A’\K’) < &/2. Osserviamo che A\ K e A"\ K’ sono misurabili perché sono aperti.
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Consideriamo gli insiemi aperti A\K' e A"\ K e i compatti K\ A’ e K"\ A. Si ha
K\A’ C K\F C E\F C A\F C A\K'
(A\K")\ (K\ A’) & un aperto; inoltre
(A\K)\(K\A') € (A\K) U (A"\K')
da cui segue che
m((A\K)\ (K\A)) < m(A\K) + m(A'\K') < &
Applichiamo il teorema 3.8 con K¢ = K\ A’ e A¢ = A\K’. Per costruzione K¢ C A¢ e, dato che
mM(Ac) —m(Ke) = m(Ac\Ke) < e

otteniamo la misurabilita di E\ F.
La misurabilita di E N F segue dalla relazione ENF = E\ (E\F).
Infine la misurabilita di E U F segue dal teorema 3.10 e dalla relazione

EUF=(ENF)U(E\F)U(F\E)
con ENF,E\F, F\E misurabili e disgiunti.

OSSERVAZIONE 3.12 Se E, F C R" sono due insiemi misurabili, dai precedenti risultati segue che
m (EUF) = m(E) + m(F\E)

siccome vale che F = (F\E) U (FNE) e che (F\E) N (F N E) = (), abbiamo anche che
m(F) = m(F\E) + m(F NE)

da cui ricaviamo che

mM(E) +m(F) =m(EUF) +m(FNE)

LEMMA 3.13 Sia {A;} una collezione numerabile di sottoinsiemi aperti di R", posto A = | ] A; vale

m(A) = m[Ein < im(Ai)
i=1

i=1
Se gli aperti sono inscatolati, cioe A; C A,q per ogni indice i, allora risulta

m(A) = lim m(A)

i—+o0
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PROPOSIZIONE 3.14 Sia {E;} una collezione numerabile di sottoinsiemi di R", posto E = | ;] E; vale
[ee] [ee)
m(E)ﬁ[UEi]s m (E)
i=1 i=1

Inoltre se gli insiemi sono a due a due disgiunti risulta

m(E) > ) m(E)
i=1

PROPOSIZIONE 3.15 Sia {E;} una collezione numerabile di sottoinsiemi inscatolati (cioé E; C Ej,q per ogni ), posto E = | J{ E; vale

m(E) = lm m(E;)

i—>+00

TEOREMA 3.16 (additivita numerabile della misura di Lebesgue) Sia {E;} una collezione numerabile di sottoinsiemi misurabili di R™ a due a due disgiunti.
Posto E = | ] E; si supponga che m(E) < +oc, allora vale

TEOREMA 3.17 (subadditivita numerabile della misura di Lebesgue) Sia {E;} una collezione numerabile di sottoinsiemi misurabili di R". Posto E = | J;}{ Ej,
si supponga che m(E) < +o0, allora vale

o0 o0
m(E)=m[UEi]g m (E;)
i=1 i=1
Se E; C E;,q per ogni indice i, allora risulta

m(E) = lim m(E;)

i—>+00

OSSERVAZIONE 3.18 Dal precedente enunciato segue un interessante risultato. Siano Eq, E,, E3, ... un'infinita numerabile di insiemi aventi misura nulla, allora abbiamo
che la loro unione E é ancora un insieme misurabile di misura nulla.
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Siccome un punto ha misura di Lebesgue nulla segue che ogni insieme numerabile ha misura nulla. In particolare @, l'insieme dei numeri razionali, come ogni suo
sottoinsieme, ha misura nulla.

OSSERVAZIONE 3.19 Linsieme di Cantor, introdotto dal matematico tedesco Georg Cantor (1845-1918), si ottiene per svuotamenti reiterati dell’intervallo [O, 1]. Al primo
passo si divide [0, 1] in tre intervalli di uguale lunghezza e si elimina quello medio aperto cioé (1/3,2/3). Si ottiene

G, =[0,1/3]ul2/3.1] con m(Cy) = 1—1 = z

Si applica la stessa procedura agli intervalli [0, 1/3] e [2/3, 1] cioé si dividono ambedue in tre intervalli uguali e si elimina quello intermedio aperto. Si ottiene
C, =[0,1/91U[2/9,1/31U[2/3,7/91U[8/9,1] con m(C)=1-s—===

Iterando questo procedimento si costruisce una successione di insiemi Cy, inscatolati cioé C,,; C Cp. Si definisce l'insieme di Cantor

C=ﬂCn

n>1

Linsieme C ha le seguenti proprieta:

i. C é chiuso perché ogni Cp, é chiuso

ii. C & non vuoto (infatti contiene O,1ma non solo....)

iii. C non contiene nessun intervallo

iv. C ha misura nulla. Infatti il suo complementare ha misura 1dato che al primo passo si toglie un intervallo di ampiezza 1/3, al secondo passo si tolgono due intervalli
di ampiezza 1/32,....al passo n si tolgono 2"~ intervalli di ampiezza 3" e cosi via. Dunque

1 2 4 8 2! o 2!
m([0,1]\C)= §+§+3—3+3—4+...+ 3n +..= Z

v. C ha tanti punti quanti l'intervallo [0, 1] cioe ha la potenza del continuo. Questo esempio ci mostra che gli insieme di misura nulla non sono solo quelli numerabili.
vi. ogni punto di C & un punto di accumulazione

vii. C non é un insieme misurabile secondo Peano-Jordan.

OSSERVAZIONE 3.20 Sia E un insieme misurabile. Allora E ha misura nulla se e solo se la misura esterna di E é nulla cioe, per ogni e > O é possibile trovare un aperto
Ac conE C A, tale che m(A) < e.

Finora abbiamo introdotto il concetto di misurabilita per insiemi le cui misure esterne ed interne sono uguali e finite, a questo punto discuteremo il concetto
di misurabilita per insiemi di misura infinita.
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DEFINIZIONE 3.21 Un insieme E C R" si dice misurabile se per ogni r > O l'insieme E N B(O, r) & misurabile, cioé se per ognir
m(ENB(O,r))=m(ENB(O,r))
e si definisce

(3.2) m(E) = (ENB(O,1))

lim m
r—+o0o

ILlimite (3.2) esiste sempre perché la successione m(ENB(O, r)) € monotona crescente. Tale limite potrebbe essere +cc.

La definizione appena enunciata ci dice che R" & misurabile, quindi, poiché E¢ = R™\ E, abbiamo che il complementare di un insieme misurabile & misurabile e
siccome gli aperti sono misurabili risultano misurabili anche i chiusi!
Tutti i risultati finora enunciati (additivita, subadditivita numerabile etc.) restano veri anche per insiemi misurabili (non solo di misura esterna finita).

OSSERVAZIONE 3.22 La famiglia degli insieme misurabili secondo Lebesgue é molto ampia: contiene [unione numerabile di insieme misurabili, contiene gli aperti e
i chiusi di R™. E spontaneo chiedersi se tutti i sottoinsiemi di R" sono misurabili. La risposta & negativa ma la costruzione di tali insiemi é laboriosa. Un interessante
esempio é stato fornito dal matematico italiano Giuseppe Vitali (1875-1932). Vitali dimostra un risultato pit forte: ogni insieme misurabile secondo Lebesgue, con misura
positiva, contiene un sottoinsieme che non é misurabile. Di questa questione pero non ce ne interesseremo.

Enunciamo, senza darne la dimostrazione, il seguente risultato sulla misura prodotto.

TEOREMA 3.23 Siano E C R" e F C Rk due insiemi misurabili, allora linsieme E x F C R"*k & misurabile e vale

Mp.k (E % F) =mp (E)my (F)

3.2 Misura di Lebesgue e misura di Peano-Jordan

Che relazione esiste tra gli insiemi misurabili secondo Lebesgue e gli insiemi misurabili secondo Peano-Jordan?
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DEFINIZIONE 3.24 Sia E C R" un insieme limitato. Si definisce misura esterna secondo Peano-Jordan dell’insieme E
mpy(E) =inf{m(P): P plurirettangolo,P D E}

si definisce misura interna secondo Peano-Jordan dell'insieme E
mPJ(E) =sup{m(P): P plurirettangolo,P C E}

Si dice che E é misurabile secondo Peano-Jordan se
mpy(E) = mp,(E)

Si nota subito che la definizione € analoga a quella di misurabilita secondo Lebesgue, ma con la differenza che gli aperti e i chiusi di Lebesgue sono sostituiti
da plurirettangoli. Osserviamo che la misura di un iperrettangolo 121 [, bj] coincide con la misura dell’ iperrettangolo aperto int erl1 (3, bj). Ne segue che
mpy(E) < m(E) < M(E) < fipy(E)

cioé se E & misurabile secondo Peano-Jordan allora lo € anche secondo Lebesgue.
OE é un insieme chiuso e quindi sempre misurabile secondo Lebesgue. Si ha la seguente interessante caratterizzazione degli insieme misurabili secondo
Peano-Jordan.

TEOREMA 3.25 Un insieme limitato E C R™ & misurabile secondo Peano-Jordan se e soltanto se la sua frontiera OE ha misura nulla secondo Lebesgue.

ESEMPIO 3.26 LinsiemeE = (D2 N[O, 1] x [0, 1] &€ misurabile secondo Lebesgue perché é un insieme numerabile. Non é misurabile secondo Peano-Jordan dato che
mp,(E) =0 mPJ(E) =1

Si poteva anche osservare che OE = [0, 1] x [0, 1] e dunque m(0E) =1> O.
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3.3 Lintegrale di Lebsgue

DEFINIZIONE 3.27 Dato E C R" indicheremo con il simbolo g la sua funzione caratteristica, cioé la funzione tale che

(x) = 1 sexeE
XeX=1 0 sexeE

Una funzione ¢ é detta semplice se &€ una combinazione lineare di funzioni caratteristiche di insiemi E,, C R" limitati e misurabili disgiunti a due a due

N
900 =) Aixg, ()
i=1

Lintegrale di una funzione semplice ¢ ¢, per definizione, il numero

N
N P(x)dx = Jmn d(x)dxqdxy...dxn = ; Am(E;)

E intuitivo che una funzione semplice si pud scrivere in piti modi come combinazione lineare di funzioni caratteristiche, in ogni caso & possibile dimostrare che
il suo integrale non dipende dalla rappresentazione scelta. E altrettanto semplice mostrare che dalla definizione segue che l'integrale di funzioni semplici &
unoperazione lineare e monotona, cioé

f () + BY()]dx = o f B(x)dx+ 3 J W(x)dx

per ogni o, 3 € R e per ogni ¢, 1 semplici, inoltre se ¥(x) < @(x), per quasi ogni x € R", vale

fw(x)dx < J¢(x)dx

Nel seguito indicheremo l'insieme delle funzioni semplici con il simbolo S(R™).
Sia f una funzione definita su R", limitata e nulla fuori di un compatto e indichiamo con con il simbolo S.(f) linsieme delle funzioni semplici che maggiorano
la f, cioe

S*(f) = {¢ € S(R") : p(x) > f(x)perognix € R"}
analogamente linsieme
S (f) = {4 € S(R") : ¢(x) < f(x)perognix € R"}

raccoglie le funzioni semplici che sono maggiorate dalla funzione f. Si noti che taliinsiemi non sono vuoti, visto che la f € limitata ed & nulla fuori di un compatto.
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DEFINIZIONE 3.28 Sia f: R" — R una funzione limitata e nulla fuori di un compatto, allora possiamo definire integrale superiore di f il numero

.[-+f(x)dx = inf{J-d)(x)dx 1P e &(f)}

e integrale inferiore il numero

j_f(x)dx = sup {J PY(x)dx:y € S_(f)}

La funzione f @ sommabile secondo Lebesgue (semplicemente sommabile, nel seguito) se i suoi integrali superiore e inferiore coincidono. Lintegrale della funzione
sommabile f si indica con uno dei seguenti simboli

j fdx J f(x)dx j f(x)dxydx;...dxn
[Rn

PROPOSIZIONE 3.29 Sia f: R" — R una funzione limitata e nulla fuori di un compatto, condizione necessaria e sufficiente affinché f sia sommabile é che
esistano due successioni di funzioni semplici {¢, } C S.(f) e {1} C S-(f) tali che

lim f [ () =Py (X)]dx = O
k—s+00

Questo equivale a dire che esistono i limiti degli integrali delle successioni di funzioni semplici e che

lim fqbk X)dx = llm WY (x)dx = jf x)dx

k—s+00

PROPOSIZIONE 3.30 Sia f: R" — R una funzione limitata e nulla fuori di un compatto, condizione necessaria e sufficiente affinché f sia sommabile é che
per ogni e > O esistano due funzioni semplici ¢ € S.(f) e ¢ € S_(f) tali che

0< j[cb(X)—?l/(x)]dX <e

Le definizioni introdotte sono formalmente identiche agli analoghi concetti studiati relativamente all'integrale secondo Riemann. Lunica differenza risiede nella
classe delle funzioni caratteristiche che generano le funzioni semplici: infatti lintegrale secondo Riemann prevede luso di funzioni caratteristiche di intervalli,
mentre Lebesgue ha usato la classe piu generale degli insiemi misurabili. Segue facilmente che ogni funzione limitata e nulla fuori di un compatto integrabile
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secondo Riemann & sommabile. Il viceversa non & vero, infatti linsieme Q N[O, 1] &€ misurabile secondo Lebesgue, da cui segue

IXQH[O,I] (x)dx=m(QnN[O0,1)=0

perd & anche vero che X, , ;; coincide con la funzione di Dirichlet, la quale non & integrabile secondo Riemann. Si ha il seguente fondamentale

TEOREMA 3.31 Sia f limitata e integrabile secondo Riemann nell'insieme E C R™ misurabile secondo Peano-Jordan. Allora f é integrabile secondo Lebesgue e i
due integrali coincidono.

A questo punto della nostra discussione introduciamo un nuovo concetto, ma partiamo da un nuovo insieme numerico: la retta ampliata
R={-oc}URU {+c0}
le operazioni di ordinamento, somma e prodotto vengono estese in maniera naturale (con eccezione della somma +oo — oo e dei prodotti £o0 - O).
DEFINIZIONE 3.32 Sia f:R"™ — R una funzione, f & detta misurabile se per ogni t € R risulta misurabile l'insieme
Fi={xe R":f(x) >t}

Segue dalla definizione che ogni funzione continua & misurabile, visto che gli aperti sono misurabili.

PROPOSIZIONE 3.33 Le seguenti affermazioni sono equivalenti
i F{ = {x € R":f(x) <t} émisurabile per ognit € R,

i. F{ = {x € R": f(x) < t} & misurabile per ognit € R,

iii. F{"" = {x € R" : f(x) > t} & misurabile per ognit € R,

iv. f @ misurabile.

LEMMA 3.34 Siano f,g: R"™ — IR due funzioni misurabili, allora & misurabile l'insieme

E={xeR":f(x) > g(x)}

Nel seguito indichiamo con M(R") l'insieme delle funzioni misurabili su tutto lo spazio.
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TEOREMA 3.35 Alcune proprieta delle funzioni misurabili:

i.Sef, g € M(R"), allora (f + g) e fg sono misurabili.

ii. Se {f,.} € M(R") allora sono misurabili le funzioni m(x) := kin[}‘\l fi(x)eM(x) := sup fi (x).
€

keN
iii. Se {f,. } € M(R") con | (x) < fi,1(x), allora sono misurabili le funzioni h(x) = liminf fk(x)eﬁ(x) = lim sup fi (x).
k—+00 k—s+00

OSSERVAZIONE 3.36 |l precedente enunciato possiede alcune interessanti conseguenze. Ponendo fo.1(x) = f(x) e f5 (x) = g(x) per ogni k € IN, laffermazione ii. prova
che le seguenti funzioni sono misurabili

h(x) = min{f(x), g(x)} H(x) = max{f(x), g(x)}

Inoltre il punto iii. mostra che se una successione di funzioni misurabili converge puntualmente allora tale limite puntuale é una funzione misurabile. In altre parole
lo spazio vettoriale delle funzioni misurabili é chiuso rispetto alla convergenza puntuale. In particolare, data f una funzione misurabile, risultano misurabili anche le
funzioni

f*(x) = max{f(x),0}  f(x) = max{—f(x),0}

dette, rispettivamente, parte positiva e parte negativa della funzione f. Si noti che vale f(x) = *(x)—f" (x) (la parte negativa di una funzione é una funzione non negatival)
il che implica che se una funzione f ha le parti positiva e negativa f* e f~ misurabili, allora f & misurabile.

TEOREMA 3.37 Una funzione f &€ misurabile se e solo se é misurabile il suo sottografico, cioé linsieme

F={lx,y) e R"x R:y < f(x)}
Ci domandiamo a questo punto che relazione intercorre tra funzioni misurabili e funzioni sommabili. Un primo risultato afferma che
TEOREMA 3.38 Sia f una funzione limitata e nulla fuori di un compatto K, allora f &€ sommabile se e solo se & misurabile.

Data una funzione f € M(R") possiamo introdurre i seguenti insiemi

Fo={x,y) ER"xR:0 <y <f(x)}
Fo={x,y) ER" x R: 0 <y < f(x)}

TEOREMA 3.39 Sia f una funzione misurabile, limitata e nulla fuori di un compatto K e non negativa, allora gli insiemi Fq e ) sono misurabili e vale

Mn.1(Fo) = mn+1(.7:6) = Jf(x)dx
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A questo punto dobbiamo lavorare un po' per estendere il nostro concetto di integrale che stiamo costruendo. In particolare vogliamo poter considerare insiemi
"generici” (non solo compatti) e funzioni non necessariamente limitate.

DEFINIZIONE 3.40 Sia E C R" un insieme limitato e f : E — R una funzione limitata. Diremo che f € sommabile in E se

Fel(x) = f(x) sexcE
EX") 0 sexeE

é una funzione sommabile in R™. In tal caso il numero reale ffde si chiama integrale di f su E e si indica con il simbolo

J¥mm=fﬂnm%wn
E E

Lintegrale su E eredita le proprieta dell'integrale su tutto R" discusse precedentemente, opportunamente riscritte. Per esempio, supponendo che E sia
misurabile, abbiamo che f & misurabile in E se e solo se & misurabile l'insieme

Fi={x € E:f(x) >t}

per ogni t € R. In particolare il teorema 3.38 si legge nel seguente modo: sia E C R" misurabile e limitato e f : E — R una funzione limitata, allora f &

sommabile in E se e solo se &€ misurabile in E.
Adesso cercheremo di rimuovere lipotesi di limitatezza dalle richieste sulla funzione integranda. Cominciamo considerando il caso di funzioni non negative.

DEFINIZIONE 3.41 Sia E C R" e f: E — R una funzione non negativa. Diremo che f € sommabile in E se
i. perognit > O la funzione T¢(f)(x) = min{f(x), t} € sommabile in ENB(O, t)

ii. vale che

lim J Te(F)(x)dx < +00
ENB(O,1)

t—r+o0
IL limite nella precedente formula sara chiamato integrale di F esteso ad E, si noti che la non negativita di f implica la monotonia della funzione

Fm=f Te(f)()dx
ENB(O,t)

e quindi lesistenza del limite. Diremo che l'integrale di f su E & infinito quando, soddisfatta la richiesta i., il precedente limite diverge. Si noti che se E ed f sono
limitati la definizione introdotta coincide con la precedente definizione, infatti esiste tg sufficientemente grande tale che

F() = J f)dx  Vt>to
E
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OSSERVAZIONE 3.42 E possibile mostrare che, supponendo f non negativa e sommabile su E, vale

J-f(x)dx= lim lim Ti(f)(X)dx = lim lim Ti(f)(x)dx
E r

—rroot—+00 JENB(O 1) t=—=+00r—=+20 JENB(O,1)
Vale la seguente generalizzazione del teorema 3.39
TEOREMA 3.43 Una funzione f : E — IR non negativa € sommabile su E se e solo se gli insiemi

Fo={lx,y) EExR:0<y<f(x)}
Fo={lx,y) EExR:0 <y <f(x)}

sono misurabili in R™' e hanno misura finita, nel qual caso si ottiene
JRCESESELES

A questo punto possiamo introdurre la definizione di integrale per funzioni di segno qualsiasi

DEFINIZIONE 3.44 Diremo che f: E C R" — R € sommabile su E se sono sommabili entrambe le seguenti funzioni non negative
f*(x) = max{f(x),0} f~(x) = max{—f(x), O}

esiporra

J- f(x)dx = f f"(x)dx—f f~(x)dx
E E E

Dalla discussione fin qui fatta possiamo dedurre lesistenza delle seguenti tre classi di funzioni

i. funzioni misurabili su E,

ii. funzioni integrabili su E, cioé funzioni misurabili per le quali almeno una tra f* e f~ ha integrale finito,

iii. funzioni sommabili su E, cioé funzioni misurabili per le quali sia f* che f~ hanno integrale finito.

Sinoti che le tre classi sono inscatolate e che, a differenza delle altre due classi, l'insieme delle funzioni integrabili non é chiuso rispetto alloperazione di somma.

TEOREMA 3.45 Sia f: E — R una funzione sommabile su E C R™ misurabile, posto
Fico ={x € E:f(x) = +o0} F_oo = {x € E: f(x) =—c0}

si ha che m(F.oo) = m(F-~) = O.
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DIMOSTRAZIONE. Per definizione vale che

Foo = [ ) Fi

k>0
il che mostra che l'insieme & misurabile. Per r > O sia x;(x) la funzione caratteristica dell'insieme F., N B(O, r) allora segue che
(%) > kxr(x) vke N

quindi abbiamo che

M(Fiso NB(O, 1)) = jxr(x)dx < %j f*(x)dx
E

passando al limite per k — +oo si ottiene che m(F.oc N B(O, r)) = O per ognir > O, da cui la tesi. Analogamente per F_. ]

In seguito diremo che una proprieta vale quasi ovunque (e scriveremo q.0.) in E se vale per tutti gli x € E tranne al pit per quelli di un sottoinsieme di E avente
misura nulla. Adottando questa convenzione possiamo enunciare il risultato precedente dicendo che una funzione sommabile su E € finita quasi ovunque in E.

PROPOSIZIONE 3.46 Sia E C R" misurabile e f : E— IR una funzione sommabile e non negativa, allora

j f(x)dx=0 seesolose fx) =0 qo. xcE
E

DIMOSTRAZIONE. Se la funzione & quasi ovunque nulla & immediato mostrare che l'integrale € nullo, quindi concentriamoci nel provare 'implicazione opposta,
poniamo

Fo={xcE:f(x)>0}= ﬂ Fi/k
k>0

siccome f(x) > 1/kin Fy, segue che
1m(FVk) < j f(x)dx=0
k E

quindi abbiamo ottenuto che m(Fy,) = O per ogni k, da cui segue che m(Fgp) = O. ]

3.4 Teoremi di passaggio al limite

Nel capitolo ?? abbiamo visto che, data una successione di funzioni, se si vuole passare al limite sotto segno di integrale bisogna aggiungere un'ipotesi supple-
mentare: la convergenza uniforme della successione di funzioni. Questo risultato € lunico che si puo ottenere nellambito dell'integrale di Riemann. Nellambito
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della teoria di Lebesgue si pud passare al limite sotto segno di integrale in ipotesi molto generali. E questa la superiorita e la potenza della teoria di Lebesgue
rispetto a quella di Riemann. Un primo risultato interessante & dovuto a Beppo Levi.

TEOREMA 3.47 (della convergenza monotona (B. Levi)) Sia {f\ } una successione di funzioni integrabili su un insieme misurabile E tali che
0 <fi(x) < fy(x) <f3(x) <. go. x€E

postof(x) = lim fi(x), vale
k—+o00

jf(x)dx= lim J‘fk(x)dx
E k—s+00 JE

DIMOSTRAZIONE. Consideriamo gli insiemi
Fok={(xy) eExR:0 <y <fi(x)} Fo={(x,y)eExR:0<y<f(x)}

Gli insiemi F, sono misurabili perche le f, sono integrabili. Si ha, dalla monotonia,

00
Fo01 € Fo2 €. © Fok € oo fO:U}—Ok
k=1

Per il teorema 3.17 anche Fq € misurabile e si ha
Mpy (.7:0) = lim mn+1(,7-"0k)
k—o0

La tesi segue dal teorema 3.43. ]

Un risultato analogo vale per successioni decrescenti.

PROPOSIZIONE 3.48 Se {f| } é una successione di funzioni non negative, integrabili su un insieme misurabile E, allora

fi(x)dx = J fi(x)dx
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TEOREMA 3.49 (lemma di Fatou) Sia {f,} una successione di funzioni integrabili su un insieme misurabile E, tali che f(x) > ®(x) g.o. in E con ® funzione
sommabile in E, allora

(3.3) liminf f (x)dx < liminf J fi (x)dx
E

E k—>+00 k—+00

Analogamente, se W(x) é una funzione sommabile in E e se fi (x) < W(x) g.o. in E. Allora

(3.4) limsupf,(x)dx > lim supf fi (x)dx
E

Ek—+c0 k—s+0c0
DIMOSTRAZIONE. Sia hy(x) = fi (x) —®(x) > O per quasi ogni x € E. Definiamo
(x) =infh
g(x) inf k(x)

Si ha che g (x) & una successione monotona crescente di funzioni integrabili e, se j <k, allora g (%) < hi(x). Per la proprieta di monotonia dell'integrale,

-
gj(x)dx < J- hy (x)dx perogni k> j
E E

J

Perk — +co

r

gi(x)dx < liminf | hy(x)dx
k— o0

JE E

Per j — +oo applichiamo a g;(x) il teorema di Beppo Levi
J lim gi(x)dx = lim g]-(x)dx < lminf | hy(x)dx
Ej—o0 j—oo JE k—oo JE

Inoltre, dallessere gj(x) una successione monotona crescente, si ha

lim g]-(x) = supg]-(x) = supinfhy(x) = liminfhy(x)
j—o0 j i k=i k—o0

Segue (3.3). In maniera analoga si prova (3.4). []
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TEOREMA 3.50 (della convergenza dominata (H. Lebesgue)) Sia h una funzione non negativa e sommabile su un insieme misurabile E e sia {f,} una
successione di funzioni integrabili su E tali che

f®) <h(x) qo.xeE

fx)= lim fi(x) gox €E

k—+o00

Allora f é sommabile e vale

(3.5) jf(x)dx= lim J‘fk(x)dx
E k—s+00 JE

DIMOSTRAZIONE. Dato che —h(x) < fi(x) < h(x) per quasi ogni x € E, possiamo applicare il lemmma di Fatou

J f(x)dx < lim inff fi(ddx < lim supf fi(x)dx < J f(x)dx
E (3.3) k=oo JE (34) k—oo JE E

cioé la tesi. []

EsempI. Consideriamo la successione di funzioni f (x) = kxe™®* con x € [0, 1]. Si ha convergenza puntale a f(x) = O. La convergenza non & uniforme dato che

1
sup [f(X) = f(x)| = sup fi (x) = fi (1/k) = = /> O
[0.1] [0.1] e

quindi non possiamo applicare il teorema di passaggio al limite ??. E possibile invece applicare il teorema 3.50 dato che
0 <fi(x) <h(x)=e™

e h(x) = e™' & sommabile in [0, 1]. Alla luce di questo esempio possiamo dedurre facilmente dal teorema di convergenza dominata il seguente

PROPOSIZIONE 3.51 Sia E un insieme misurabile con misura finita. Sia fy una successione di funzioni misurabili in E tali che |f| (x)] < M per quasi ognix € Ee
klim fi (x) = f(x) per quasi ogni x € E. Allora vale (3.5).
—00

Sia data una funzione f(x, t) definita in E x A, integrabile in E per ogni t € A. Consideriamo la funzione definita da integrale

F(t) = J f(x, t)dx
E

Dal teorema di convergenza dominata & possibile dimostrare importanti proprieta di F(t).
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TEOREMA 3.52 Sia f(x, t) continua in t per quasi ogni x € A e sia g(x) sommabile in E tale che |f(x, t)| < g(x) per ogni t € A e per quasi ogni x € E. Allora F(t) e
continua in A.

TEOREMA 3.53 (derivazione sotto il segno di integrale) Sia f(x, t) una funzione sommabile in E per ogni t € A e di classe C'(A) per g.o. x € E e supponiamo
che esistano k +1funzioni sommabiliin E g, g;, ..., g tali che, per ogni t € A e per q.o. x € E, risulti

0] <go)  [fet)| <g()  j=1,..k

Allora F(t) é di classe C'(A) e vale

atiF(t) = J thf(x,t)dx j=1..k
E

OSSERVAZIONE 3.54 La tesi del precedente risultato pud essere riscritta come

o j f(x, t)dx = f atjf(x, t)dx
E E
OSSERVAZIONE 3.55 Consideriamo il caso particolare in cui E x A = (a,b) x (c,d) C R2. In base al teorema di derivazione sotto il segno d'integrale, la funzione
b
F(t) = j f(x,t)dx te(c,d)
a
¢ una funzione C'((c, d)) e si ha

b
F/'(t) = f Bif(x, t)dx

Supponiamo ora che anche gli estremi d’integrazione dipendano dalla variabile t. Il teorema fondamentale del calcolo integrale si estende alla integrazione secondo
Lebesgue: se g € sommabile in (a, b) allora

t
H(t) = f g(x)dx

é derivabile g.o. in (a, b) e si ha
H'=f qo. in (ab)

Consideriamo la funzione

B(t)
F(t) = J f(x, t)dx
a(t)
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con a(t) e B(t) funzione definite in [c, d], a valori in [a, b]. Sia
\"
d(u,v,t) = J. f(x, t)dx
u

Il teorema fondamentale del calcolo integrale assicura lesistenza delle derivate parziali
Au®(u,v,t) =—f(u,1) AP (u,v,t) =f(v,1)

Inoltre, per teorema 3.53, esiste
\"
O P (u,v,1) = J- Oef(x, t)dx
u
Di conseguenza, se o, 3 € C'([c, d]), applicando il teorema di derivazione delle funzioni composte

%F(t) = %Cb(a(t)ﬁ(t), 1) = BuP (a(t), B(1), ) (1) + By P (a(t), B(t), B (1)
+ 0 ®(alt), B(1), 1)

da cui segue

B(t)
(3.6) %F(t) = f o Af(x, t)dx + f(B(t), )6’ (t) — F(a(t), t)’ (1)
alt

3.5 Il calcolo degli integrali

In questa sezione ci occupiamo del calcolo effettivo degli integrali. Fondamentale € il teorema di Fubini che ci permette di ridurre il calcolo di un integrale

multiplo al calcolo di successivi integrali unidimensionali. Iniziamo considerando il calcolo della misura di insiemi misurabili.

TEOREMA 3.56 Sia E C R? un insieme misurabile del piano. Per ogni x € R, siano Ex = {y € R| (x,y) € E} le sezioni di E con le rette parallele allasse'y, si ha

(3.7) mz(E)=j mq(Ex)dx
R

Sia E C IR3 un insieme misurabile dello spazio. Per ogni z € R, siano E; = {(x,y) € R2|(x,y, z) € E} le sezioni di E a quota z, si ha

m3(E) = J\ mz(Ez)dZ
R
Analogamente, per ogni (x,y) € RZ, siano Exy = {z € R| (x,y,2) € E}, siha anche

m3(E) = J- m1(EXy)dXdy
R2

Valgono formule analoghe scambiando il ruolo delle variabili x, y, z.
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DIMOSTRAZIONE. Ci limitiamo a dimostrare la (3.7). Il primo passo consiste nel dimostrare la (3.7) per un aperto A. Sia Yj una successione di rettangoli
inscatolati Yy C Y, C... taliche A={J.3 Y. Per ladditivita numerabile della misura

(3.8) my(A) = lim m,(Y,) = lim J.m1(YkX)dx
k—o0 k—oc0

dove lultima uguaglianza segue dalla ovvia validita della (3.7) per i rettangoli. D'altra parte si avra anche

Yix C Yoy C ... che implica my(Yqy) < my(Yqy) <.

(o]
Ax:Uka che implica m1(AX)=lengom|(YkX)
k=1

Siamo nelle condizioni di applicare il teorema di Beppo Levi alla successione {m;(Y},)}

fm1 (Ay)dx = lim jm1 (Yio)dx
k—o0

che, insieme alla (3.8), conclude questo primo passo.

Il secondo passo consiste nel dimostrare la validita della (3.7) per i compatti K. La dimostrazione & analoga a quella degli aperti con la differenza che bisogna
considerare rettangoli inscatolati Z; O Z; O ... che contengono K e K= (5, Zy.

Terzo passo: consideriamo un insieme misurabile E con misura finita. Per il teorema 3.8 possiamo costruire una successione di aperti A; e una di compatti K;
tali che

K1CK2C...CK]'CECA]'C...CAzCAq Vj

| de ]—00

Risultera K, C Ex C Aj . Dato che la (3.7) vale per gli aperti e i compatti si ha
mz(AJ) = Jm1 (AJX)dX mz(KJ) = Jm1(l(lx)dx

da cui deduciamo che
lim J(m1 (Aj)dx—mq(Kix))dx = O
J—00

Consideriamo la successione di funzioni non negative fj(x) = my(A;,) —m1(Ky). Per costruzione si ha Aj, \Kjx C Aj_1 x \Kj—1 x da cui segue che fj(x) < fi_(x) cioé la
successione & monotona decrescente. Questo ci consente di applicare il teorema di Beppo Levi e ottenere

lim ij (x)dx= | lim fj(x)dx =0

151



AV EM

Per la proposizione 3.46 si ha
lim f]-(x)dx =0 ovvero lim m1(AJ-X) = lim m1(l(jx) go.x€R
J—o0 J—00 J—o0

che, ricordando le relazioni Kj, C Ex C Ay, implica la misurabilita di Ex per quasi ogni x.
Ricordando la definizione di integrale superiore e inferiore si ha

mz(KJ) = jl’Tﬁ(KlX) < J_ m1(Ex)dx < J-+ m1(EX)dx < J-m1 (A]X)dX = mz(A])

Passando al limite per j — oo si ottiene la (3.7) per insieme di misura finita
Se m;,(E) = +oo, consideriamo l'insieme limitato ER = ENB(O, R). La funzione m1(E§) € misurabile e quindi anche la funzione my(Ex) = supg~. ¢ m1(E)Ff) lo &. Per
il passo precedente

my(ER) = j mq(ER)dx < j My (Ex)dx

la tesi si ottiene per R — . n
In seguito indicheremo m;(E) anche come area(E) e m3(E) come vol(E).
TEOREMA 3.57 (di G. Fubini) Sia f(x, y) una funzione sommabile in R2, allora

i. perq.o.x € R la funzione y — f(x,y) € sommabile in R,

ii. lafunzione g(x) = fR f(x, y)dy é sommabile in R,

iii. J- f(x,y)dxdy=f (j f(x,y)dy)dx
RR2 R\JR

La tesi resta vera scambiando il ruolo delle variabili x e y nelle affermazioni precedenti (e anche in dimensioni pit alte, con le debite correzioni).

DIMOSTRAZIONE.  Sia f(x,y) > O. Nel caso generale bastera considerare f* e . Per il teorema 3.43 il sottografico della funzione f
Fo={(x,y) eExR:0<z<f(x,y)}

€ misurabile e
m3(Fo) = j f(x, y)dxdy
R2
Inoltre, per il teorema 3.56

Fox = {(y, 7)eR?:(x,y.2) € }'o} = {(y,z) eR?:0<z< f(x,y)}
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€ misurabile per quasi ognix € R e
m3(Fo) =J my (Fox)dx
R

Laiii. segue tenendo presente che, sempre per il teorema 3.43,

m;(Fox) = jm f(x,y)dy
| |

Il teorema di Fubini consente di scambiare lordine di integrazione a condizione che si sappia che f € sommabile. Il teorema di Tonelli permette di stabilire la
sommabilita di f dallesistenza di uno degli integrali iterati

TEOREMA 3.58 (di L. Tonelli) Sia f misurabile in un insieme misurabile E, non negativa per quasi ogni x. Se uno dei tre integrali

_J;Rz f(x, y)dxdy fR (J-TR f(x,y)dy) dx J;R (fR f(x,y)dx)dy

esiste allora esistono anche gli altri e coincidono.
Se E é un rettangolo [a, b] x [c, d] e f(x, y) una funzione sommabile in E, dal teorema di Fubini segue

TEOREMA 3.59 (formula di integrazione sui rettangoli) Sia f(x,y) una funzione sommabile nel rettangolo R = [a, b] x [c, d]. Allora
i. se per g.o. x € [a, b] esiste G(x) = ch f(x, y)dy allora la funzione G(x) e sommabile in [a, b] e si ha

b b d
-[f f(x, y)dxdy = J G(x)dx = j (J f(x,y)dy] dx
R a a C

ii. se per q.o.y € [c,d] esiste F(y) = fab f(x, y)dx allora la funzione F(y) € sommabile in [c,d] e si ha

d d b
JL f(x, y)dxdy = J F(y)dy = J [J- g(x, y)dx] dy

Se é possibile applicare entrambe le formule, per esempio se f € CO(R), allora si ottengono le seguenti formule di scambio dellordine d'integrazione

b d d b
J-j f(x, y)dxdy = J dxj f(x,y)dy = j dyJ f(x, y)dx
R a C C a

DIMOSTRAZIONE. Sia

f(x,y) xeR

Fon=l 767 yer
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Per il teorema di Fubini

Jf f(x, y)dxdy = ff *(x, y)dxdy = f dxj *(x, y)dy
R R2 R R
d b d
=.[ dxf f*(x,y)dy=f dxf f(x,y)dy
R C a C

Analogamente per la ii. |

Le due formule significano che il calcolo di un integrale doppio su un rettangolo si riduce al calcolo di due integrali di funzioni di una variabile. La riduzione di
un integrale doppio a due integrazioni unidimensionali successive funziona anche per insiemi piu generali.

DEFINIZIONE 3.60 Un insieme E C IR? si dice normale rispetto allasse x se
E={(xy) R’ a<x<b al)<y<pK)}

con a(x), B(x) € CO([a, b]), a(x) < B(X) (cf figura 3).
Un insieme E C IR? si dice normale rispetto allasse y se

E={(x.y)eR? c<y<d 4ly)<x<dly)}
con y(y),d(y) € CO([c.d]), Y(y) < 6(y) (cf. figura 4).

La frontiera di un dominio normale rispetto ad un asse, per esempio lasse x, € costituito dall'unione dei grafici di a e 3, che sono insiemi di misura nulla perche
le funzioni sono continue, e da due segmenti che hanno ugualmente misura nulla. Ne segue che m(0E) = O e quindi i domini normali sono misurabili secondo
Peano-Jordan (e quindi secondo Lebesgue).

TEOREMA 3.61 (Formule di integrazione su domini normali) Sia E un dominio normale rispetto allasse x. Se f @ sommabile in E allora

b B(x)
(3.9) Jf f(x, y)dxdy = J- dxj f(x, y)dy
E a a(x)

Se, invece, E € un dominio normale rispetto allasse y allora

d a(y)
(3.10) Jf f(x, y)dxdy = J‘ dyJ f(x, y)dx
E C ¥(y)

DIMOSTRAZIONE. Come nel caso dell'integrazione sui rettangoli, la tesi segue applicando il teorema di Fubini alla funzione

roon-{ O o
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y = a(x)
y E
y =06(x)
a b
X
Figura 3: Dominio normale rispetto allasse x
d IR4
x=7(y) x=4(y)
C -+
X

Figura 4: Dominio normale rispetto allasse y
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OSSERVAZIONE 3.62 Consideriamo il triangolo T = {(x,y)| a <y < x < b}. Possiamo pensare T come un insieme normale rispetto allasse x con a.(x) = a e B(x) = x
oppure come un dominio normale rispetto allasse y con ~y(y) = y e 6(y) = b. Applicando le formule (3.9) e (3.10) si ottiene la seguente formula nota come formula di
inversione di Dirichlet

b X b b
(3.11) JI f(x,y)dxdy=f de f(x,y)dy=J dyf f(x, y)dx
T a a a y

Il teorema di Fubini ammette una generalizzazione a integrali multipli.
DEFINIZIONE 3.63 Un insieme E C R3 si dice normale rispetto allasse z se
E={(xy.2 € R3:(x,y) €D, h(xy)<z<gxy)}

conh,g € CO(D), D c RZ misurabile. D altro non & che la proiezione di E sul piano xy. In maniera analoga si danno le definizioni di domini normali rispetto allasse x
oy.

OE é costituito dai grafici delle superfici z = h(x,y) e z = g(x,y), e dai lati di una superficie cilindrica, che hanno tutti misura nulla. Ne segue che m(0E) = O e
linsieme E & misurabile.

TEOREMA 3.64 (Formule di integrazione su domini normali) Sia E C R3 un dominio rispetto allasse z. Se f é sommabile in E allora

glx.y)
(3.12) IJ] f(x,y, z)dxdydz = jj dxdy—f f(x,y, z)dz
E D h(x,y)

La (3.12) é detta anche formula di integrazione per fili. Se D é a sua volta un dominio normale rispetto ad un asse, allora per il calcolo dell'integrale esteso a D
si puo ricorrere alla (3.9) o (3.10). Valgono formule analoghe permutando le variabili x, y, z.
Concludiamo questa sezione con un teorema che si ottiene dal teorema 3.56

TEOREMA 3.65 Sia E C R3 un insieme misurabile delimitato dai pianiz=aez=bcona < b. Fissato z € [a, b], sia
Ez={(x,y)l(x,y,2) € E}

la proiezione di E sul piano a quota z. Se f @ sommabile in E allora

b
(3.13) J:U- f(x,y,z)dxdydz = J dz J‘f f(x,y, z)dxdy
E a E,

La (3.13) & nota come formula di integrazione per strati o sezioni.
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4 ANALISI INTEGRALE

Scelta della notazione sulle coordinate

4.1 integrali lungo curve

Sia x : [a,b] — R3 una curva regolare e f : A C R3 — R una funzione scalare definita su un aperto A contenente il supporto della curva, cioé tale che
v = x([a, b]) C A. Supponiamo che f sia continua. Allora possiamo definire l'integrale di linea (o integrale curvilineo di prima specie) nel seguente modo

b
f Fx)dis = f Flx(t) [ ()t
¥ a

Se x(t) = (x1(t), x2(t), x3(t)), t € [a, b], si pud scrivere
b
j f(x)ds = J f(x1(t), x5 (1), x3(t)) [|X{(t)|2 + \x’Z(t)|2 + |xg(t)‘2]1/2 dt
¥ a

Per ogni f, g funzioni scalari definite in A C R3, v, 7,7y curve regolari il cui supporto & contenuto in Ae o, 8 € R, valgono le seguenti proprieta

i. linearita: J (af+Bg)ds = a J. fds + 5J gds,
v vy v

ii. additivita: J fds = J fds + j fds,
MUY2 " "2

iii. se due curve sono equivalenti, cioé y; ~ 7y;, vale J- fds = J‘ fds.
" oz

Sottolineiamo il fatto che lintegrale curvilineo della funzione f = 1 rappresenta esattamente la lunghezza della curva .
Se interpretiamo -y come un filo materiale con densita lineare dimassam:y C R3 — R, m > 0, allora lintegrale curvilineo

b
M= J mds = j m(x(t))||x'(t)||dt
¥ a

rappresenta la massa totale del filo. Il centro di massa o baricentro del filo ha coordinate B = (B4, B, B3), dove vale

b b b
B, - %J xqmds = %f X (OmMX@)[X (@)t By = %f xomds = %f X (Om(O) [X (Ot B - &j xgmds = %f x3(Om(x(O)][x' (0)]|dt
Y a Y a Y a

Ilmomento di inerzia di -y rispetto ad una rettar &

I = J d?(p, nm(p)ds
vy
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dove la funzione d(p, r) = minger [p—q| € la distanza del punto p dalla rettar.
Siax: [a,b] — IR3 una curva regolare di estremi Pg = x(a) e P; = x(b) e sia F : A € IR3 — IR3 un campo vettoriale continuo definito su un aperto A contenente
il supporto della curva. Allora possiamo definire l'integrale curvilineo (di seconda specie)

b
(4.0) f F-Tds =j F(x(t)) - X" (t)dt
¥ a

dove T ¢ il versore tangente alla curva, orientata nel verso che va da Pg a Py. Lintegrale curvilineo di seconda specie rappresenta il lavoro W che il campo F
compie per spostare una particella da Pg a P; lungo +y. La presenza del versore tangente T indica la dipendenza dallorientazione della curva.
Se -y & una curva chiusa si parla di circuitazione del campo F (lungo ) e si usa il simbolo

SBF-Tds
v

4.2 campi vettoriali e forme differenziali

Sia F(x) = F(xq, X2, X3) = (F1(x), F2(x), F3(x)) un campo vettoriale di classe C'(A) (nel seguito supporremo sempre che A C R3 sia un aperto connesso). Al campo
vettoriale F possiamo associare la seguente espressione formale

w =Fq(x,y,z)dx + F5(x,y,z)dy + F3(x,y, z)dz

che chiameremo 1-forma differenziale, diremo le funzioni Fy, F,, F3 coefficienti della forma differenziale. Viceversa ad ogni forma differenziale possiamo as-
sociare un campo vettoriale che ha per componenti i coefficienti della forma. Quindi in seguito parleremo indifferentemente di campo vettoriale F o della
1-forma differenziale w. Linsieme delle forme differenziali (con coefficienti di classe C'(A)) costituisce uno spazio vettoriale sul campo dei numeri reali.

Si definisce l'integrale curvilineo di w lungo <y

b
fw{ F(6(0) - ¢/ (Ot
¥ a

Lintegrale curvilineo di w non € altro che l'integrale curvilineo di seconda specie del campo vettoriale F = (Fy, F5, F3) lungo +.
Per ogni o, 8 € R, wy, w, forme differenziali e 1,7y, curve regolari a tratti abbiamo

i. linearté:f (aw1+5w2)=aj w1+5j w3,

" " "
ii. additivita: J w= J w+ J w,
MUY2 M 2

iii. se due curve sono equivalentivale | w= J- w, se le curve hanno lo stesso orientamento e J- W= —J. w se hanno orientamento opposto.
Y "2 Y2 "2
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ESEMPIO 4.1 Il campo di forze gravitazionale generato da un corpo puntiforme di massa m posto nellorigine, che agisce su una particella puntiforme di massa
M posta nel punto (x, Yy, z) € dato da

GMmx  GMm 2,,2,,2]"2
Foe e (X1,%2,%3) dOVGl’-||XH-[X1+X2+X3]

G é la costante di gravitazione universale. Sia ¢ : [a,b] — R3 una curva regolare (o regolare a tratti) di rappresentazione parametriche ¢(t) = (x4(t), X (t), x3(t)).
Il lavoro compiuto per spostare una particella lungo ¢ dallestremo ¢(a) all'estremo ¢(b) € dato da

1 1
“=GMmhwmm'nawd

b x4 (t)x](t) + X2(t)xlz(t) + X3(t)xl3(t) dt=GMm Jb d :

b
W= f F(o(t)) - ¢/ (t)dt = —GMmJ —
a R P P ) AL 20 20

]1/2

Segue che il lavoro non dipende dalla particolare curva ma solo dalle posizioni iniziale e finale! Unaltra importante conseguenza é che il lavoro lungo una curva
chiusa, € sempre O, cioé la circuitazione &€ sempre nulla.

Alla luce di questo esempio ci poniamo le seguenti questioni.

Domanda 1. Data w (ovvero dato F) quali condizioni garantiscono che l'integrale lungo un cammino orientato dipenda soltanto dagli estremi della traiettoria
e non dal cammino percorso?

Domanda 2. Data w (ovvero dato F) quando si ha 95

w =0, o meglio 96 F-Tds = O, dove -y & una curva chiusa?
¥

Y
DEFINIZIONE 4.2 Sia w una forma differenziale

w = F1(xq, X7, x3)dxq + F5 (X1, X7, X3)dX5 + F3(X1, X, X3)dx3
di classe C'(A) in A C R3 aperto connesso. Se esiste una funzione U € C%(A) tale che dU = w, cioé
(4.2) BU=F; HU=F, OU=F3

diremo che w é esatta. La funzione U é detta una primitiva di w. Se w é esatta, cioé vale VU = F, si dice che F € un campo conservativo e la funzione U é detta
un potenziale di F.

OSSERVAZIONE 4.3 Se U é una primitiva per w allora, dato che A & connesso, tutte le possibili primitive sono della forma U +cconc € R.

PROPOSIZIONE 4.4 Se w é esatta in A vale che
f w = U(g(b) - U((a))
.

dove ¢ : [a,b] — A é una qualsiasi parametrizzazione regolare di .
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DIMOSTRAZIONE. Dalla definizione diintegrale di seconda specie, dalle relazioni in (4.2) e usando la formula di derivazione delle funzioni composte possiamo
ricavare

b

b b
f w= J (F1(¢(1)) 1 () + Fo(@(1) 95 (t) + F3(@(t) 5 (1))t = J [31U(d>(t))¢{(t) +9U(o (1) g5 (1) + 33U(<1>(t))¢>’3(t)] dt= f %U(dﬁt))dt = U(¢(b)) - U(¢(a))
vy a a a

il che conclude la dimostrazione. n

DEFINIZIONE 4.5 Si definisce rotore di F, e si indica rot(F) oppure con V A F, il campo vettoriale
(87F3(x) —93F7(x), 95F1(x) = 81F3(x), 81F (x) — 5, F1(x))

Esso coincide con il determinante simbolico della matrice
[ & €2 €3

o) o)) 03 ] cioe rot(F) = det
Fi(x) Fa(x) F3(x)

& €2 €3
&% 6, 03
Fi(x) Fp(x) F3(x)

Il campo F si dice irrotazionale se rot(F) = O.
OSSERVAZIONE 4.6 Sia w = Fy(xy, X3)dxq + F5 (x4, X3)dx; una forma differenziale definita in A C R. E possibile considerare il campo vettoriale (in R3) corrispon-
dente, cioé il campo vettoriale F = (F1(xq, X3, %3), F2(Xq,%3,%3), 0) e si ha

rot(F) = (O, O, 61F2(X) —62F1(X))

F & irrotazionale in A C R2, ovvero w & chiusa, se

(4.3) 81F;(xq,%7) = O7F1(xq,%3) per ogni (x1,%3) € A

DEFINIZIONE 4.7 In generale, data una 1-forma differenziale w = F1(x)dx; + F5(x)dx; + F3(x)dxs, diremo che w é chiusa se vale che

OFi(x) = gFi(x)  peri,j=123ei=]

InAC R3 aperto connesso consideriamo
F(x1,x2,x3) = (Fy(x1, %2, X3), Fa(x1, X2, X3), F3(x1, %2, X3))
un campo vettoriale di classe C'(A) ed

w= F1(X1,X2, X3)dX1 + Fz(X1,X2, X3)dX2 + F3(X1,X2, X3)dX3
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la forma differenziale associata. Vale la seguente corrispondenza tra i due linguaggi introdotti
i. w € esatta se e solo se F & conservativo,

ii. w € chiusa se e solo se F ¢ irrotazionale,

iii. U € una primitiva di w se e solo se U & un potenziale di F.

TEOREMA 4.8 Sia w una forma differenziale
w = F1(X1,X2, X3)dX1 + Fz(X1,X2, X3)dX2 + F3(X1,X2, X3)dX3

di classe C'(A) in A C R3 aperto, allora le seguenti affermazioni sono equivalenti:
i. w & esatta, cioé esiste U € C2(A) tale che VU = (Fy, F7, F3),
ii. per ogni coppia di curve vy, e 'y, che hanno gli stessi estremi vale

J- w=f w cioé J F~Tds=J- F-Tds
" T " "2

iii. per ogni curva chiusa -y vale

98&):0 cioé 96F~Tds=0
¥

DIMOSTRAZIONE. La strategia della dimostrazione consiste nel provare che sono equivalenti le affermazioniiii e iii e, in un secondo momento che ii, & equiva-
lente ad i. Cominciamo mostrando che i implica ii. Sia y il sostegno di una curva chiusa di parametrizzazione regolare ¢ : [a,b] — IR3, possiamo scegliere due
punti p, q € vy e considerare la curva chiusa come composta di due cammini differenti, y;(p, q) e y,(p, q) aventi p come punto iniziale e q come punto finale.
Per ipotesi vale

Jioa Lo
M(p.q) 2(p.q)

quindi, sfruttando la proprieta di additivita dell'integrale, abbiamo che

96w=f w+j w=f w—J. w=0
¥ M(p.q) Y2(q,p) Y(p.9) Y2(p.q)

Viceversa supponiamo che valga iii e consideriamo due curve regolari a tratti y; e -y, aventi p e q come estremi. Concatenando i due cammini in modo da
percorrere prima -y; e poi 7y, (il secondo in verso opposto) otteniamo 7y, un cammino chiuso regolare a tratti. Allora vale

O=96 w=J- w+J w=f w—f w
* Y Y, M Y2

con cui abbiamo provato lequivalenza tra le affermazioni i e iii.

177



AV EM

Adesso possiamo provare lequivalenza tra i e ii, se supponiamo sia vera i, i segue molto facilmente, infatti sia «y un generico cammino che connette p e q
avente parametrizzazione ¢ : [a,b] — A C R3 con ¢(t) = (¢1(1), P, (1), P3(t)), allora possiamo scrivere

U(g(t)dt = U(¢(b)) - U(g(a)) = U(g) - U(p)

b b b
Jw{ [F1(¢(t»¢4<r>+Fz(¢(t))¢;(t)+F3(¢>(t))¢g(t)]dt=f vuw(t))-d(t))dnf g
¥ a a a

la tesi segue dallarbitrarieta della curva. Per concludere la dimostrazione mostriamo che ii implica i, fissiamo un punto p € A e definiamo il seguente campo
scalare

U(x,y,z)=jw
v

dove v € un cammino da P al generico punto (xq,X;,x3) € A. Notiamo subito che, siccome l'integrale & indipendente dal particolare percorso (dipende solo
dagli estremi per ipotesi), la funzione & ben definita. A questo punto dobbiamo solo mostrare che il gradiente di U & il campo vettoriale dei coefficienti della
forma differenziale, quindi indichiamo con s il segmento di parametrizzazione (x; + ht, x5, x3), con t € [0, 1], e calcoliamo il rapporto incrementale

U(X1 + h,X2,X3)—U(
h

X1, %7, %3) 1 1 (! 1 (! 1 (h
=—Jw=—f F(x1+ht,x2,X3)-(h,O,O)dt=—f F1(x1+ht,x2,X3)hdt=—f F1(xq + W, X7, x3)dw = F1(x1 + £(h), X7, X3)
hJs™ hlo h Jo h Jo

passando al limite per h che tende a O, ricordando che £(h) — O e che F; & di classe C' segue
81U(X1,X2,X3) = F1(X1,X2,X3)

ripetendo il ragionamento per le altre componenti del gradiente di U si pud concludere che VU =F. [

OSSERVAZIONE 4.9 Il teorema 4.8 ci fornisce una caratterizzazione dei campi conservativi. Una conseguenza é che il campo gravitazionale & conservativo e i
suoi potenzialiin R3 \ {(0, 0, 0)} sono dati da

GMm

—— 5.~ +C ceR
2,32 2112
D+ x5 +x3]

U(xq, %7, %3) =

TEOREMA 4.10 Se w é di classe C'(A) (cioé i coefficienti Fy, F,, F3 sono funzioni in C'(A)) e se w & esatta allora w é chiusa. Nel linguaggio dei campi vettoriali, se
F & di classe C'(A) e se F & conservativo allora F ¢ irrotazionale.

DIMOSTRAZIONE.  E immediata conseguenza del fatto che, se U € C%(A), per il teorema di Schwarz si ha rot (V(U)) = O. n

OSSERVAZIONE 4.11 La condizione di irrotazionalita & solo una condizione necessaria ma non sufficiente affinché un campo vettoriale sia conservativo. Infatti,
si consideri la forma differenziale w € C'(A), dove A = R3\ {x = x; = O, }, cosi definita

X X
w=- 222dX1+ 21
X1 +X2 X1 +X

dx, ovvero il campo vettoriale F(x)=(F1(x),F2(x),F3(x))=(—%, 2X1 2'0]
Xi+ X5 Xi+X5

2
2
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Si verifica facilmente che
2 —x2
27N
5 =0Fix)  BiF3(x) = 03Fi(x) = 8;F3(x) = B3F;(x) = O

(x{ +x3)

61 FZ (X) =

quindi w € chiusa in tutto A. Perd w non é esatta perché non é verificata la condizione iii del teorema 4.8. Basta calcolare la circuitazione lungo la circonferenza
di parametrizzazione

21
v:  x(t) = (cos(t),sin(t),0) conte[0,2n] per cui vale j W= j (cos?(t) +sin2(t))dt=2m = O
6% [0}

La condizione di irrotazionalita diventa sufficiente se si fanno ulteriori ipotesi su A. Fondamentale & introdurre gli aperti semplicemente connessi.
La definizione di insieme semplicemente connesso richiama concetti topologici che non vengono trattati in questo corso. Per questo diamo una definizione

intuitiva.

DEFINIZIONE 4.12 Un aperto A C R? si dice semplicemente connesso se & connesso e se ogni curva semplice chiusa (anche detta curva di Jordan) é frontiera di
un insieme limitato interamente contenuta in A.

OSSERVAZIONE 4.13 La precedente definizione equivale a richiedere che l'insieme A non ha buchi.

Il piano R2 privato di una retta non & semplicemente connesso perché non & connesso. Non sono semplicemente connessi in R2 il piano privato di un punto
oppure una corona circolare; il piano R? privato di una semiretta, i semipiani, i campi circolari, i campi rettangolari sono semplicemente connessi in R2.

DEFINIZIONE 4.14 Un aperto A C R3 si dice semplicemente connesso se é connesso e se ogni curva semplice chiusa (anche detta curva di Jordan) é il bordo di
una superficie interamente contenuta in A.

In R3 non si pud dire che un insieme semplicemente connesso non ha buchi. Infatti, in IR3 & semplicemente connesso lo spazio privato di un punto oppure lo
spazio privato di un disco o di una sfera piena. Lo spazio R3 privato di una retta non & semplicemente connesso.

OSSERVAZIONE 4.15 Le precedenti definizioni equivalgono a richiedere che ogni curva di Jordan possa essere deformata, con continuita, e contratta in un punto
senza "uscire” da A ovvero senza mai toccare i punti del complementare di A.

DEFINIZIONE 4.16 A C R" si dice stellato rispetto ad un suo punto p € A se per ogni x € A il segmento Xp é interamente contenuto nell'insieme A.

OSSERVAZIONE 4.17 Si noti che
i. se A C R™ & convesso, allora € stellato rispetto ogni suo punto,
ii. se A C R" é stellato, allora &€ semplicemente connesso.
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TEOREMA 4.18 (DI J.H. POINCARE) Sia w una forma differenziale
w = Fq(xq, X2, x3)dxq + F2 (X1, X7, X3)dX5 + F3(Xy, X2, X3)dx3

di classe C'(A) in A C R3 aperto stellato rispetto a un suo punto. Allora w é esatta se e solo se & chiusa, oppure F é conservativo se e solo se & irrotazionale.

DIMOSTRAZIONE. Osserviamo subito che se w € una forma differenziale esatta allora & sempre anche una forma chiusa, quindi possiamo limitarci a provare
limplicazione logica inversa, mostrando lesistenza di una funzione potenziale della forma differenziale.

Supponiamo che A sia un aperto stellato rispetto a un suo punto che, per semplicita, supponiamo sia lorigine O. Sia ~yp il cammino di parametrizzazione
o(t) = t(xq,%7,%3), con t € [0,1], che unisce O al generico punto x = (xy,%;,X3) € A, si noti che tale cammino é interamente contenuto nellaperto, grazie
allipotesi che A sia stellato. A questo punto introduciamo la funzione

1 1 1
U(X1,X2, X3) = j w= L F((i)(t)) . (f),(t)dt = L F(t(X1,X2, X3)) . (X1,X2, X3)dt = L [X1 F1(t(X1,X2, X3)) +X2F2(t(X1,X2,X3)) + X3F3(t(X1,X2,X3))] dt

Dobbiamo provare che U & un potenziale di w, quindi calcoliamo le sue derivate parziali. E possibile scambiare le operazioni di derivazione e di integrazione
(cf. teorema 3.53 di derivazione sotto segno di integrale che € stato discusso nella sezione 3.4) da cui otteniamo che

1

81U(X|,X2,X3) = _fo [F](t(X1,X2, X3)) +tx181 F1 (t(X1,X2, X3)) + tX281 F2(t(X1 X2, X3)) +tX381 F3(t(X1,X2,X3))] dt

Ora grazie all'ipotesi che w é chiusa, cioé che il campo vettoriale F ha rotore nullo, abbiamo che
O1F2(x1, %9, x3) = B5F1(x1,x2,x3)  BiF3(x1,x2,x3) = B3F4(x1, %2, X3)

e ricordando il teorema di derivazione di funzioni composte e il teorema fondamentale del calcolo integrale, possiamo scrivere che

1 1
d
61U(X1,X2,X3) = J;) [F1(t(X1,X2, X3)) +tX181 F1 (t(X1,X2, X3)) + tX262F1(t(X1 ' X2, X3)) +tX363F1(t(X1,X2,X3))] dt= J;) a [tF1 (t(X1,X2,X3))] dt= F1 (X1,X2, X3)

Reiterando il ragionamento appena fatto per le altre derivate parziali abbiamo la conclusione VU = F. |

La dimostrazione del teorema di Poincaré € costruttiva in quanto fornisce un metodo per costruire i potenziali U di un campo vettoriale irrotazionale in un
aperto stellato. Vedremo negli esercizi che & anche possibile costruire tali potenziali partendo direttamente dalle relazioni 5;U = Fy, 8,U = F, e 93U = F3, con
successive integrazioni.

Nel prossimo capitolo dimostreremo che il teorema di Poincareé vale in ipotesi pitl generali, cioé per insiemi semplicemente connessi. Sussiste infatti il seguente

TEOREMA 4.19 Sia w una forma differenziale
w = F1(xq, X7, x3)dxq + F5 (X1, X7, X3)dX5 + F3(X1, X5, X3)dx3

di classe C'(A) in A C R3 aperto semplicemente connesso. Allora w é esatta se e solo se é chiusa (oppure F & conservativo se e solo se & irrotazionale).
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Come procediamo se w & chiusa in un aperto A C R% connesso ma non semplicemente connesso? Supponiamo che sia A = R3\ {x; = x; = O} e scegliamo una
curva regolare (o regolare a tratti) chiusa, che gira intorno alla lacuna. Se

wel = O allora F & conservativo in A
- #0 allora F non & conservativo in A

Se, in A, prendiamo in esama la forma

2x
w = 3 12dX1+
X1+X

X
2 +2 70
2 XX

possiamo verificare che w é chiusa dato che

2X2 4X1X2 2
81 FZ = 61 2 = = 82 2
X X

X1
= =0,F4
2 2, y2)2 2
g (g x3) X3
Calcoliamo la circuitazione di w lungo la circonferenza di centro O e raggio 1, contenuta nel piano {x3 = O}, avente equazioni parametriche
x(9) = (cos(9), sin(19),0) con® € [0, 27]

e ricaviamo che
21
98 W= J- [2 cos(B¥)(=sin(®¥)) + 2sin(1¥) cos(¥)]d® = O
% [0}

Ne segue che w & esatta in R3\ {x; = x; = O} ed & possibile verificare che le sue primitive sono U(x) = In (x12 + x%) +c,ceR.
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4.4 Areadiuna superficie e integrali su superfici

Quando abbiamo definito la lunghezza di una curva regolare y, abbiamo definito L(y) come lestremo superiore della lunghezza di tutte le possibili poligo-
nali inscritte nella curva. Si potrebbe pensare di seguire lo stesso procedimento per le superfici cioé di considerare tutte le possibili superfici poliedriche (per
esempio a facce triangolari) inscritte nella superficie e quindi di definire larea come l'estremo superiore delle aree delle superfici poliedriche inscritte. Questo
procedimento non funziona, infatti anche per superfici molto semplici questo estremo superiore puo essere +oo cioé si presenta il fenomeno di Schwarz. Per
un esempio vedi [?, p.488] o [?, p.202]. Sostituiamo le superfici poliedriche inscritte con le superfici poliedriche appoggiate sulla superficie e definiamo larea
di una superficie regolare come lestremo inferiore dellarea delle superfici poliedriche tangenti alla superficie. Per il calcolo dellarea di una superficie regolare
sussiste il seguente

DEFINIZIONE 4.20 (area di una superficie regolare) Sia x: K € R? —; R3 una superficie regolare e sia ¥ il suo sostegno. Larea della superficie é data da
(4.5) Area(X):= J] |9x(u) A Byx(u)|duqdu, o equivalentemente Area(}) := fj VEG—- deu1du2
K K

Se X ha equazione cartesiana x(u) = (uy, u,, f(u)), u € K, allora

(4.6) Area(X)= J.J;( 1+ V() | 2dxqdx;

Diamo un significato intuitivo alla formula (4.6). Consideriamo una superficie in forma cartesiana x(u) = (uy, up, f(u)), con u € K. Suddividiamo K in Kj, ..., Kn
domini privi di punti interni in comune e sia u; € int(K;). A tale suddivisione corrisponde una suddivisione della superficie in superfici ¥; con p; = (u;, f(uj)) € %;.
Indichiamo con I1; la porzione di piano tangente Tp, (%) alla superficie nel punto p; che si proietta su ¥;. Detto a; langolo formato tra il versore e3 = (0,0,1) e
O1x A Ou si ha

Area(IN,;) = Area(%;) cos q; ovvero duydu, = cos(a;)do
da cui segue che
1

cos(aj)=ng3=————
[1 . |Vf(ui)|2]1/ 2

Come conseguenza si ottiene che
172
do =[1+ V(W] du

a1 2 . . o . . . . I
che mostra come [1 + |Vf(m)|2] sia un fattore di proiezione locale per le aree. Sia y una curva regolare semplice contenuta nel piano {x; = O}, di equazioni
parametriche

(xq,x3) = (x¢(t), x3(t)) te[a, bl
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con x¢(t) > O'in (a, b). La rotazione di -y di un angolo 8¢ intorno allasse x3 genera una superficie di equazioni parametriche
(4.7) x(t,0) = (x1(t, 0),x,(t, 0),x3(t, 6)) = (x1(t) cos(6), x4 (t) sin(6), x3(t)) (t,0) € [a,b] x [0, 60]
La superficie ¥ in (4.7) & detta superficie di rotazione. Si noti che ¥ & una superficie regolare dato che

Ayx(t, 6) = (x4(t) cos(6), x;(t) sin(6), x5(t))

OyX(t, 6) = (—x4(t) sin(6), x4 (t) cos(0), O)

[81x A Bx1(t, 6) = (—x1(t)x5(t) cos(6), —x4 (t)x5 () sin(6), xq (t)x5 (1))

181x A 89|12 = x4(t) [(x;(t))2 " (xg(t))z] >0  per(t,6) € (a,b) x (0,6)

Applicando la (4.5) si trova che larea della superficie di rotazione ¥ € data da

b

(4.8) Area(X) = QOJ x(t) [(X/(t))z + (y/(t))z]I/Z dt

a

Dalla (4.8) e dalla definizione di baricentro di una curva si ha

TEOREMA 4.21 (di Guldino per le superfici di rotazione) Larea della superficie di rotazione ¥ in (4.7) é data dal prodotto della lunghezza della curva ¢ per
la lunghezza del cammino percorso dal baricentro.

DIMOSTRAZIONE. Infatti possiamo riscrivere la (4.8) nel seguente modo
1
Area(}) = GOJ. xds = 6gBqL(7y) dove Bi=— f xds
oy L(v) J,
con By che rappresenta la distanza del baricentro dallasse di rotazione e L(-y) che indica la lunghezza di . n

ESEMPIO 4.22 Facendo ruotare una circonferenza intorno ad una retta che non la interseca, si ottiene una superficie chiamata toro. Detta d la distanza del
centro della circonferenza dalla retta, e detto R il raggio della circonferenza, si ricava che larea della superficie del toro & 472dR. Oppure una sfera di raggio R &
ottenuta facendo ruotare una semicirconferenza di raggio R intorno al suo diametro. Quindi ricaviamo che l'area della sfera & data da 27 - 2R/ - R = 47R2.

Introduciamo ora un cambiamento di coordinate
u(s) = (uy(sy,s2), uz(sy, s3)) s=(s1,57) €SCR?

e supponiamo che
i.u e C'(int(S), R2),
; B Oru(s)  Byup(s)
ii. det[Ju] = det Byu(s)  Byunpls)
iii. lapplicazione u & una corrispondenza biunivoca tra S e T = Im(S).

=0 per ogni s € int(S),
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Allora la superficie
x(s) = (x1(u(s)), x5 (u(s)), x3(u(s))) seS

& ancora una superficie regolare. E importante osservare che l'area di una superficie risulta essere invariante per cambiamenti di coordinate.
Siax : K C RZ — R3 una superficie regolare e sia ¥ il suo sostegno. Se h(x) = h(xy, x5, X3) & una funzione reale definita su ¥, si definisce integrale di superficie
dih su ¥ la seguente quantita

J];_ h(x)do = _U;( h(x(uq, up))||81x(uy, uz) A Byx(uy, up)||dusdu,

Anche gli integrali di superficie non dipendono dalla rappresentazione parametrica della superficie. Se 3 ha equazione cartesiana (uq, up, f(uy, up)), conu € K,
allora l'integrale di superficie & dato da

(4.9) ﬂ h(x)do = H hug, up, F(ug, ug)) [1+ | V(u, up) ] dudug
pu K

4.5 Baricentro e momento d’inerzia di una superficie

Sia x : K € R2 — R3 una superficie regolare e sia ¥ = x(K) il suo sostegno. Sia § : ¥ C R® — R la densita superficiale di una massa distribuita su ¥. Allora
possiamo definire

m = JI d(x)do
Y

la massa totale della superficie. Il centro di massa, o baricentro, della superficie € il punto B dato da

B= l (JJ. x10(x)da, JJ. X20(x)do, J]‘ X36(x)d0)
m ¥ ¥ Y

Ilmomento d'inerzia di ¥ rispetto rispetto alla rettar &

ﬂ d2(x)6(x)do
Y

con d(x) := d(x, r) distanza del punto x dalla retta r.
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4.6 Superfici orientabili e flussi

La scelta di n o —n come versore normale positivo alla superficie regolare ¥ corrisponde a scegliere una "faccia” della superficie, quella su cui punta n, che
chiameremo faccia positiva.

DEFINIZIONE 4.23 Una superficie regolare x : K € R2 — R3 con sostegno ¥_ si dice orientabile se per ogni curva chiusa ® : [a, b] — R3 con sostegno -y C ¥ si
han(®(a)) = n(P(b)). Una superficie regolare orientabile si dice orientata se é stata scelta una delle due direzioni del versore normale che chiameremo normale
positiva. La faccia dalla quale esce il versore normale positivo e la faccia positiva.

In altre parole, una superficie > € orientabile se il versore normale n(p) varia con continuita su ¥; o anche, una superficie € orientabile se possiede due facce
(che posso colorare con colori diversi). La sfera o la superficie laterale di un cilindro sono superfici orientabili. Si capisce bene il concetto di superficie orientabile
se si conosce un esempio di superficie non orientabile. Il pit famoso € il nastro di Mobius (cf. figura 15): immaginiamo di partire da pg € ¥ e di muoverci lungo
il meridiano centrale. Dopo un giro ci troviamo in pg.... ma sul lato opposto!

DEFINIZIONE 4.24 Sia K C RZ la chiusura di un aperto connesso. Si definisce superficie regolare con bordo una superficie regolare x : K —s R3 iniettiva in
tutto K, la cui matrice jacobiana ha rango 2 in tutto K. Linsieme dei punti di ¥ descritto dal punto p = x(u) quando u descrive la frontiera K di K si dice bordo di
Y, relativamente alla parametrizzazione x, e si indica con 6x¥. Con la scrittura 0% = N0y ¥ si indica la parte della superficie che é bordo rispetto a qualunque
parametrizzazione della superficie, tale insieme é il bordo della superficie Y.

Una superficie orientata ¥ induce unorientazione positiva sul bordo 0% : diremo che 0% é orientato positivamente se un osservatore posto sulla faccia positiva
di ¥ che percorre 8Y. nel verso positivo lascia ¥ alla sua sinistra. Il contorno cosi orientato viene indicato con +0%. 0 8.

Se Y ha rappresentazione parametrica x : K C R2 —; R3 biunivoca tra K e ¥ allora x(8K) = 85.. Nel caso della semisfera ¥ : x12 + x% + x% =1,x3 > O, il bordo
coincide con il cerchio massimo x12 + x% =1,x3 = 0. Se scegliamo come faccia positiva quella esterna allora lorientamento positivo su 8% € quello antiorario se

visto dallalto.
DEFINIZIONE 4.25 Una superficie regolare é chiusa se é priva di bordo.
La sfera, il toro o un ellissoide sono superfici chiuse.
TEOREMA 4.26 Una superficie & connessa, chiusa e orientabile se e solo se é frontiera di un aperto connesso limitato di R3.

Per le superfici chiuse, connesse e orientabili vale un teorema analogo a quello di Jordan per le curve: suddividono lo spazio R3 in due parti, una limitata (interno
della superficie) e una non limitata (esterno della superficie).
L'otre di Klein & un esempio famoso di superficie chiusa, non orientabile, perché non é frontiera di un aperto connesso limitato di IR3.
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Figura 15: Nastro di Mobius e Toro

Sia F(x) = (F4(xq,X2,X3), F2 (X1, X2, X3), F3(Xq, X2, X3)) un campo vettoriale di classe CO(A), sia x : K € R2 —s R3 una superficie regolare orientabile con sostegno
¥ C A.Sian il versore normale alla superficie. Lintegrale di superficie

‘[f (F-n)do
>

si chiama flusso ®s del campo F attraverso ¥ nella direzione n. Il flusso & invariante per cambi di parametrizzazione equivalenti e cambia segno se cambia il
O1x A\ 0%
181X A B ||

JI (F-n)do = ff F(x(u)) - (B1x A 8,x)duqdu,
Y K

verso di n. Ricordando che n = siricava
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5 ANALISI VETTORIALE

In questo capitolo presentiamo i risultati che, tradizionalmente, costituiscono i principali risultati che vanno sotto il nome di analisi vettoriale. La trattazione
é decisamente lacunosa, rispetto ad un testo tradizionale e per la difficolta dei concetti da affrontare e per alcune idee ostiche che compaiono in alcune
dimostrazioni. Per una presentazione pitl organica e completa rimandiamo ai molti e ottimi testi citati in bibliografia, in ogni caso desideriamo evidenziare la
presenza (alla fine del capitolo) di alcuni risultati interessanti che, usualmente, non sono inclusi in un libro di analisi matematica, ma che possono arricchire ed
essere utili.

5.1 Analisi vettoriale nel piano

TEOREMA 5.1 (FORMULE DI GAUSS-GREEN (G. GREEN)) Sia D C R? un dominio con frontiera regolare a tratti e A, B due funzioni di classe c' (A), con A C R2
aperto contenente D, allora vale

(51) f 61B(X1,X2)dX1dX2 = J B(X1,X2)dX2 J 62A(X1,X2)dX1dX2 = —J\ A(X1,X2)dX1
D oD D oD

DIMOSTRAZIONE. Dimostriamo il teorema supponendo che sia possibile descrivere il dominio nei seguenti due modi, cioé che esistano quattro funzioni
continue e di classe C' a tratti tali che

D = {(x1,%3) 1 X1 € (a,b), c(xq) < x9 < d(x1)} = {(x1,%7) 1 alx3) < %1 < b(x;),%x; € (c,d)} C R2

Per dimostrare la tesi verificheremo direttamente luguaglianza degli integrali che compaiono in (5.1). Cominciamo dal primo integrale in due dimensioni. Grazie
alle proprieta del dominio D e alle formule di riduzione degli integrali possiamo scrivere che

d[ rblxz) d
J-D (31B(X1 , Xz)dX1dX2 = j [J( )2 81B(X1 , Xz)dX1] dXZ = j [B(b(Xz), X2) - B(a(Xz), X2)] dXz
c alxy c

e, analogamente, vale

b[ rdix) b
LazA(x1,x2)dx1dx2 =f U-( ) 82A(X1,Xz)dxz]dx1 =J- [A(x1, d(xq)) = Alxq, c(x1))1dxq
a |Jclx a

L'integrale di linea richiede un po' di lavoro in pid, infatti dobbiamo scrivere una parametrizzazione, regolare a tratti e correttamente orientata, del bordo. Per

249



AV

EM

quanto abbiamo ipotizzato su D possiamo affermare che 9D = Ufl{Yi = ui‘lmi dove gli archi regolari sono descritti dalle seguenti parametrizzazioni

={$(t) = (t.c(t)): te [a, bl} (1) = (1,c'(t))
'yz {(b,t) : t € [c(b),d(b)]} qb’z(t) =(0,1)
73 ={¢3(t) = (-t d(-t)) : t € [-b,-a]} ¢4 (1) = (-1,~d'(-1))
’Y4 {¢4(t) =(a,—t): te[—d(a —c(a)l} ¢, (t)=(0,-1)
={(t) = (t.c) : t € [alc), b(c)]} w{(t)=(1,0)
={¥y(t) = (b(t),t): t € [c,d]} Y5 (1) = (b'(t),1)
n3 {13(t) = (—t d) :t € [-b(d),—a(d)]} 1/)3(t) (-1,0)
N4 = {P4(t) = (a(-t),-t) : t € [-d, =} Py (1) = (=a'(=1),-1)

Ricordando la definizione di integrale di linea di una forma differenziale abbiamo che

b -a b a b
J A(xq,Xp)dxq = ZI (x4, X5)dxq _J- A(t,c(t))dt—f A(—t,d(—t))dt=j A(t,c(t))dt+f A(s,d(s))ds=f [A(t, c(t)) —Alt, d(t))] dt
oD a -b a a

b

d —C d c d
f B(xq, xp)dx; = ZI (X1, X7 )dx, = J B(b(t),t)dt—J B(a(—t),—t)dt=f B(b(t),t)dt+J B(a(t),t)dt=f [B(b(t), t) - B(a(t), )] dt
oD i —d c d c

le ultime relazioni scritte completano la dimostrazione delle formule (5.1).

TEOREMA 5.2 (DEL ROTORE (G.G. STOKES)) Sia D C R2 un dominio aperto con frontiera regolare a trattie F € C'(A,R2) un campo vettoriale definito su un
aperto A contenente D, allora vale

j [rot(F)]3 dxqdx; = j [F - T1(xq, x;)ds
D oD

DIMOSTRAZIONE. Come noto vale
rot(F) = (82F3 —83F2, 63F1 —81F3, 81F2 —82F1) = (O, 0,81F2 —82F1)
quindi la terza componente del vettore rotore é [rot(F)]3 = 6,F, — 9, F;. Grazie alle formule (5.1) (pensando B = F; e A = F;) possiamo scrivere
J- [rot(F)]3 dxqdx, = f (01F5 — 07 Fq)dx¢dx; = J Fidxq + Fodx, = J [F - T1(x1,x;)ds
D D &'D a'D

e lultima uguaglianza segue dalla definizione di integrale di linea, quindi laffermazione € provata.
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TEOREMA 5.3 (DELLA DIVERGENZA ().C.F. GAUSS)) Sia D C RZ un dominio aperto con frontiera regolare a trattie F € C'(A, R2) un campo vettoriale definito
su un aperto A contenente D, allora

(5.2) j div (F) (xq, x2)dx;dx3 =J [F - nl(xq,%;)ds
D oD

DIMOSTRAZIONE. Anche il teorema della divergenza segue dalle formule di Gauss-Green, infatti ponendo (B, A) = F le (5.1) sommate ci permettono di scrivere

f div[F] (X1rX2)dX1dX2j [V - F1(x1, xp)dxqdx; = J (B1F1+02F7)dxdxp = j Fidxp—Fpdxq = J- (=F2,F1)-(Ty, Tp)ds = J (Fy,F3)- (=T, Ty)ds = J F-nds
D D D o'D oD o'D oD

visto che la normale uscente da D, cioé il vettore n, pud essere ottenuto dal vettore T, il versore tangente alla frontiera 9D percorsa in senso antiorario, tramite
una rotazione di 7/2 in senso orario. ]

DIMOSTRAZIONE. Includiamo a questo punto della discussione una dimostrazione alternativa del teorema della divergenza nel piano. Per raggiungere lo sco-
po considereremo un dominio particolarmente semplice descritto dal seguente disegno.

Y4

73

M

l "

Mettiamo qualche puntino sulle i: innanzitutto supponiamo che la frontiera del dominio D C R sia una curva chiusa semplice, unione di quattro curve di classe
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C' aventi le seguenti parametrizzazioni:

1 = {(a,—t),t € [-d(a), ]}
v, ={(t,c),t € [a,b]}

73 ={(b, 1), t € [c,d(c)]}

Y4 = {(-t.d(-t)),t € [-b,—a]}

con d € C'[a, b] funzione strettamente crescente tale che d(x;) > c.

Osserviamo subito che D & un dominio normale rispetto ad entrambe le variabili e che possiede un solo "lato” non rettilineo: y4. Le varie frecce rappresentate
nel disegno indicano i versori normali esterni al dominio su +;, i = 1,..., 4, e il verso antiorario di percorrenza del bordo 9D, come espresso anche dalle para-
metrizzazioni dei singoli cammini. Entriamo nel vivo della seconda dimostrazione ricordando la definizione di alcuni oggetti che useremo. Scrivendo il campo
vettoriale per esteso F(xq,x;) = (F1(xq,X2), F2(x,X3)) possiamo scrivere la sua divergenza per esteso nel seguente modo

diV(F(X1,X2)) = (V . F(X1,X2)) = 61F1(X1,X2) +62F2(X1,X2)

Inoltre possiamo scrivere i versori n; (i =1, ..., 4), le normali uscenti dal dominio sui tratti che compongono la frontiera dD. Dal disegno segue immediatamente
che

ny=(-1,0) n, =(0,-1) n3 =(1,0)

Il calcolo di n4 € leggermente pil elaborato, poiché y4 = {(—t,d(-t)), t € [-b,—a]}, sappiamo calcolare facilmente il versore tangente alla curva che si scrive nel
seguente modo

(-1.-d'(-)
4=
V1+|d' ()2

a questo punto si ottiene il versore normale alla curva semplicemente scambiando le componenti e cambiandone di segno una nel seguente modo

(-d'(=0.1)

(1+1d'012)"

Ny =

ci si puo convincere che sia la scelta giusta provando a ragionare sulla figura precedente o scrivendo la matrice relativa alla rotazione di 7/2 in senso orario.
A questo punto possiamo cominciare a scrivere per esteso gli integrali coinvolti in (5.2). Usando il fatto che D & un dominio normale rispetto ad entrambe le
direzioni degli assi coordinati e le proprieta di additivita dell'integrale possiamo scrivere

fDV . F(X1 ) X2)dX1dX2 = jD(61 F] (X1 , X2) + 82 FZ (X1 ) X2))dX1dX2 = jD 81 F1 (X1 ) X2)dX1dX2 + JI; 62 F2(X1 , Xz)dXZdX1

b d(xq) d(a) b d(b) b
= f (f 0,F(xq, Xz)dY] dxy + f (J O1Fq(xq, Xz)dX1]dX2 * J (J O1F1(xq, Xz)dX1]dX2
a c c a d(a) d7(xy)
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Si noti, nellultimo passaggio, luso della funzione d™, linversa di d, per scrivere l'integrale di &F; integrando prima in x; e poi in x,.

Ricordando il teorema fondamentale del calcolo integrale, le proprieta di additivita e usando la sostituzione y = d(x) nellultimo termine, otteniamo le seguenti
relazioni

~b d(a) dib) b
—r diV(F(X],Xz))dX1dX2 = (Fz(XI,d(X1))—F2(X1,C))dX1+J\ (F](b,Xz)—FI(a,Xz))dXZ'FJ j 81F1(X1,X2)dX1dX2
D Ja c d@ Jd7(x,)
rb d(a) d(a) b d(b)
= | -Fyx. 0)dxq J F1(b,x2)dx2+J —F1(a, x7)dx, J Fy (x4, d(xq))dxy J (F1(b,x)=Fy(d7(x2). 7 ) ) dxy
Ja c c a d(a)
~b d(b) d(a) b
- | =Ryl 0dxg ¢ f Fi(b, x2)dx + j —Fy(a, xp)dxy + J (Fbxt ) = Fr (1, dxa) ) iy
Ja C C a

A questo punto procediamo con lintegrale curvilineo. Ricordando la definizione di integrale di linea e che 8D é unione di 4 curve regolari, possiamo scrivere le
seguenti uguaglianze.

- b d(b) & _E (N () o Fe (ol
j (F(x1,x2)-n)ds=J —F1(a,—t)dt+J —Fz(t,c)dt+j F1(b,t)dt+J Fi(=t, d(=t))d"(-1) F;i t,d(-t)) (1+\d’(-t)|2)"2dt
oD —d(a) a c -b (1 + |d'(—t)\2)
da) b db) b
f —F1(a,s)ds+J —Fz(t,c)dt+j F1(b,t)dt+J. (Fals. d(s) ~ Fy(s. d(s))d(5)) ds

a

dove abbiamo usato anche il cambio di variabile s = —t in alcuni degli integrali di linea (si ricordi che gli integrali di linea che non coinvolgono il versore tangente
non cambiano di segno cambiando parametrizzazione). Dal confronto delle uguaglianze ottenute segue la tesi. ]

OSSERVAZIONE 5.4 Dopo aver provato il teorema (per ben due volte!) possiamo fare alcune semplici osservazioni. Il caso di un triangolo € un caso particolare
dellenunciato provato, basta considerare la funzione d affine con d(a) = c. Si noti che nella dimostrazione abbiamo fatto uso dell'invertibilita di d: se d non
é strettamente crescente (o decrescente) & possibile ugualmente usare la dimostrazione precedente spezzando il dominio in maniera opportuna, come nel
disegno che segue.

Dy | Dy | D3

In generale vogliamo ricondurci, in qualche modo, al caso trattato nel teorema 5.3 e per farlo procediamo nel seguente modo. Consideriamo tutti i punti
{pi}i-1... n della frontiera di D che delimitano i vari tratti di classe C' e tracciamo le rette parallele agli assi coordinati passanti per ognuno dei punto p;. In questo
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modo abbbiamo tracciato un reticolo irregolare sul nostro dominio, e D resta suddiviso in rettangoli interni e sottodomini con tratti curvilinei. Osserviamo che
il teorema della divergenza vale su tutti questi nuovi sottodomini ottenuti, nel caso siano dei rettangoli o dei domini come quelli considerati nei precedenti
disegni (si veda la proposizione 5.3). Poiché l'integrale della divergenza € la somma degli integrali sui sottodomini (per ladditivita dell'integrale), mentre nei vari
integrali curvilinei di flusso si elidono tutti i contributi "interni”, la tesi & provata, almeno per tutti i domini del piano per cui si sappia fare la divisione descritta
sopra.

A questo punto abbiamo gli strumenti necessari per generalizzare il teorema di Poincaré agli aperti semplicemente connessi del piano.

TEOREMA 5.5 Sia F un campo vettoriale di classe C'(A, R2) definito in un aperto A semplicemente connesso. Allora F é conservativo se e solo se é irrotazionale
in A

DIMOSTRAZIONE. La condizione necessaria segue dal teorema 4.10. Occorre provare la condizione sufficiente che & equivalente a provare che, per ogni curva
regolare a tratti, chiusa e semplice =, risulta

JF~Tds=O
¥

e applicare il teorema 4.8 che caratterizza i campi conservativi. Fissatay, sia D C A il dominio limitato che hay come frontiera. Tale dominio esiste perché A "non
ha buchi”. Lesistenza di D puo essere dimostrata rigorosamente e questo risultato prende il nome di teorema di Jordan. Supponiamo che -y abbia orientamento
antiorario. Dal teorema di Stokes

J F-Tds= J- F-Tds= J [rot(F)]3 dx;dx, = O
vy *D D

e lultimo integrale vale zero perché F € irrotazionale. ]

5.2 Analisi vettoriale nello spazio

Adesso possiamo enunciare il teorema della divergenza nella sua versione piu generale.

TEOREMA 5.6 (DELLA DIVERGENZA (DI M.V. OSTROGRADSKI| E J.C.F. GAUSS)) Sia D C R" un aperto limitato con frontiera di classe C'atrattiesiaFun campo
vettoriale di classe C' (A; R™) con A un aperto contenente la chiusura di D, allora vale

(5.3) J- div [F](x)dx =f V - F(x)dxqdx,dx3 =J (F-n)(x)do
D D oD

DIMOSTRAZIONE. da scrivere
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K

N~

OSSERVAZIONE 5.7 Se ¥ il sostegno di una superficie regolare con rappresentazione parametrica x : D € RZ —s R3 con x(u) = (x;(uq, Us), X3 (uy, u3), X3 (uy, u3))
biunivoca tra D e ¥ allora x(6D) = 0% . Se «y(t) = (u(t), u;(t)) € una rappresentazione parametrica della frontiera oD allora x(y(t)) & una rappresentazione
parametrica del bordo Y.

TEOREMA 5.8 (DEL ROTORE (DI G.G. STOKES)) Sia (x, D) una superficie regolare semplice di classe C2di sostegno > C R3eF e C/(A,R3)un campo vettoriale
definito su un aperto A taleche ¥ C A C R3, allora vale

j [rot(F) - n](x)do = J (F-T)(x)ds
> o'y

DIMOSTRAZIONE. La dimostrazione consiste essenzialmente nello scrivere per esteso i due integrali che compaiono nella tesi, usare attentamente il teore-
ma di derivazione delle funzioni composte, e verificare la loro uguaglianza, grazie al teorema di Stokes nel piano precedentemente provato (teorema 5.2).
Cominciamo con l'integrale di superficie

J- [rot(F) - n]do = J rot(F)(x(u)) - (8yx(u) A &;x(u))du
Y D
= L [02F3 —03F,, 03F1—01F3, 01F3 — 0, F1] - (91x02%3 — 01307 %2, O1x307%1 — O1x107X3, Oyx10p %7 — B 104z ) du
= J‘ (62F3 - 83 Fz)(81X282X3 - 81X382X2) + (83F1 —81F3)(81X382X1 - 81X162X3) + (81 Fz —82F1)(81X182X2 —62x181x2)du
D

adesso affrontiamo l'integrale di linea, assumendo di avere la seguente parametrizzazione regolare del bordo 5*D C R2 () = u(t) = (uq(t), uy(t)), con t € [a, b].
Dallosservazione 5.7 sappiamo che x(y(t)) € una parametrizzazione regolare a tratti del bordo di ¥, quindi, ricordando la definizione di integrale di linea, il
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teorema di Schwarz e il teorema 5.2, abbiamo

b
[ ads= [ Rt goxtrtonde= [ RO (Tx(0)- 00, Tralyle) v 0, Txsr(0)- ) e

b
= f (F(X(’Y(t))) (O (v(1)), Oy (v(t)), Oyx3 (v(1))), F(x(v (1)) - (B4 (v (1)), Byxa (1)) Do x3 (¥ (1)), 0) ' (t)dt
a
= j (F-01x,F-0,%,0) - THds = j rot(F - 8yx, F - 95%,0) - e3du = f [04(F - O%) — 0, (F - 81x)1du
oD D D

= f [61(F182X1 + F262X2 + F362X3) —62(F181X1 + F261X2 + F361X3)]du
D

= f [VF181X82X1 + F1512X1 + VF281X82X2 + F2812X2 + VF381X82X3 + F18|2X3 - VF182X3 - F1812X1 - VF262X81X2 - F2612X2 - VF362X81X3 - F1a12X3 du
D

= L [(51 F101x1 + 9;,F101x3 + G3F101x3) 8y %1 + (B1F201x1 + 03F 281 + B3F301x3) 0y %) + (B1F 3011 + 8, F 301x; + B3F301%3) 0,3
—(O1F10yx1 + O F10%7 + O3F10y%3)0yx1 — (81F 207 %1 + Oy F 207 %7 + O3F207%3)01x7 — (O1F 30,1 + O, F307%5 + O3 F362X3)81X3]du
= L [62F181X262X1 + 03F101x30y%1 + O F201x10 X3 + O3F201x307%) + 01F 30110y %3 + 07 F301x20,%3 = 0, F107 %201
— 03F10,x301%1 — O1F2 0, %1017 — O3F 207 X301X9 — 01F30,%101X3 — 8, F30,X201x3 [du

confrontando con l'integrale calcolato precedentemente abbiamo la tesi. n

TEOREMA 5.9 (Alcune identita utili) Dateu,w € C2(Q) e F € C2(Q2, R3) valgono le seguenti identita

J- Aw(x)dx=J Onhwdo

Q o0N

J udiv(F)dx = —J Vu - Fdx + j uF -ndo
Q Q a0

J- uAwdx = —J Vu - Vwdx + J udywdo
Q Q o0N

f [uUAw—wAu]dx = +J [udw—wdnuldo
Q FSl9)

TEOREMA 5.10 Siano A un aperto semplicemente connesso di R3 e F un campo vettoriale di classe C'(A, R3). Allora F & conservativo se e solo se & irrotazionale.
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6 equazioni differenziali

In questo capitolo riportiamo alcuni enunciati (non tutti completi di dimostrazione) relativi alla teoria di base delle equazioni differenziali ordinarie, tale pre-
sentazione della teoria € largamente lacunosa: di fatto contiene i soli risultati le cui dimostrazioni vengono presentate a lezione. Uno qualsiasi dei testi indicati
in bibliografia & sicuramente necessario per una visione organica e completa dello studio delle equazioni differenziali ordinarie.

Nella seconda sezione discutiamo in dettaglio un certo numero di esercizi con i quali intendiamo rivisitare parte della teoria 0 accennare a qualche risultato pit
avanzato (alcune delle metodologie presentate hanno validita molto pit ampia di quella del singolo esercizio in esame). Infine, nella terza parte, proponiamo
alcuni risultati classici relativi allequazione di Poisson, cioé ad una delle pit "semplici” equazioni alle derivate parziali.
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6.1 esistenza (ed unicita) di soluzioni

In questi appunti vogliamo studiare il problema di Cauchy per unequazione differenziale ordinaria del primo ordine, ovvero il seguente problema differenziale

61) u’(t) = f(t, u(t)
U(to) =Ug

dove la funzione u é l'incognita del problema, mentre f, ug e tg sono noti. In particolare vogliamo provare che (6.1) possiede un'unica soluzione (ovviamente
se alcune ipotesi sono verificate!) e di tale importante risultato forniremo due differenti dimostrazioni.
Cominciamo con alcuni risultati tecnici utili alla dimostrazione del nostro teorema di esistenza ed unicita.

PROPOSIZIONE 6.1 Sia f una funzione continua, allora u é soluzione di classe C' di (6.1) se e solo se u & una soluzione continua della seguente equazione integrale

t
(6.2) u(t)=ug+ | f(s,u(s))ds

to

DIMOSTRAZIONE.  Supponiamo che u sia una soluzione di classe C' di (6.1), allora per il teorema fondamentale del calcolo integrale abbiamo che

t t
u(t) = u(to) + j u’(s)ds = ug + j f(s, u(s))ds

to to
da cui segue la tesi.

Viceversa se u & una soluzione continua di (6.2) abbiamo che f composta con u & ancora una funzione continua e, sempre per il teorema fondamentale del
calcolo integrale, segue che u & di classe C' essendo una primitiva di una funzione continua, inoltre abbiamo che

t

to d
u(tg) =up + j f(s, u(s))ds = ug e u'(t) = T [Uo +J
t t

0 0

f(s, u(s))ds] = f(t, u(t)

e la dimostrazione é conclusa. n

TEOREMA 6.2 (T.H. GRONWALL) Siano c una costante reale non negativa e u, v : (a,b) — R due funzioni continue e non negative tali che

t
J u(s)v(s)ds
to

v(t) <c+ Vvt e (a,b)

Allora

t
v(t) < celVttto)l dove U(t, to) = J‘ u(s)ds
t

0
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DIMOSTRAZIONE. Cominciamo osservando che la funzione U(t, tg) € la primitiva della funzione continua u nullain t = tg. Il teorema fondamentale del calcolo
integrale garantisce lesistenza di una tale funzione. Consideriamo t > tg e poniamo

t
J u(s)v(s)ds
to

a causa della non negativita di u e v. Dalla precedente definizione, dalla continuita delle funzioni integrande e dall'ipotesi segue che

z(t)=c+

t
=C+ J u(s)v(s)ds
t

0

Z/'(t) = u(t)v(t) < u(t)z(t)

il che implica che

d

o [z(9e™Vt10)] = eVt [7/ (1) —2(1)] < O

Dungque abbiamo provato che z(t)e™U(tto) & una funzione non crescente, da questa informazione ricaviamo che
z(t)e_U(t'tO) <z(tg)=c

da cui la tesi. Il caso t < tg si prova (pil 0 meno) in maniera analoga. ]

TEOREMA 6.3 (DELLE ITERAZIONI SUCCESSIVE (C.E. PICARD & E.L. LINDELOF)) Sia A C R2 un insieme aperto con (tg,ug) € Aef € C(A,R). Sianory,r; > O
due costanti reali tali che il rettangolo R = [tg —1q, tg + 1] X [ug —r7, Ug + ;] sia contenuto nellaperto A e che esista L > O tale che

[f(t, u) —f(t,w)| < Lju—w|

perognit € [tog—r, tg+rleu,w € [ug—ry,ug +ryl.
Posto M = maxg [f(t, u)|, esiste € > O tale che il problema di Cauchy (6.1) possiede unlunica soluzione u € C'[tg —¢, tg + €], con € = min{ry, r,/M}.

DIMOSTRAZIONE. Abbiamo provato precedentemente che (6.1) &€ equivalente allequazione integrale (6.2), sfrutteremo questa caratterizzazione per dimo-
strare lesistenza del problema differenziale mostrando lesistenza di un unico punto fisso dellequazione integrale. La strategia che seguiremo consiste nei
seguenti passi

i. lequazione integrale (6.2) permette di costruire una successione per ricorrenza di soluzioni approssimate,
ii. la successione definita converge uniformemente ad una funzione, soluzione di (6.2),
iii. la soluzione trovata € lunica soluzione del problema di Cauchy (6.1).
i. Definiamo una successione di funzioni per ricorrenza, nel seguente modo
up(t) =ug .
Up,q(t) =ug + J f(s,ui(s))ds
t

0
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e cerchiamo di studiarne le proprieta salienti usando dei ragionamenti per induzione. Prima di tutto dobbiamo mostrare che le funzioni uy sono tutte definite
su uno stesso intervallo non vuoto, su cui studieremo le proprieta di convergenza della successione. Per fare questo dovremo (eventualmente) restringere R in
modo da essere sicuri che il grafico di tutti i termini della successione viva in uno stesso rettangolo, sempre centrato nel punto (tg, ug), interamente contenuto
in A. Osserviamo subito che
t
luit)—ug| < [ [f(s u(s))|ds < Mt—tg| < Me
to

quindi |uy(t) —ug| < rp se € = min{ry, r,/M}, cioé restingendo (solo se necessario) un po' il rettangolo R. Se pensiamo che la precedente disuguaglianza valga
per uy, cioé che |u,(t) —ug| < rp perognit € [tg—¢, tg + €] segue che

t
[Up.q(t) —ug| < J [f(s,ui(s))|ds < Mlt—tg| < Me
to

perché stiamo supponendo che il grafico di u si trovi in R, e poiché tutti i termini della successione (per induzione) verificano la stessa disuguaglianza, abbiamo
provato che tutte le funzioni della successione sono definite in [tg —¢, tg + €], con € = min{ry, r,/M}.
ii. Per provare la convergenza della successione di funzioni proveremo la seguente maggiorazione

LK|t—tg*!

(6.3) |upa(t)—u () <M (k+1)!

per induzione. Osserviamo subito che (6.3), per k = O, si riduce a

t
lm(t)=uol < [ [f(s,up)|ds < M|t—to
to

ed é vera per il conto precedente. Per provare il passo induttivo ragioniamo come segue

t t Lk—1 —t k
|uk(s)—uk_1(s)ds§LJM [s=tol

to

L¥t—to |
ds - mLt=tol

t
[Upq (1) —ug (1)) < LO If (s, u(s))—f(s,u(s))|ds <L i ol

to

(si noti che nella terza disuguaglianza abbiamo usato lipotesi induttiva). A questo punto possiamo provare che la successione converge, mostrando che
converge totalmente la serie degli incrementi successivi. Infatti vale

k
Upa1(t) =ug + Z(qu(t) _Uj(t))

>
allora, grazie alla (6.3), abbiamo che

Lk6k+1

Up,.1—Uu = su Up,1(t)—u, () <M
H k+1 k”OO |t_t0|p§6‘ k1() k( )| (k+1)'
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il che ci permette di ottenere che

k+p

M Le)1*1 v J*‘
e = tiloe < 1kop =Uiepetloe -+ s =ticloe < T )y < T Z
j=k j=k
essendo la serie convergente la sua coda é infinitesima per k >> 1, quindi la successione & di Cauchy in (X, || - ||so) con X = C[tg — ¢, tg + €], che € uno spazio

metrico completo, quindi possiamo concludere che esiste U € X tale che
lug=tlloc — O per k — +00
per concludere che u & soluzione di (6.2) (e quindi di (6.1)) dobbiamo mostrare che si pud passare al limite nella formulazione integrale, sappiamo che
Upaq(t) =ug + Jt f(s, ui(s))ds
to
e che
Upa1(t) — u(t) perognit € [tg—¢,tg + €]
inoltre vale

t
[f(s, uy(s)) —f(s, u(s))]ds| <

t t
[f(s, ui(s)) —f(s,u(s))|ds < J L|ug(s)—u(s)|ds < L|juy—ul|eo|t—to| < Le|lug—U]|oo
to

to to

e siccome la successione converge uniformemente, per k — +oo, troviamo che
t
u(t) =ug + J f(s, u(s))ds
to

e lesistenza di (almeno) una soluzione é provata.
iii. Lunicita della soluzione & una conseguenza del teorema di Gronwall (teorema 6.2): supponiamo che esistano u e w due soluzioni distinte dellequazione
differenziale

u’(t) = f(t, u(t)
con f funzione lipschitziana (di costante L) nella seconda variabile e che soddisfano il dato iniziale
u(tp) =up w(tg) =wg

Possiamo applicare il teorema 6.2 alla funzione h(t) = [u(t) —w(t)| > O. Infatti vale

h(t = [u(t) =w(t)| = [(ug —wg) + [f(s u(s)) —f(s, w(s))Ids

to

< luo- wO+Lf lu(s) —w(s)] ds = Juo ~wo +L

t
J h(s)ds
to
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quindi segue che

lu(t) —w(t)] < Jug —wple-Ittol

Questultima disuguaglianza prova il problema di Cauchy (6.1) (con lipotesi di lipschitzianita) possiede un'unica soluzione, infatti se u(O) = w(O) seguirebbe che
0 < |u(t) —w(t)| < |ug —ug|elttol = O, cioé u(t) = w(t) per ogni !

La precedente disuguaglianza mostra anche che soluzioni aventi dato iniziale "vicino” evolvono restando “ragionevolmente” vicine, infatti se [ug —wg| < ¢
otteniamo che O < |u(t) —w(t)| < ee*"tol. Quindi la soluzione dipende con continuita dal dato iniziale. n

A questo punto inseriamo una seconda versione del teorema di esistenza ed unicita della soluzione del problema di Cauchy.

TEOREMA 6.4 (A.L. CAUCHY & R.O.S. LIPSCHITZ) Sia A C R2 un insieme aperto con (tg,ug) € Aef € C(A, R). Siano ry,r, > O due costanti reali tali che il
rettangolo R = [tg —1y, tg + 1] X [Ug — 17, Ug + ;] sia contenuto nellaperto A e che esista L > O tale che

[f(t, u) —f(t,w)| < Lju—w|

perognit € [tog—r,tg+r]eu,w € [ug —ry, ug +r,] (per brevita nel seguito diremo che f é una funzione lipschitziana nella seconda variabile).
Posto M = max|f(t, u)| in R, allora esiste ¢ > O tale che il problema di Cauchy (6.1) possiede ununica soluzione u € C'(tg—¢, tg +€), con e < min{ry, ry/M, 1/L}.

DIMOSTRAZIONE. La dimostrazione consiste essenzialmente nel provare che la formulazione integrale (6.2) ha ununica soluzione. Introduciamo lo spazio
metrico

X={ueCC[tg—e,tg+e]l:sup|ult)—ug| <r}
dotato della distanza dell'estremo superiore, cioé
d(u, w) = sup |u(t) —w(t)| per ogniu,w € X

Questo spazio metrico & completo perché é un sottoinsieme chiuso di uno spazio metrico completo.
Adesso consideriamo la seguente applicazione definita su X

t
z=T(w) =ug + J f(s, w(s))ds
to
Naturalmente z € una funzione continua e vale
t
|z(t) —ug| < J [f(s,w(s))|ds < Mt—tg| < Me <1y
to

cioé z € X, il che significa che T manda X in sé stesso.
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A questo punto il teorema si riduce a provare che T ha un unico punto fisso, e la tesi segue dal provare che T & una contrazione (si veda il teorema ??). Siano
v,w e Xey=T(v), z=T(w), allora possiamo scrivere

t t
< [f(s, v(s)) —f(s,w(s))|ds <L | |v(s)—w(s)|ds < Led(v,w)

to to

t
[f(s, v(s)) —f(s, w(s))]ds

to

ly(t)—z(t)| =

Si noti che, nel primo membro, t € [tg —¢, tg + €] € totalmente arbitrario, quindi passando allestremo superiore nella disuguaglianza otteniamo
sup |y(t) —z(t)| = d(y,z) < Led(v,w)

cioé
dly,z) =d(T(v), T(w)) < Led(v, w)

e, siccome per ipotesi Le < 1, possiamo affermare che loperatore T possiede un unico punto fisso, cioé che lequazione integrale (6.2) ha un'unica soluzione,
cioé che (6.1) ha ununica soluzione e la tesi & provata. []

| teoremi precedentemente discussi mostrano che, sotto opportune ipotesi, il problema di Cauchy per unequazione differenziale possiede sempre una sola
soluzione. Tale soluzione &, perd, una soluzione locale, cioé una soluzione definita in un intervallo la cui ampiezza dipende (essenzialmente) dalle proprieta
della funzione f e dagli strumenti impiegati nella dimostrazione. In realta & spesso possibile prolungare tale soluzione su intervalli di ampiezza maggiore, una
soluzione che non é ulteriormente prolungabile viene detta globale o massimale. Gli enunciati che seguono mostrano alcuni risultati sulla prolungabilita (o
meno) delle soluzioni locali.

TEOREMA 6.5 Consideriamo il problema di Cauchy (6.1) e sia la funzione f definitain A= (a,b) x R C R2, supponiamo inoltre che per ogni compatto K C (a, b)
esistano due costanti ¢; = ¢;(K), coni=1,2, tali che

[f(t,u)| < cq+cylul perognit € Keperogniu € R

Allora la soluzione é prolungabile ad una soluzione definita in tutto (a, b) (si noti che non é richiesto che lintervallo (a, b) sia limitato)).

TEOREMA 6.6 Sia u una soluzione massimale di (6.1) definita su (a, b). Per ogni compatto K C A C R2 esiste § = 6(K) > O tale che perognite (a+§,b—0)il
punto (t, u(t)) non appartiene a K.

TEOREMA 6.7 Sia u una soluzione del problema di Cauchy (6.1) e sia la funzione f € C'(A)conA=(a,b) x R CR? supponiamo che esista ¢ > O tale che
lu(t)| <c perogni t

allora la soluzione é prolungabile ad una soluzione definita in tutto (a, b).
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6.2 Sistemi lineari di equazioni differenziali

In questa sezione ci interesseremo di sistemi lineari, cioé di sistemi di equazioni differenziali del seguente tipo
(6.4) X'(t) = A(t)x(t) + f(t)

conAe O ((a,b), Mh(R)) e f e co ((a,b), R™), dove abbiamo —co < a < b < +cc.
Osserviamo subito che, per i teoremi provati precedentemente tutte le soluzioni del sistema (6.4) sono globali, cioé hanno come dominio tutto l'intervallo
(a, b). Scriviamo anche il relativo sistema lineare omogeneo

(6.5) x'(t) = A(t)x(t)

come possiamo dedurre dal risultato che segue, i due sistemi sono strettamente collegati tra di loro.
TEOREMA 6.8 Siano x e y due soluzioni di (6.4), allora la funzione (x—y) e soluzione del sistema omogeneo (6.5).

DIMOSTRAZIONE. La dimostrazione dell precedente affermazione &, di fatto, una conseguenza diretta della linearita del sistema e delloperazione di deriva-
zione, infatti abbiamo

(x(1)—y(t)" =X (t) =y’ (t) = A(OIX(1) + F(t) - At)y(t) — f(t) = AD) (x(t) —y (1))
il che conclude la prova. n

Il precedente risultato si rivela di una certa importanza nella risoluzione di sistemi lineari, perché indica la strategia che si & rivelata piu efficacie nella ricerca di
soluzioni, tipicamente la strategia si riconduce a determinare tutte le soluzioni del sistema omogeneo a cui poi aggiungere una qualsiasi soluzione del sistema
completo, in questa maniera si ottengono tutte le soluzioni del sistema completo.

DEFINIZIONE 6.9 Siano {x1,...,Xn} € C'(a, b) un insieme di n funzioni (non tutte nulle), diremo che tali funzioni sono LINEARMENTE DIPENDENTI se esistono n
numeri reali {\, ..., \n} € R" (non tutti nulli), tali che

n
ijxj(t) = MX1(t) + .. + AnXn(t) = O perognit € (a,b)
j=1

Diremo che le funzioni sono LINEARMENTE INDIPENDENTI se la precedente relazione é vera solo nel caso in cui A\ = ...= A\n = O.

Il prossimo risultato che dimostriamo quantifica, in un certo senso, il numero e la struttura delle soluzioni di un sistema lineare ed omogeneo di equazioni
differenziali.

TEOREMA 6.10 Sia W = {x e C'((a, b), R) soluzione di X' (t) = A(t)x(t)}, allora W é un sottospazio vettoriale di dimensione n ed esiste unapplicazione lineare
e biettiva tra W e R".
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DIMOSTRAZIONE. La strategia della dimostrazione & decisamente semplice: verificheremo rapidamente che W & uno spazio vettoriale, per poi costruiremo
lapplicazione richiesta dalla tesi, di cui mostreremo le proprieta di linearita, iniettivita e suriettivita.

Per rivelare la struttura di W consideriamo x,y € W e A, i € R e consideriamo la funzione ¢(t) = Ax(t) + wy(t), per la proprieta di linearita della derivazione e del
prodotto tra matrici otteniamo che

@' (1) = A/ (1) + wy’ (1) = AA(DX() + LAR)Y(t) = ADX(E) + wy()] = Al)p(t)

quindi ¢ € W, e l'insieme si rivela essere un sottospazio vettoriale di c'((a,b), RM).
Assegnato xg € R" e scelto arbitrariamente tg € (a, b), sia x(t) = x(t;tg, Xg) lunica soluzione del problema di Cauchy

x'(t) = A(t)x(t)
X(to) =X

e definiamo la seguente applicazione
T:R" — W
Xo +— Txp)t) :=x(ttg, Xg)

Osserviamo subito che lapplicazione € ben posta, visto che sono soddisfatte tutte le ipotesi del teorema di Picard e Lindelof, per cui ad ogni punto xg dello
spazio possiamo associare ununica funzione di W. Mostriamo che lapplicazione T € lineare: consideriamo due punti distinti xg, x; € R" e le relative soluzioni
T(xo)(t) = x(t; tg, Xo) € T(x¢)(t) = x(t; tg, X1). Mostrare che lapplicazione é lineare significa verificare che

T(Axg + ux7)(t) = AT(xg) (1) + uT(x1)(t) VA ueR Vxg,xp€R"
Siccome, per la linearita delloperazione di derivazione, vale

[AT(x0) (1) + uT0xq)(1)]" = X [T(xo) (0] + w[T(q) (D] = XAWMT(x0) (1) + LAMDT(x1)() = A(t) [AT(x0) (1) + uT(x¢)(1)]
e abbiamo anche che

[AT(x0)(0) + uT(x1)(0)] = Axo + uxq

possiamo concludere che la funzione AT(xg)(0) + . T(x¢)(O) risolve il sistema differenziale (6.5), quindi appartiene allo spazio vettoriale W, inoltre realizza, come
dato iniziale, la combinazione lineare (Axg + tx¢) e per lunicita della soluzione del problema di Cauchy possiamo dedurre che

T(Axg + ux7)(t) = AT(xg) (1) + uT(x)(t)

infine larbitrarieta dei coefficienti A, . e dei punti xq, x; prova la linearita delloperatore T.

Lunicita della soluzione del problema di Cauchy (o la linearita delloperatore) implica anche che se xg = O allora T(O)(t) = O perogni t € (a, b) e questa proprieta
equivale all'iniettivita di T, quindi non resta che provare la suriettivita, per poter affermare che abbiamo costruito un isomorfismo tra spazi vettoriali.

Sia x(t) = x(t;tg, Xg) € W una soluzione del sistema (6.5), ovviamente esiste una n-pla di scalari {1, .., An} tale che xg = x(tg) = A\ + .. Anen, dove i vettori
{ey,...,en} costituiscono la base canonica di R". Allora possiamo considerare in W i vettori {T(e;)(t),..., T(en)(t)}, per definizione sappiamo che risolvono il
sistema di equazioni differenziali lineare, e per i precedenti ragionamenti anche ogni loro combinazione lineare, per cui possiamo scrivere

MT(e)(t) +...+ AnT(en)(t) = T(\eq + ... + Anen)(t) = T(xg)(t)
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e (come prima!) lunicita della soluzione del problema di Cauchy ci permette di dire che x(t) = A\T(e)(t) + ... + \nT(en)(t) = T(xg)(t) ovvero di provare che T &
suirettivo, e quindi un isomorfismo. Si noti che dalla dimostrazione deduciamo anche che

dim(W) =n e che W = span{T(e)(t), ..., T(en)(t)}

Osserviamo che il precedente risultato mostra che linsieme delle soluzioni di un sistema omogeneo di equazioni differenziali lineari ha una naturale struttura
di spazio vettoriale reale di dimesione pari al numero delle equazioni (o al numero delle funzioni incognite), e abbiamo gia osservato che la conoscenza di
una qualsiasi soluzione del sstema completo ci permette di ottenere tutte le soluzioni del sistema non omogeneo. In un linguaggio un poco piti geometrico
possiamo dire che W € uno spazio vettoriale e costituisce la giacitura di uno spazio affine rappresentato dalle soluzioni di (6.4).

Osserviamo anche che, in generale, non siamo in grado di risolvere un sistema di equazioni differenziali lineare, tranne il caso in cui la matrice & a coefficienti
costanti, cioé A(t) = A € Mnp(R). Il precedente teorema ci dice che se troviamo n soluzioni del sistema linearmente indipendenti allora abbiamo una base per
lo spazio vettoriale delle soluzioni.

DEFINIZIONE 6.11 Siano {Xy, ..., Xn } un insieme di n soluzioni del sistema omogeno (6.5), la matrice che si ottiene affiancando le soluzioni x; come colonne di
una matrice

X(8) = (x1(8)] .. [xn (1))

viene detta matrice di soluzioni.

DEFINIZIONE 6.12 Un sistema di n soluzioni di (6.5) linearmente indipendenti costituiscono un SISTEMA FONDAMENTALE di soluzioni. La matrice di soluzioni
composta da un sistema fondamentale viene detta MATRICE FONDAMENTALE, se tale matrice verifica la relazione X(tg) = In € Mn(R) diremo che é una
MATRICE FONDAMENTALE SPECIALE al tempo tg. A volte indicheremo una tale matrice usando la notazione U(t; tg).

Proviamo alcuni risultati utili,

TEOREMA 6.13 Se {x1(t), ..., xn(t)} sono n soluzioni di (6.5), allora la relativa metrice di soluzioni X(t) risolve la seguente equazione differenziale matriciale
X' (t) = A(t)X(t)

Analogamente se si considera una matrice X(t) soluzione della precedente equazione differenziale, ogni sua colonna x(t) & soluzione del sistema omogeneo
(6.5).

DIMOSTRAZIONE. La dimostrazione di questo risultato segue facilmente dalle definizioni di prodotto tra matrici e tra matrice e vettore (il prodotto riga per
colonna, per intenderci) e dal fatto che loperatore di derivazione lavora su ogni singola componente di una matrice, per linearita. Quindi possiamo scrivere

Alt) = [Ajk(t)]j,k=1,...,n X(t) = [Xik(t)]j,k=1,...,n X'(t) = [Xi/k(t)],-,k=1,...,n
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da cui segue che

X 0] = X0 = AwX(t) = [Ag®)] [X(0)] =

) AOX(t)
i=1

Larelazione ottenuta € la dimostrazione delle affermazioni contenute nella tesi. Infatti nel primo caso € sufficiente pensare che la matrice di soluzioni & costruita
affiancando le soluzioni come colonne per cui X;, = (x); € il j-simo elemento della k-sima soluzione, e osservando che la relazione € soddisfatta per k fissato e
resta vera al variare dell'indice. La seconda affermazione segue dal fissare l'indice k nella precedente uguaglianza matriciale. ]

TEOREMA 6.14 Una famiglia di soluzioni {x4(t), ..., xn(t)} del sistema omogeneo (6.5) é linearmente dipendente in C'((a,b), R") se e solo se esiste un tempo
T € (a,b) tale che i vettori {x(T), ..., xn(T) } sono linearmente dipendenti in R".

DIMOSTRAZIONE. Siano 7 € (a,b) e {\1,.., A\n} C R (non tutti diversi, ma al contempo non tutti nulli) tali che A\x¢(7) + ... + Anxn(7) = O. Allora, per lunicita
della soluzione del problema di Cauchy, possiamo dedurre che la funzione x(t) = [A\xq(t) + ... + A\nXn(t)] € soluzione di (6.5) e assume come dato iniziale, per
t = 7, il vettore nullo, quindi x(t) = O per ogni t € (a, b). Limplicazione opposta & semplicemente una riscrittura della condizione di dipendenza lineare per
t="7. [

TEOREMA 6.15 La matrice fondamentale speciale U(t;tg) del sistema omogeneo (6.5) é lunica soluzione del seguente problema di Cauchy

X' (t) = A(t)X(t)
X(to) = In

Inoltre, per ogni xg € R", la funzione x(t) = U(t; tg)xg € lunica soluzione del problema di Cauchy

X' (t) = A(t)x(t)
X(to) =Xp

DIMOSTRAZIONE. La prima affermazione segue facilmente dalla definizione di matrice fondamentale speciale, infatti essendo fondamentale risolve lequa-
zione differenziale matriciale, il fatto che U(tg; tg) = X(tg) = I € una conseguenza del significato di speciale. Infine lunicta segue (come sempre) dal teorema di
Picard e Lindeldf, visto che il sistema é lineare e quindi il campo vettoriale localmente lipschitziano.

Per provare la seconda parte dellenunciato € sufficiente effettuare un paio di semplici verifiche. Per definizione

x(t) = U(t; to)xo allora X(tg) = U(tg;to)Xo = InXo = X0
e anche
X' (1) = [U(tto)xo] = U'(t;to)xo = AlU(t to)xo = A(t)x(t)

il che conclude la dimostrazione. ]
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PROPOSIZIONE 6.16 Sla X(t) una matrice fondamentale speciale del sistema omogeneo (6.5), allora segue che
Ut to) = X)X (to)
DIMOSTRAZIONE. Anche questa proposizione non & particolarmente difficile da dimostrare, infatti dobbiamo verificare che la matrice U(t;tg) = X(t)X (to)
risolve lequazione differenziale matriciale e, ricordando il teorema 6.13, abbiamo
U'(t:t0) = X' ()X (to) = AX(DX ' (to) = A U(t:to)
inoltre vale
Ultoito) = X(to)X(to) = In

e il ragionamento & concluso. n

TEOREMA 6.17 (FORMULA DI .M.C. DUHAMEL) La soluzione del sistema (6.4)

X' (t) = A(t)x(t) + f(t)
X(to) =Xp

dove A € CO((a,b), Mn(R)) ef € CO((a, b), RM) {con —oo < a < b < +o0), si puo rappresentare tramite la seguente espressione
t
x(t) = X()X(to)xo + f X)X (s)f(s)ds
to

dove X e una qualsiasi matrice fondamentale del sistema omogeneo associato (6.5).

DIMOSTRAZIONE. Sappiamo che, detta X(t) una matrice fondamentale del sistema omogeneo, tutte le soluzioni di (6.5) possono essere descritte dalla
seguente formula

Xom(t) = XX (to)xo

in cui abbiamo usato i risultati precedenti per avere una matrice fondamentale speciale ed un'espressione che contenga anche l'informazione del dato iniziale
del problema di Cauchy che ci interessa risolvere.

Dunque il problema & completamente risolto se riusciamo a costruire una soluzione del sistema completo con dato iniziale nullo. Per fare questo cerchiamo
una soluzione imponendo la seguente forma

s(t) = X(t)c(t) da cui s’(t) = X' (t)c(t) + X(t)c' (t)
ricordando che X(t) & una matrice fondamentale e imponendo che la soluzione del sistema completo abbia questa espressione, otteniamo

s'(t) = X/ ()c(t) + X(1)c’ (t) = A@)X(H)c(t) + X(B)c' (1) = AR)X(t)c(t) + (1)
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semplificando otteniamo il seguente sistema per il vettore incognito c(t)

t
M) =X"f(t) cioé c(t)=f X1(s)f(s)ds
t

0
il che conclude la dimostrazione. n

| risultati raccontati in questo paragrafo sono, per necessita, solo lessenziale dello studio dei sistemi lineari omogenei, dove essenziale significa lo stretto
necessario per affrontare la teoria che sara presentata nelle pagine che seguiranno. Il lettore interessato puo, naturalmente, consultare i testi nella bibliografia
per soddisfare la sua sete di sapere.

6.3 Sistemi lineari autonomi

Sappiamo che R" € uno spazio di Banach, lo spazio delle applicazioni lineari e limitate (o continue) dello spazio in sé € in genere indicato dal simbolo £(R"), in
realta ogni operatore dello spazio puo essere rappresentato tramite una matrice quadrata appartenente allo spazio M(R"), e nel seguito penseremo sempre
gli operatori identificati con una matrice.

OSSERVAZIONE 6.18 Sia A € Mu(RR") e definiamo una successione nello spazio delle matrici nel seguente modo
L k _ O 1,2 i
Aj:=kZHA =A%+A+ oA+ jEN
=0

notiamo che si tratta di una successione di Cauchy, infatti vale

L Ly Ly
IR DTS EDI A B 16
k=0 k=0

k=0

da cui segue che

P ) i RN y
1A= Aupll = ;HA <) A S;EHM
= =) =

lultima sommatoria scritta & la coda di una serie convergente, il cui limite & elAl, essendo la maggiorazione indipendente dall'indice j e infinitesima per N che
tende a +co, laffermazione é provata.
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DEFINIZIONE 6.19 Definiamo il limite della successione {A}, introdotta nellosservazione precedente, come MATRICE ESPONENZIALE di A

PROPOSIZIONE 6.20 (PROPRIETA DELLA MATRICE ESPONENZIALE) Sia A € Mp(R") e e la matrice esponenziale risultante, allora
i. €O =1 € Mn(R"),

ii. A,B € Mn(IR") matrici che commutano (cioé AB = BA) allora e
-A

A'B _ oAgB

. . N , _ -1

iii. la matrice esponenziale e” & sempre invertibile e [eA] =e
. _ - _

iv. A,C,C" € Mnp(R) allora A€ = CeAC™.

DIMOSTRAZIONE. i. Ricordando la definizione di matrice esponenziale e scrivendola, in particolare, per la matrice nulla Op, otteniamo che
1 2 1 j ..
O]-=In+On+§On+...+j—|On=In perognije N

il che prova laffermazione.
ii. Sempre ricorrendo alla definizione di matrice esponenziale, ricordando la formula di Newton delle potenze di un binomio e grazie al fatto che AB = BA,

possiamo scrivere

come prima, passando al limite per j — +o0, si ottiene la tesi.
iii. Siccome vale O = A—A, e siccome A e —A commutano, per il punto ii abbiamo che

-
Ih = eOn = ehe™A - A [eA]
iv. Sempre dalla definizione discende che

%(CAC'1)2+...+]_1'(CAC'1) In+(CACT) + = (CAC"’)(CAC'1) jll(CAC'1)...(CAC"1)

(CACT); =In+(CACT) +
=ln+(CACTY) + %CAZC'1 M jl'CAjC‘1 =ClaC'+ (CACT) + 5CA2C'1 P mCANC'1

1
=Cln+A+§A2 JA‘ C'=cAC  perognije N
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la tesi si ottiene per j — +o0. n

PROPOSIZIONE 6.21 Sia M € M (R"), allora loperatore e”t & derivabile in tutto R e vale
d
_eAt - AeAt
dt

Si noti che e*t & la matrice fondamentale speciale (con tg = O) del precedente sistemal In generale si ha che U(t;tg) = eAt-t0),

DIMOSTRAZIONE. Per quanto dimostrato nella proposizione precedente possiamo scrivere

v kp k=1
EAh_
k=1

quindi il limite del rapporto incrementale esiste e vale la formula della tesi. Si noti che abbiamo usato il fatto che At e Ah sono delle matrici che commutano.
[

+0O
A= [All+ Z AN ||eAt = [A(I+ Mh)]eAt — Aet
jk—1=1

eAlth) _ At [Ah_|
h h

TEOREMA 6.22 (FORMA CANONICA DI M.E.C. JORDAN) Sia A € My(R) allora é sempre vero che esiste un cambio di base (indicato con C) tale che M = cBC!
con

B ... O A1 0
B=| : . dove By=| : .
O ... By 0 ... N

con ) € C (gli 1 compaiono solo quando mg(};) < ma(;)). Se (%) = O allora esiste un indice i per cui vale \; = Xj.

commenti vari, particolare spiegare la questione del rapporto tra martici in Mnp(R) e in Mp(C) e relativa diagonlizzazione in blocchi (triangolari in C, "semi-
triangolari” in R).

LEMMA 6.23 Data A € My (R), risultano equivalenti le seguenti affermazioni
. . At _
i lim [[e™|z=0,

t—>+00

ii. lim x(t) = O per ogni soluzione del sistema x’(t) = Ax(t).
t—+00
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TEOREMA 6.24 (CRITERIO DI STABILITA) Sia A € Mn(R), allora sono equivalenti le seguenti proprieta
i . lim x(t) = O per ogni soluzione del sistema x'(t) = Ax(t),
—+00

ii. Re(X\) < O per ogni X € o(A).

TEOREMA 6.25 (CRITERIO DI LIMITATEZZA) Sia A € Mn(R), allora ogni soluzione del sistema x'(t) = Ax(t) é limitata se valgono le seguenti,
i. Re(\) < O perogni X € o(A),
ii. ogni autovalore X € o(A) con Re()\) = O é regolare.

TEOREMA 6.26 (CRITERIO DI INSTABILITA) Sia A € Mn(R), allora sono equivalenti le seguenti proprietd

i . lim |x(t)| = +oo per (quasi) ogni soluzione non banale del sistema x'(t) = Ax(t),
—+00
ii. Re(X\) > O per almeno un X\ € o(A).

6.4 Equazioni lineari del secondo ordine a coefficienti costanti

In questo paragrafo vogliamo tentare di descrivere la dinamica generata da un sistema differenziale lineare planare (cioé un sistema di due equazioni in due
incognite), quindi un sistema del tipo

x(t) = Ax(t) con A € M;(R)

La discussione si svolgera in vari punti, analizzando i differenti modi in cui pud presentarsi lo spettro della matrice.
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PROPOSIZIONE 6.27 Data A € M>(R) e o(A) = {\1, A\, } abbiamo che
i. Se A\ # Xy 0 \1 = A\ = \ ma esiste una base di autovettori (lautovalore \ ha molteplicita algebrica e geometrica pari a 2), allora nella opportuna base di R?
(quella composta dagli autovettori della matrice) vale A = CBC™" e

At _ Bt~ (M O B[ et O
e =Ce”'C dove B-( 0 >\2) e e -( 0 et

ii. Se M\ = \; = X e la molteplicita geometrica vale solo 1, allora nella opportuna base di R vale A= CBC ' e

At _ ~ Bt~ N Bt atf 1t
e =Ce"'C dove B_(OA) e e-e(o1)

iii. Se \y = a+ib e X\, = a—ib, allora nella opportuna base di R? vale A = CBC' e

a -b ) . eBt=eat( cos(bt) —sin(bt) )

At _ Bt ~—1 =
et = CeP'C dove B—( b a sin(bt)  cos(bt)

DIMOSTRAZIONE. da scrivere u

6.5 Sistemi non lineari

In queste pagine intendiamo fornire una traccia di studio riguardo alcuni argomenti affrontati a lezione, di carattere un po' piti avanzato, che non sempre sono
presenti nei testi didattici. In ogni caso tutti gli argomenti dati per noti sono reperibili nei testi citati in bibliografia (in particolare in [?]). Il protagonista indiscusso
delle nostre attenzioni sara il seguente sistema di equazioni differenziali ordinarie autonome

(6.6) X'(t) = f(x(t)) conxeR"ete(a,b)

di volta in volta scriveremo le ipotesi pili specifiche sul campo vettoriale f € C'(A, R") (con A C R aperto), sulla dimensione n € IN del sistema e sull'intervallo
(a,b) € R. In alcuni casi € possibile che le ipotesi possano essere leggermente indebolite, ma eviteremo di accanirci nella ricerca della massima generalita...
Osserviamo anche che alcune definizioni della sezione precedente si estendono, senza alcuna fatica, a sistemi di dimensione maggiore, in particolare il concetto
di regione positivamente invariante, si punto stabile o instabile per linearizzazione e le definizioni di w-limite e attrattore. Il lettore &, in ogni caso, invitato a
riscrivere le definizioni con la notazione corretta.

DEFINIZIONE 6.28 [l punto p € R" si dice punto di equilibrio o punto critico (o anche punto singolare) per il campo vettoriale f se f(p) = O, mentre si dice punto
regolare se f(p) = O.
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Si noti che i punti critici del campo vettoriale f corrispondono alle soluzioni stazionarie di (6.6), sono esattemente i punti di equilibrio del sistema di equazioni
differenziali.

TEOREMA 6.29 (DI RETTIFICABILITA LOCALE) Sia xg € A un punto regolare per f € Cc'(A, RM), allora esistono un aperto V C A contenente il punto xg ed un
diffeomeorfismo v tra V e un opportuno intorno W di O tale che, per ogni § € V, la funzione z(t) = ¥ (x(t, £)) risulta essere [unica soluzione del problema di
Cauchy

Z/(t) =€
(6.7) { 2(0) = ()

DIMOSTRAZIONE. Si consulti [?]. [ ]

TEOREMA 6.30 Un punto stabile (per linearizzazione) é asintoticamente stabile.

TEOREMA 6.31 (P. HARTMAN E D.M. GROBMAN) Sia Xg € A un punto singolare per f. Se la matrice jacobiana [f(xq) é iperbolica, allora esistono un intorno
V C Adel punto xg ed un omeorfismo 1 tra V e un opportuno intorno W di O tale che, per ogni & € V, la funzione z(t) = 1 (x(t, £)) risulta essere [unica soluzione
del problema di Cauchy

Z/(t) = Jf(xo)z(t)
{4l { 2(0) = (¢

DIMOSTRAZIONE. Si veda, per esempio, [13]. ]

6.6 Alcuni sistemi planari quadratici

Continuiamo lo studio di alcuni (particolarmente significativi) esempi di sistemi di due equazioni differenziali con campo vettoriale (al piti) quadratico studiando
i modelli di Lotka-Volterra. Nella sezione successva, facendo tesoro delle osservazioni fatte, cercheremo di inquadrare lo studio di sistemi planari in un quadro
teorico pili organico e strutturato, per quanto possibile.

Le equazioni di Lotka-Volterra descrivono un sistema ecologico di interazione tra una specie di predatori e una specie di prede su cui facciamo le seguenti
ipotesi:

i. la preda é lunica risorsa del predatore, in assenza di prede i predatori tendono allestinzione;

ii. la velocita di crescta della popolazione dei predatori € legata alla possibilita di predazione, quindi supponiamo che sia proporzionale al numero di incontri tra
prede e predatori, cioé al prodotto del numero di prede per il numero di predatori;
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iii. la velocita con cui diminuisce la popolazione delle prede a causa dei predatori € (come sopra) proporzionale al numero di incontri tra prede e predatori, cioé
alla possibilita di essere predati;

iv. il cibo disponibile per le prede & costante (e positivo) in assenza di predatori, quindi la crescita della popolazione di prede € proporzionale alla popolazione
stessa (crescita malthusiana).

Indicando con x(t) il numero di prede e con y(t) il numero di predatori all'istante t, e supponendo di poter operare con funzioni sufficientemente regolari, ci
riconduciamo a studiare il seguente sistema planare

(6.9) x'(t) = f(x(t), y(t)) = x(t)[a—by(t)]
' y'(t) = g(x(t), y(t) = y(t)[cx(t) —d]

Tutti i parametri biologici di proporzionalita coinvolti nel sistema sono positivi, cioé a, b, c,d > 0, ma difficilmente misurabili in natura: daltronde & vero che
tutti gli ecosistemi reali possiedono una complessita maggiore di quello che descrivono le due equazioni differenziali di sopra...

Ricordiamo che siamo interessati esclusivamente a soluzioni non negative e limitate, cioé tali che esista M > O per cui siano soddisfatte le disequazioni
0 < x(t), y(t) < M per ogni valore di t, quindi ci interessa la dinamica del sistema ristretta nel primo quadrante del piano.

Cominciamo identificando i punti di equilibrio del sistema, cioé le soluzioni (ci interessano solo quelle non negative, ma non ce ne sono altre) del seguente
sistema algebrico

{ x[a—by]=0

d a
ylex—d]=0 che sono 0=(0,0) e E=(E’B)

Chiaramente i due equilibri sono due soluzioni stazionarie del sistema (6.9), O ¢ il sistema in assenza di popolazioni mentre E descrive un sistema in cui
c'é coabitazione delle due specie biologiche. Notiamo che, al contrario di quanto visto per le singole equazioni del primo ordine, la conoscenza di soluzioni
stazionarie non ci permette di dedurre stime a priori sulle altre soluzioni, questo perché la topologia di R2 & piti ricca (e complicata) di quella di R e avere un
risultato analogo al teorema della barriera per sistemi (teorema ??) é piu difficile.

Per studiare la natura dei punti critici trovati calcoliamo la matrice jacobiana del campo vettoriale del sistema nei punti di equilibrio

) a_by —bx _ a (0] _ (0] —bd/C
J(XYY)-( ey cx—d) J(O)‘( 0 —d) J(E)_( acb O )

E immediato accorgersi che O & un punto di sella, visto che la matrice & diagonale e gli autovalori sono discordi, quindi ha un carattere genericamente repulsivo
(tranne rispetto alla direzione individuata dal autovettore relativo allautovalore —d, cioé e;) rispetto alla dinamica del sistema.

J(E) ha due autovalori immaginari (coniugati) puri: per un sistema lineare questo implicherebbe che intorno al punto critico il sistema genera delle traiettorie
ellittiche, ma per un sistema non lineare due autovalori immaginari puri non permettono di concludere nulla: il fatto che la parte reale degli autovalori sia nulla
rende cruciale leffetto dei termini di ordine superiore al primo. Per cui non possiamo dire altro, se non che la natura del punto critico deve essere studiata con
strumenti piu raffinati.

Per il momento effettuiamo alcuni esperimenti numerici, sperando che il calcolatore suggerisca qualcosa di interessante relativamente alla dinamica generata
da (6.9). In particolare produciamo alcune orbite e alcuni grafici delle soluzioni del sistema.
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Le immagini ottenute sembrano indicare che il sistema generi, pitl 0 meno sempre, soluzioni periodiche e, conseguentemente, orbite chiuse nel piano delle fasi,
che si svolgono intorno ad un punto di equilibro che deve essere necessariamente E: questo suggerisce anche che E sia un centro, dinamicamente parlando.
Questa osservazione non € in contrasto con quanto detto prima, infatti le orbite non sembrano ellissi, quindi i termini non lineari hanno un ruolo importante
nella dinamica del sistema.

Per dimostrare la precedente affermazione possiamo procedere nel seguente modo: consideriamo un generico punto p € (0, +c0)? C R? e consideriamo
il problema di Cauchy relativo a (6.9) con p come dato iniziale. Osserviamo che, lungo tutti i punti di una traiettoria non stazionaria, almeno una delle due
componenti del campo vettoriale tangente deve essere non nulla. Allora, per il teorema della funzione implicita, possiamo supporre che la traiettoria della
soluzione sia (intorno a p) il grafico di una funzione y(x), e, per il teorema di derivazione della funzione inversa, possiamo scrivere la seguente equazione a
variabili separabili

d

c—_
dy y'(t) y()lex—d] y(x)[ex—d] [ X} : B o )
dx X xa-by()] xa-by()] [E—b] dacui  aln(y)=by+dln(x)-cx=Co  (x,y) € (0, +00)

Y

La relazione ottenuta é lequazione cartesiana dellorbita percorsa dalle traiettorie del sistema (6.9), la costante d'integrazione Cp € determinata scegliendo
esplicitamente il punto iniziale p: si noti che le curve ottenute sono ben definite ovunque, questo perché non hanno punti singolari ed & sempre possibile
(localmente) poterle descrivere come grafici di funzioni, sempre per il teorema di Dini.

In alternativa & possibile supporre che le orbite siano linee di livello di una funzione H(x, y) = F(x) + G(y) e procedere come segue

% [Hx(t), y(1)] = [F(X +G(y(1)] = F'(x(0)x(t) + G (y(1)y' (t) = F'(x(t))x(t)[a— by(t)] + G’ (y(t) y(t)[cx(t) —d] = O

e dal precedente calcolo ricaviamo che, a meno di una costante, deve valere la seguente relazione

(0 v
) oy =~ VO 2y !
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da cui possiamo ottenere che

F(x) = cx—dIn(x) e

Gly) =by—aln(y)

(x,y) € (0, +0)?

riottenendo lespressione precedente, che descrive analiticamente le curve di livello di H su cui si svolgono le traiettorie del sistema.
Per uno studio pit puntuale osserviamo che esistono quattro rette, dette nullocline, lungo le quali una delle componenti del campo vettoriale si annulla:
precisamente i due assi e le rette {x = d/c} e {y = a/b}, queste due rette costituiscono il luogo dei punti in cui le orbite hanno vettore tangente orizzontale o

verticale e la cui intersezione & il punto critico E

. Disegnando alcuni vettori tangenti allimmagine di una soluzione si ottiene un grafico qualitativamente simile

al successivo, che da un'idea del perché le soluzioni abbiamo orbita chiusa.

4

Y

N

x =d/c
/T

E 1
l y=a/b
\ SN /

Proviamo a formalizzare i ragionamenti fatti finora: consideriamo il problema di Cauchy relativo a (6.9) con dato iniziale (x(0), y(0)) = (p;, p,) con p; > d/ce

p, > a/b, finché la traiettoria resta nel quadrant

X' (t)

x(t)

esplicitando lespressione abbiamo che

d
ammm=

géﬂﬂ§m€”

=a—by(t) <a-bp,=-r< O

e individuato dalle relazioni {x > d/c,y > a/b} abbiamo che x/(t) < O e y’(t) > O, e da questo ricaviamo che

e integrando In(x(t)) = n(py) < -rt

quindi, in tempo finito, x raggiunge il valore d/c e la traiettoria passa nella semistriscia {O < x < d/c,y > a/b}. Ripetendo questo argomento & possibile

dimostrare che la soluzione ruota, in senso an

tiorario, intorno ad E e siccome deve muoversi su una curva di livello chiusa della funzione coercitiva H, deve

descrivere unorbita chiusa, percorrendo una traiettoria periodica. Il calcolo precedente ha un'ulteriore implicazione, poiché vale

dt

d In(x(t)) =a—by(t) e integrando troviamo In(x(t)) —n(p,) = at— bj

t
y(s)ds
0
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,
scegliendo t = 7 il periodo della traiettoria, per cui vale x(7) = p;, otteniamo la media della popolazione dei predatoriy := % J y(s)ds = E.
0]

In modo analogo, sfruttando laltra equazione del sistema, & possibile calcolare la media x.

6.7 Sistemi non lineari planari

Consideriamo il sistema planare del primo ordine

x'(t) = f(x(t), y(1)

(6.10) { y'(t) = g(x(t), y(t))

Classificare il punto di equilibrio O significa determinare se le soluzioni generate dal problema di Cauchy con un dato iniziale vicino al punto critico tendono ad
avvicinarsi o meno allequilibrio. In generale possiamo ragionare nel seguente modo: supponiamo di avere a che fare con un sistema del tipo

x'(t) = f(x(t), y(t)
y'(t) = g(x(t), y(t)

con f,g € C(R), che possieda un equilibrio P(xg, y,). Il fatto che P sia un punto critico del campo vettoriale, cioé un equilibrio del sistema, significa che risolve
il sistema di equazioni, f(xp,yg) = g(xo0.Yo) = O. Sia (x«,y,) un dato iniziale tale che (xq —x;)2 + (Yo —y*)2 < g e x(t), y(t) la soluzione del problema di Cauchy,
allora possiamo scrivere

X' (t) = f(x(t), y(t) = f(x(1), y(t)) = f(x0.Yo) ~ Vf(X0.Yo) - (X(t) —xo. Y(t) —yo)
y'(t) = g(x(t), y(1) = g(x(t), y(t) — g(x0. Yo) ~ V&(x0.Yo) - (X() =x0. ()~ yo)

dove abbiamo approssimato la differenza usando lespansione in polinomio di Taylor al primo ordine e trascurando gli ordini successivi. Ovviamente questa
approssimazione € ragionevole solo per tempi piccoli, cioé fino a quando possiamo pensare la traiettoria vicina allequilibrio. Introducendo le variabili £(t) =
x(t) —xg e n(t) = y(t) —yq il precedente sistema diventa

¢'(t) = 81f(x0, yo)&(t) + 85 f(x0. yo)n(t)
n'(t) = B1g8(X0. Yo)(t) + Ba8(X0. yo)n(t)

0, in notazione matriciale,

¢ £(t)
( n(t) ) =J(f,g)(XOYYO)( nlt) )

Diremo che lequilibrio P & stabile se (£(t), n(t)) — P, e siccome il sistema & lineare € facile verificare che il comportamento asintotico della traiettoria
(£(t), n(t)) dipende dagli autovalori di ) 5) (X0, Yg). Questa definizione di stabilita non é lunica presente in letteratura ed &, piu precisamente, detta stabilita
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per linearizzazione, in particolare vale che lequilibrio € stabile se gli autovalori della matrice hanno parte reale negativa, altrimenti lequilibrio pud non essere
stabile.

Nello studio di equazioni differenziali in una sola incognita € frequente ottenere esistenza di soluzioni globali grazie al teorema della barriera (vedi il teorema 7?),
cioé tramite una stima a priori che ci assicura che l'immagine della soluzione € contenuta in un insieme della retta reale su cui il secondo membro dellequazione
é globalmente lipschitziano.

Avendo a che fare con sistemi di equazioni differenziali questa idea deve essererivisitata e opportunamente generalizzata. In particolare vedremo come concetti
quali limitatezza delle soluzioni, stime a priori e proprieta di positivita delle soluzioni sono differenti sfaccettature di una stessa idea: tutti queste proprieta
qualitative di alcune traiettorie dei sistemi richiedono che la soluzione abbia valori in opportuni sottoinsiemi di IR2. Una possibile strategia che dimostra la
validita di questo genere di proprieta si basa sul concetto di regione invariante. Nel seguito delle note ci concentreremo (quasi esclusivamente) su sistemi
planari.

DEFINIZIONE 6.32 Un sottoinsieme D C R2 & POSITIVAMENTE INVARIANTE per un sistema di equazioni differenziali se ogni soluzione (x(t), y(t)) che verifica
(x(to), y(to)) € D per qualche tg é tale che (x(t), y(t)) € D per ognit > to.

Analogamente é possibile definire insiemi negativamente invarianti. Un sottoinsieme é invariante se € positivamente e negativamente invariante. Lintersezione
e lunione di insiemi positivamente (o negativamente) invarianti & ancora positivamente (o negativamente) invariante. In quel che segue, siamo interessati
allevoluzione per tempi successivi all'istante iniziale e quindi ci interesseremo solo di insiemi positivamente invarianti.

DEFINIZIONE 6.33 [l luogo dei punti {(x,y) : f(x,y) = 0} o {(x,y) : g(x,y) = O} si dice NULLOCLINA del sistema e individua i punti dello spazio in cui il campo f
é parallelo ad uno degli assi coordinati. Si noti che le intersezioni di 2 nullocline (relative alle differenti componenti del vettore f) individuano punti di equilibrio
del sistema.

TEOREMA 6.34 (1.O. BENDIXSON E H.C.R. DULAC) SiaD C R2 aperto semplicemente connessoe (f,g) € c'(D, R2)un campo vettoriale, se esiste una funzione
h di classe C'(D) tale che

div (h(x, y)f(x,y), h(x,y)g(x,y)) = O perogni (x,y) € D
allora non esistono orbite periodiche di (6.10) contenute nellaperto D.
DIMOSTRAZIONE. Supponiamo, per assurdo, che esista unorbita chiusa semplice (x(t), y(t)) di (6.10) con sostegno «y contenuto nellaperto D. Essendo il
dominio semplicemente connesso sappiamo che «y = 9E con E C D aperto, dal teorema della divergenza segue che
b
J [81(hf)(x,y)+8; (hg)(x, y)]dxdy = L h(f(x,y),g(x,y))-nds = J h(x(t), y(t) (f(x(t), y(t), g(x(t), y(t)))-n(t)ds = j h(x(t), y(t) (Fx(t), y(1)), g(x(t), y(t)-(y'(t), =/ (t))dt = O
E E ¥ a

La relazione ottenuta € in contraddizione con le ipotesi, infatti il campo h(x, y)(f(x, y), g(x, y)) ha divergenza sempre differente da O in D, quindi il suo integrale
in E deve risultare o positivo o negativo. u
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DEFINIZIONE 6.35 Nel seguito chiameremo ciclo limite la traiettoria (o orbita) di una soluzione periodica di un sistema di equazioni differenziali.

TEOREMA 6.36 (J.H. POINCARE E 1.O. BENDIXSON) Sia (f,g) € C'(D) un campo vettoriale nel piano con punti singolari isolati e supponiamo che D C R? sia
positivamente invariante. Allora le traiettorie determinate dalle soluzioni di (6.10) con dato iniziale in D tendono

i. 0o a un punto singolare,

ii. 0 a unorbita periodica,

iii. o allunione di punti singolari e di curve fomocline e/o eterocline) che connettono tali punti.

Noi dimostreremo una versione parziale di questo importante risultato, cioé il seguente enunciato.

TEOREMA 6.37 (J.H. POINCARE E .O. BENDIXSON) Lorbita descritta da una soluzione periodica di un sistema planare contenuta in un dominio D
semplicemente connesso contiene almeno un punto critico.

DiMosTRAZIONE. DA SCRIVERE ]
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