Analisi Vettoriale aa 2023/24 (It 30046) - E Montefusco - 20240704

Nome: Cognome:
ex.1
Avvertenze: o2
La valutazione degli esercizi aperti dipende dalla solidita dei ragionamenti ex'3
svolti, dalla chiarezza dell’esposizione e dalla correttezza dell'italiano, dei ex.4
passaggi matematici e del risultato finale. N t
ot.

Esercizio 1 (punti: 2+3+3). Data la funzione f : R — R dilegge f(x1, x3) = eI
i. si spieghi perché tale funzione € differenziabile in tutto lo spazio,
ii. si scriva 'equazione del polinomio di Taylor di ordine 2 relativo alla funzione f centrato in xg = (0, 0),

iii. si calcoli un vettore normale al piano tangente al grafico di f nel punto (1,1, e72).

Soluzione. i. la funzione & composizione di un polinomio con una funzione analitica, quindi questo & gia
sufficiente a garantire la differenziabilita di f, in ogni caso & facile osservare che € una funzione continua
con derivate parziali continue in tutto il piano e quindi f & differenziabile in tutto il piano per il teorema del

differenziale totale, infatti
22 22 22
f(x1,x2) = e "17%2 d1f(x1,x2) = —2x €7 X17%2 d>f(x1,x3) = —2x2e 1772

sono funzioni generate da prodotti e composizioni di polinomi e della funzione esponenziale.
ii. Lespressione generale del polinomio di Taylor del secondo ordine &
To 6 x0) = F(x0) + VF(30) (= x0) + 3 [HF(x0)(x = 30)] - (x = o)
nel nostro caso, grazie ai calcoli svolti in i., abbiamo subito che
£(0,0)=f(0)=1  V£(0,0)=VF(O)=(0,0)
inoltre, ricordando il teorema di Schwarz, vale
d11f(x)=2 (ZX% - 1) e i d12f(x) = dr1 f(x) = 4x1 x> e i d>f(x)=2 (ZXS - 1) e i
da cui segue

-2 0

Hf(0,0):( 5

) e T¢(x, 0) = l—xf—xg

iii. Cominciamo calcolando I'equazione cartesiana del piano tangente al grafico di f in (l,l,e‘z), che &
esattamente la formula di Taylor di ordine 1

x3=F(1,1)+ VAL 1) (xg - Lxp-1)= e +(-2e7%,-2e72) - (g - 1, x2 - 1)

2

2x1+2x;+€e“x3=5

A questo punto possiamo notare che il piano &, di fatto, I'insieme di livello di una funzione di tre variabilil
Alezione & stato provato che il vettore gradiente indica sempre una direzione perpendicolare all'insieme di
livello, per cui un vettore normale desiderato &

v= (2,2, ez)

O

Esercizio 2 (punti: 2+3+3). Data la funzione g : R3 — R, di legge g(x1,x2,x3) = xf + x§, e il vincolo M =
{(x1+x2—x3=1}CR3

i. si mostri che M € non vuoto, chiuso e non limitato,

ii. si trovino i punti critici di g vincolati su M,

iii. si cerchi di determinare la natura dei punti critici trovati.

Soluzione. i. M & non vuoto, perché (per esempio) i punti (1,00), (1,1,1) e (t+1,-t,0), con t € R,
appartengono al vincolo. M é chiuso perché & l'insieme di livello {h(x) = 0}, dove h(x) = h(xy, x>, x3) =
X1 +X>—x3—1, e siccome h € CO(R3), M & chiuso perché controimmagine di un chiuso (si noti che il vincolo
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& uniperpiano). Infine notiamo che M non & limitato: abbiamo osservato prima che i punti p(t) = (-t, t+1,0)
appartengono all'iperpiano e vale ||p(t)||§ =[2t°t+ 2t + 1] —> +o0 per t —> +co.

i. Per identificare i punti critici della funzione g|M utilizziamo il metodo dei moltiplicatori di Lagrange cer-
cando i punti critici liberi della funzione di Lagrange

2 2
L(Xl,Xz, X3, Q) = g(leXZrX3) - qh(leXZrX3) =X1t+X3— q(Xl +Xo—X3— 1)

d1L(x1,x2,x3,9)=2x1-q=0
doL(x1,x2,x3,9)=—q=0
d3L(x1,x2,x3,9)=2x3+gq=0
d4L(x1,x2,%3,q)=x1 +x2—x3—-1=0

La seconda equazione & g = 0, quindi dalla prima e dalla terza ricaviamo x; = x3 = 0, infine I'equazione
del vincolo ci permette di ottenere che x, = 1, in questo modo abbiamo identificato un unico punto critico
Q=(0,1,0).

iii. Da un punto di vista geometrico, la funzione g & la distanza (al quadrato) dell'input x dall'asse x>, il punto
critico Q trovato in ii. & il punto del piano M pil vicino alla retta, quindi &€ un punto di minimo assoluto
per g vincolata su M, infatti g(x) < 0, per ogni x € R3, e g(Q) = 0. Analogamente & facile verificare che
g(p(t)) = t2, per cui possiamo affermare che g non & superiormente limitata sul vincolo, quindi non esiste
massimo assoluto. O

Esercizio 3 (punti: 2+3+3). Data la superficie ¥ di parametrizzazione ¢(u, w) = (ucos(w), usin(w), 1 - u2)

con (u,w) € K =[0,1]x [0, 27] € R?

i. si spieghi perché ¥ € una superficie regolare,

ii. si calcoli A(X), cioé I'area della superficie ¥,

iii. si calcoli la circuitazione, lungo la curva d%, del campo vettoriale F(x) = (xf, x%, x_,f )

Soluzione. . La superficie & la coppia costituita dalla parametrizzazione ¢ e dal suo dominio K, men-

tre 'oggetto geometrico che costituisce la superficie da un punto di vista intuitivo & ¢(K) C R3. La rego-

larita della superficie consiste nell'osservare che le componenti di ¢ sono funzioni di classe C*, che la

parametrizzazione € iniettiva in int(K) = (0, 1) x (0, 27) visto che

2
)

¢(u, w) = (ucos(w), usin(w), 1 —u“) = (scos(t), ssin(t),1 - s?) = (s, t)

implica u = s, perché la funzione u + (1 — u?) & iniettiva in (0, 1), sapendo che u = s # 0 segue, dall'ugua-
glianza delle prime due componenti, che w = t, provando l'iniettivita di ¢.
Infine mostriamo che, per ogni (u, w) € int(K), esiste il vettore normale alla superficie

d1¢(u, w) = (cos(w), sin(w),—2u) d>¢(u, w) = (—usin(w), ucos(w),0)
da cui (@1 A o) (u,w) = (2u25in(w),2u2cos(w),u)¢ O per ogni (u, w) € int(K)

ii. Per definizione vale che

1 2n
AE)= [ do= || Morpnds)w wilaaudu = | UO [u2+4u4]1/2dw]du

11 r2n 1 5
1/2 1/2
:f [J u[1+4u2]/ dW]du:an u[1+4u2]/ duzzf Vsds
o LJo 0 4 Jo

_n[2 357 5mV5
~4(3° ]o T 6

dove, nella risoluzione degli integrali, abbiamo sfruttato il fatto che K & un rettangolo (cioé un dominio
normale rispetto ad entrambe le variabili), e la sostituzione (1 +4u?) = s.

iii. Abbiamo gia osservato che ¥ & una superficie regolare, inoltre & possibile osservare che si tratta di una
superficie di rivoluzione, ottenuta ruotando di un angolo giro, intorno all'asse xs, un tratto dell grafico della
parabola di parametrizzazione (u,1 — u?) nel piano x; x3. Inoltre il campo vettoriale F & regolare in tut-
to R3, avendo componenti polinomiali, possiamo quindi applicare il teorema del rotore per calcolare la
circuitazione in oggetto nel seguente modo

éy [F(x)- T(x)]ds = IJ;_ [rot(F)(x)- n(x)] do
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Genericamente gli integrali di linea sono meno problematici degli integrali di superficie, perd in questo caso
vale

€1 € €3
rot(F)(x)=VAF(x)=| d; d> d3 :(82x§—83x§,93xf—alxg,alxg—azxf):(O,O,O)
2 2 2

X1 XX X3

per cui possiamo concludere che la circuitazione & nulla senza risolvere esplicitamente alcun integrale. O

Esercizio 4 (punti: 2+3+3). Dato il problema di Cauchy

u’(x) = u(x)(u4(x) - 1)
u(0)=c

si risponda ai sequenti quesiti

i. si spieghi perché il sistema possiede un'unica soluzione locale u. per ogni c € R,
ii. si calcoli il polinomio di Taylor, di grado 2 con centro xq = 0, della soluzione up,
iii. si determini per quali valori del parametro si ha che u.(x) — 0 per x — +oo.

Soluzione. i.ll problema di Cauchy che stiamo studiando é relativo ad un’equazione differenziale del primo
ordine in forma normale a variabili separabili. La funzione che definisce il secondo membro dell'equazione
& f(x,s) = s(s* — 1) € C*®(RR?), quindi il problema & autonomo e la funzione (a causa della sua regolarita) &
localmente lipschitziana, in tutto il piano, rispetto alla seconda variabile s, che & I'unica che appare espli-
citamente. Le precedenti osservazioni ci permettono di concludere che le ipotesi del teorema di Picard e
Lindeloff sono soddisfatte, per cui abbiamo esistenza ed unicita della soluzione locale per ogni c € R.
i. Ricordando che I'espressione del polinomio di Taylor del secondo ordine &

To 2006 %0) = (x0) + 0 (x0)(x = 30) + 5 0”(x0)x = 02
risulta evidente che abbiamo necessita di ricavare dall’equazione differenziale alcuni valori di u. e delle sue
derivate. Il dato iniziale e I'equazione ci danno subito che

u0)=c e  u(0)=F(0,uc(0)=c(c*-1)
inoltre, per il teorema di dervazione delle funzioni composte, vale
_d , . d 4 (= 4 Jin (e 4 4
= (0= —[uc( (60~ 1)] = (e - 1) ux) = (5ud () = 1) ue() (0 - 1)
e ricaviamo che

ul(0)=c(c*-1)(5¢*-1)

e quindi otteniamo che

ul(x)

1
To.,2(x,0)=c+ c(ct = 1)x+ EC(C4 ~1)(5¢*-1)x?

iii. Abbiamo osservato prima che I'equazione differenziale € un’equazione a variabili separabili e possiamo
verificare subito che I'equazione possiede le seguenti tre soluzioni costanti (e globali)

u_(x)=-1 ug(x)=0 e u(x)=+1

L'unicita della soluzione del problema di Cauchy ha, come conseguenza, che i grafici di soluzioni differenti
non possono avere punti in comune, quindi gli unici dati iniziali che hanno la possibilita di generare soluzioni
definite su tutto R e infinitesime a +oo sono i valori dell'intervallo (—1,1). Proviamo che tali valori sono
esattamente l'intervallo (-1,1), infatti (tranne la soluzione identicamente nulla ug)) tali soluzioni u. sono
funzioni strettamente monotone, visto che

ul(x)<0 sece(0,1) e ul(x)>0 se ce (-1,0)

Questo perché c(c* - 1) & positiva in (~1,0) e negativa in (0, 1), e una soluzione che ha dato iniziale in uno

dei due sottointervalli ha immagine interamente contenuta nel sottointervallo, visto che non puo uscirne
intersecando il grafico di una delle soluzioni costanti scritte prima. Poiché tali soluzioni sono monotone
hanno limite per x —s +co e tale limite deve essere una soluzione dell'equazione L(L%~1) = 0, per il teorema
dell'asintoto, dunque abbiamo che L = 0, sempre per la monotonia di u.. O




