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Nome: Cognome:

Avvertenze:
La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti
svolti, dalla chiarezza dell’esposizione e dalla correttezza dell’italiano, dei
passaggi matematici e del risultato finale.

ex.1
ex.2
ex.3
ex.4
tot.

Esercizio 1 (punti: 2+3+3). Data la funzione f :�2 −→� di legge f (x1,x2) = e−x
2
1−x

2
2

i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si scriva l’equazione del polinomio di Taylor di ordine 2 relativo alla funzione f centrato in x0 = (0,0),
iii. si calcoli un vettore normale al piano tangente al grafico di f nel punto (1,1,e−2).

Soluzione. i. la funzione è composizione di un polinomio con una funzione analitica, quindi questo è già
sufficiente a garantire la differenziabilità di f , in ogni caso è facile osservare che è una funzione continua
con derivate parziali continue in tutto il piano e quindi f è differenziabile in tutto il piano per il teorema del
differenziale totale, infatti

f (x1,x2) = e−x
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2
2 �1f (x1,x2) = −2x1e−x
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2 �2f (x1,x2) = −2x2e−x
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2
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sono funzioni generate da prodotti e composizioni di polinomi e della funzione esponenziale.
ii. L’espressione generale del polinomio di Taylor del secondo ordine è

T2,f (x,x0) = f (x0) +∇f (x0) · (x − x0) +
1
2
[HF (x0)(x − x0)] · (x − x0)

nel nostro caso, grazie ai calcoli svolti in i., abbiamo subito che

f (0,0) = f (O ) = 1 ∇f (0,0) = ∇f (O ) = (0,0)

inoltre, ricordando il teorema di Schwarz, vale
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)
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da cui segue

Hf (0,0) =

(
−2 0
0 −2

)
e T2,f (x,O ) = 1− x21 − x

2
2

iii. Cominciamo calcolando l’equazione cartesiana del piano tangente al grafico di f in (1,1,e−2), che è
esattamente la formula di Taylor di ordine 1

x3 = f (1,1) +∇f (1,1) · (x1 −1,x2 −1) = e−2 +
(
−2e−2,−2e−2

)
· (x1 −1,x2 −1)

2x1 +2x2 + e2x3 = 5

A questo punto possiamo notare che il piano è, di fatto, l’insieme di livello di una funzione di tre variabili!
A lezione è stato provato che il vettore gradiente indica sempre una direzione perpendicolare all’insieme di
livello, per cui un vettore normale desiderato è

v =
(
2,2,e2

)
□

Esercizio 2 (punti: 2+3+3). Data la funzione g : �3 −→ �, di legge g(x1,x2,x3) = x21 + x23 , e il vincoloM =
{x1 + x2 − x3 = 1} ⊆�

3

i. si mostri cheM è non vuoto, chiuso e non limitato,
ii. si trovino i punti critici di g vincolati suM,
iii. si cerchi di determinare la natura dei punti critici trovati.

Soluzione. i. M è non vuoto, perché (per esempio) i punti (1,00), (1,1,1) e (t + 1,−t,0), con t ∈ �,
appartengono al vincolo. M è chiuso perché è l’insieme di livello {h(x) = 0}, dove h(x) = h(x1,x2,x3) =
x1+x2−x3−1, e siccome h ∈ C0(�3),M è chiuso perché controimmagine di un chiuso (si noti che il vincolo



2

è un iperpiano). Infine notiamo cheM non è limitato: abbiamo osservato prima che i punti p(t) = (−t, t+1,0)
appartengono all’iperpiano e vale ∥p(t)∥22 = [2t2t +2t +1] −→ +∞ per t −→ +∞.
ii. Per identificare i punti critici della funzione g

∣∣∣M utilizziamo il metodo dei moltiplicatori di Lagrange cer-
cando i punti critici liberi della funzione di Lagrange

L(x1,x2,x3,q) = g(x1,x2,x3)− qh(x1,x2,x3) = x21 + x23 − q (x1 + x2 − x3 −1)
�1L(x1,x2,x3,q) = 2x1 − q = 0
�2L(x1,x2,x3,q) = −q = 0
�3L(x1,x2,x3,q) = 2x3 + q = 0
�4L(x1,x2,x3,q) = x1 + x2 − x3 −1 = 0

La seconda equazione è q = 0, quindi dalla prima e dalla terza ricaviamo x1 = x3 = 0, infine l’equazione
del vincolo ci permette di ottenere che x2 = 1, in questo modo abbiamo identificato un unico punto critico
Q = (0,1,0).
iii. Da un punto di vista geometrico, la funzione g è la distanza (al quadrato) dell’input x dall’asse x2, il punto
critico Q trovato in ii. è il punto del piano M più vicino alla retta, quindi è un punto di minimo assoluto
per g vincolata su M, infatti g(x) ≤ 0, per ogni x ∈ �

3, e g(Q) = 0. Analogamente è facile verificare che
g(p(t)) = t2, per cui possiamo affermare che g non è superiormente limitata sul vincolo, quindi non esiste
massimo assoluto. □

Esercizio 3 (punti: 2+3+3). Data la superficie Î di parametrizzazione æ(u,w) =
(
u cos(w),u sin(w),1− u2

)
con (u,w) ∈ K = [0,1]× [0,2á] ⊆�

2

i. si spieghi perché Î è una superficie regolare,
ii. si calcoli A(Î), cioè l’area della superficie Î,
iii. si calcoli la circuitazione, lungo la curva �Î, del campo vettoriale F (x) =

(
x21 ,x

2
2 ,x

2
3

)
.

Soluzione. i. La superficie è la coppia costituita dalla parametrizzazione æ e dal suo dominio K, men-
tre l’oggetto geometrico che costituisce la superficie da un punto di vista intuitivo è æ(K) ⊆ �

3. La rego-
larità della superficie consiste nell’osservare che le componenti di æ sono funzioni di classe C∞, che la
parametrizzazione è iniettiva in int(K) = (0,1)× (0,2á) visto che

æ(u,w) = (u cos(w),u sin(w),1− u2) = (s cos(t),s sin(t),1− s2) = æ(s, t)

implica u = s, perché la funzione u 7−→ (1−u2) è iniettiva in (0,1), sapendo che u = s , 0 segue, dall’ugua-
glianza delle prime due componenti, che w = t, provando l’iniettività di æ.
Infine mostriamo che, per ogni (u,w) ∈ int(K), esiste il vettore normale alla superficie

�1æ(u,w) = (cos(w),sin(w),−2u) �2æ(u,w) = (−u sin(w),u cos(w),0)

da cui (�1æ∧�2æ) (u,w) =
(
2u2 sin(w),2u2 cos(w),u

)
, O per ogni (u,w) ∈ int(K)

ii. Per definizione vale che

A (Î) =
∫
Î

dã =
"

K
∥ (�1æ∧�2æ) (u,w)∥2dudw =

∫ 1

0

[∫ 2á

0

[
u2 +4u4

]1/2
dw

]
du

=
∫ 1

0

[∫ 2á

0
u
[
1+4u2

]1/2
dw

]
du = 2á

∫ 1

0
u
[
1+4u2

]1/2
du =

á
4

∫ 5

0

√
sds

=
á
4

[2
3
s3/2

]5
0
=
5á
√
5

6

dove, nella risoluzione degli integrali, abbiamo sfruttato il fatto che K è un rettangolo (cioè un dominio
normale rispetto ad entrambe le variabili), e la sostituzione (1 +4u2) = s.
iii. Abbiamo già osservato che Î è una superficie regolare, inoltre è possibile osservare che si tratta di una
superficie di rivoluzione, ottenuta ruotando di un angolo giro, intorno all’asse x3, un tratto dell grafico della
parabola di parametrizzazione (u,1 − u2) nel piano x1x3. Inoltre il campo vettoriale F è regolare in tut-
to �

3, avendo componenti polinomiali, possiamo quindi applicare il teorema del rotore per calcolare la
circuitazione in oggetto nel seguente modo∮

�Î+
[F (x) · T(x)]ds =

"
Î

[rot(F )(x) · n(x)]dã



3

Genericamente gli integrali di linea sono meno problematici degli integrali di superficie, però in questo caso
vale

rot(F )(x) = ∇∧ F (x) =

∣∣∣∣∣∣∣∣
e1 e2 e3
�1 �2 �3
x21 x22 x23

∣∣∣∣∣∣∣∣ =
(
�2x

2
3 −�3x

2
2 ,�3x

2
1 −�1x

2
3 ,�1x

2
2 −�2x

2
1

)
= (0,0,0)

per cui possiamo concludere che la circuitazione è nulla senza risolvere esplicitamente alcun integrale. □

Esercizio 4 (punti: 2+3+3). Dato il problema di Cauchy{
u′(x) = u(x)

(
u4(x)−1

)
u(0) = c

si risponda ai seguenti quesiti
i. si spieghi perché il sistema possiede un’unica soluzione locale uc per ogni c ∈�,
ii. si calcoli il polinomio di Taylor, di grado 2 con centro x0 = 0, della soluzione uc ,
iii. si determini per quali valori del parametro si ha che uc(x) −→ 0 per x −→ +∞.

Soluzione. i. Il problema di Cauchy che stiamo studiando è relativo ad un’equazione differenziale del primo
ordine in forma normale a variabili separabili. La funzione che definisce il secondo membro dell’equazione
è f (x,s) = s(s4 − 1) ∈ C∞(�2), quindi il problema è autonomo e la funzione (a causa della sua regolarità) è
localmente lipschitziana, in tutto il piano, rispetto alla seconda variabile s, che è l’unica che appare espli-
citamente. Le precedenti osservazioni ci permettono di concludere che le ipotesi del teorema di Picard e
Lindeloff sono soddisfatte, per cui abbiamo esistenza ed unicità della soluzione locale per ogni c ∈�.
ii. Ricordando che l’espressione del polinomio di Taylor del secondo ordine è

Tu,2(x,x0) = u(x0) + u′(x0)(x − x0) +
1
2
u′′(x0)(x − x0)2

risulta evidente che abbiamo necessità di ricavare dall’equazione differenziale alcuni valori di uc e delle sue
derivate. Il dato iniziale e l’equazione ci danno subito che

uc(0) = c e u′c(0) = f (0,uc(0)) = c(c4 −1)
inoltre, per il teorema di dervazione delle funzioni composte, vale

u′′c (x) =
d
dx

u′c(x) =
d
dx

[
uc(x)

(
u4
c (x)−1

)]
=

(
5u4

c (x)−1
)
u′c(x) =

(
5u4

c (x)−1
)
· uc(x)

(
u4
c (x)−1

)
e ricaviamo che

u′′c (0) = c(c4 −1)(5c4 −1)
e quindi otteniamo che

Tuc ,2(x,0) = c + c(c4 −1)x + 1
2
c(c4 −1)(5c4 −1)x2

iii. Abbiamo osservato prima che l’equazione differenziale è un’equazione a variabili separabili e possiamo
verificare subito che l’equazione possiede le seguenti tre soluzioni costanti (e globali)

u−(x) ≡ −1 u0(x) ≡ 0 e u+(x) ≡ +1

L’unicità della soluzione del problema di Cauchy ha, come conseguenza, che i grafici di soluzioni differenti
non possono avere punti in comune, quindi gli unici dati iniziali che hanno la possibilità di generare soluzioni
definite su tutto � e infinitesime a +∞ sono i valori dell’intervallo (−1,1). Proviamo che tali valori sono
esattamente l’intervallo (−1,1), infatti (tranne la soluzione identicamente nulla u0)) tali soluzioni uc sono
funzioni strettamente monotone, visto che

u′c(x) < 0 se c ∈ (0,1) e u′c(x) > 0 se c ∈ (−1,0)
Questo perché c(c4 −1) è positiva in (−1,0) e negativa in (0,1), e una soluzione che ha dato iniziale in uno
dei due sottointervalli ha immagine interamente contenuta nel sottointervallo, visto che non può uscirne
intersecando il grafico di una delle soluzioni costanti scritte prima. Poiché tali soluzioni sono monotone
hanno limite per x −→ +∞ e tale limite deve essere una soluzione dell’equazione L(L4−1) = 0, per il teorema
dell’asintoto, dunque abbiamo che L = 0, sempre per la monotonia di uc . □


