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Nome: Cognome:

Avvertenze:
La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti
svolti e dalla chiarezza dell’esposizione, come anche dalla correttezza dei
passaggi matematici e del risultato finale.

ex.1
ex.2
ex.3
ex.4
tot.

Esercizio 1 (punti: 2+3+3). Data la funzione f :�3 −→� di legge f (x1,x2,x3) = (x1 + x2)e
−x21−x

2
2−x

2
3

i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si scriva l’equazione dell’iperpiano tangente al grafico della funzione nel punto (0,0,0,0),
iii. si verifichi che (1/2,1/2,0) è un punto critico di f e se ne determini la natura.

Soluzione. i. Osserviamo immediatamente che è possibile derivare la funzione ottenendo le seguenti
derivate parziali

�1f (x1,x2,x3) = [1−2x1(x1 + x2)]e
−x21−x

2
2−x

2
3

�2f (x1,x2,x3) = [1−2x2(x1 + x2)]e
−x21−x

2
2−x

2
3

�3f (x1,x2,x3) = −2x3(x1 + x2)e
−x21−x

2
2−x

2
3

e poiché tali derivate sono somma, prodotto e composizione di funzioni continue possiamo concludere
che f è continua, derivabile con derivate parziali continue in tutto lo spazio, quindi, grazie al teorema del
differenziale totale, risulta differenziabile in tutto lo spazio.
ii. Ricordiamo che l’equazione (astratta) dell’iperpiano tangente al grafico di una funzione f : �3 −→ � è
un’equazione algebrica in 4 variabili, perché il grafico è un sottorinsieme del prodotto cartesiano di dominio
e codominio: in questo caso di �4 =�

3×�. Tale equazione è il polinomio di Taylor del primo ordine, quindi
abbiamo che

x4 = f (0,0,0) +∇f (0,0,0) · (x1 −0,x2 −0,x3 −0) = 0+ (1,1,0) · (x1,x2,x3) = x1 + x2

iii. I punti critici sono punti in cui l’iperpiano tangente è parallelo all’iperpiano {x4 = 0}, cioè punti che
risolvono l’equazione vettoriale ∇f (x) = 0, quindi


[1−2x1(x1 + x2)]e

−x21−x
2
2−x

2
3 = 0

[1−2x2(x1 + x2)]e
−x21−x

2
2−x

2
3 = 0

−2x3(x1 + x2)e
−x21−x

2
2−x

2
3 = 0

che equivale a


2x21 +2x1x2 = 1
2x1x2 +2x22 = 1
2x3(x1 + x2) = 0

Notiamo che il testo chiede solo di verificare che P = (1/2,1/2,0) è un punto critico, cioè che è una soluzio-
ne del precedente sistema, non di trovare tutte le soluzioni! Nonostante questa osservazione procediamo
notando che un punto critico deve risolvere o x3 = 0 o x1 = −x2, inoltre, sottrando le prime due equazioni,
otteniamo che x21 − x

2
2 = 0, cioè x1 = x2 o x1 = −x2.

Considerando la relazione {x1 = −x2} e sostituendo nelle prime due equazioni troviamo che 0 = 1, quindi
non otteniamo alcun punto critico. Invece se prendiamo in esame le relazioni x3 = 0 e x1 = x2, sempre
sostituendo nelle prime due equazioni, otteniamo che x22 = 1/4, cioè che x2 = x1 = ±1/2 e quindi abbiamo
identificato i due soli punti critici della funzione

P =
(1
2
,
1
2
,0
)

e Q =
(
−1
2
,−1

2
,0
)
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Per determinare la natura di P possiamo studiare la matrice hessiana di f , svolgendo qualche derivata
abbiamo che

�11f (x1,x2,x3) = 2
[
4x21(x1 + x2)−3x1 − x2

]
e−x

2
1−x

2
2−x

2
3

�22f (x1,x2,x3) = 2
[
4x22(x1 + x2)− x1 −3x2

]
e−x

2
1−x

2
2−x

2
3

�33f (x1,x2,x3) = −2[x1 + x2]e
−x21−x

2
2−x

2
3

�12f (x1,x2,x3) = �21f (x1,x2,x3) = 2(x1 + x2) [2x1x2 −1]e−x
2
1−x

2
2−x

2
3

�13f (x1,x2,x3) = �31f (x1,x2,x3) = −2x3 [1−2x1(x1 + x2)]e
−x21−x

2
2−x

2
3

�23f (x1,x2,x3) = �32f (x1,x2,x3) = −2x3 [1−2x2(x1 + x2)]e
−x21−x

2
2−x

2
3

questo perché f ∈ C2(�3) e il teorema di Schwartz prova che le derivate miste non dipendono dall’ordine
delle derivazioni seguito. In particolare segue che

Hf (P) = Hf
(1
2
,
1
2
,0
)
=

1
e1/2

 −2 −1 0
−1 −2 0
0 0 −2


Il polinomio caratteristico della matrice è p(Ý) = (2+Ý)(Ý2+4Ý+3) le cui radici sono i valori Ý = −1,−2,−3,
essendo tutti negativi possiamo concludere che P è un punto di massimo locale (in realtà assoluto) per la
funzione f . □

Esercizio 2 (punti: 2+4+2). Data la funzione g : �3 −→ �, di legge g(x1,x2,x3) = x21 + x23 , e il vincoloM =
{x21 −2x1 + x22 + x23 = 3} ⊆�

3

i. si provi cheM è non vuoto e limitato,
ii. si trovino i punti critici di g vincolati suM,
ii. si cerchi di determinare la natura dei punti critici trovati.

Soluzione. i. Manipoliamo l’equazione del vincolo per ottenere che

M = {x21 −2x1 + x22 + x23 = 3} = {(x1 −1)2 + x22 + x23 = 4} = �B(e1,2)

dunque il vincolo M è la superficie sferica centrata nel punto e1 = (1,0,0) di raggio 2, e quindi risulta
automaticamente non vuota e limitata. In alternativa è sufficiente osservare che il punto

(
0,
√
3,0

)
∈ M e

che se (p1,p2,p3) ∈M allora abbiamo

p21 −2p1 ≤ p21 −2p1 + p22 + p23 = 3 e quindi −1 ≤ p1 ≤ 3

dalla precedente stima otteniamo che

−1+ p22 + p23 ≤ p21 −2p1 + p22 + p23 = 3 da cui p22 + p23 ≤ 4

rispondendo alla domanda.
ii. Per identificare i punti critici di g suM possiamo studiare, come visto a lezione, i punti critici liberi della
seguente funzione di Lagrange

L(x,c) = x21 + x23 + c(x21 −2x1 + x22 + x23 −3)

cioè le soluzioni del seguente sistema di 4 equazioni
�1L(x,c) = 2x1 + c(2x1 −2) = 2[(1 + c)x1 − c] = 0
�2L(x,c) = 2cx2 = 0
�3L(x,c) = 2x3 +2cx3 = 2(1+ c)x3 = 0
�4L(x,c) = x21 −2x1 + x22 + x23 −3 = 0

La seconda equazione ci fornisce l’alternativa o c = 0 o x2 = 0.
La prima eventualità ci permette di ricavare dalla prima equazione che x1 = 0 e dalla terza che x3 = 0,
infine l’equazione del vincolo ci dà x22 = 3, cioè x2 = ±

√
3: in questo modo abbiamo trovato due punti critici

A =
(
0,
√
3,0

)
e B =

(
0,−
√
3,0

)
.

Consideriamo ora la seconda eventualità, cioè x2 = 0, la terza equazione produce una nuova alternativa:
o c = −1 o x3 = 0. Notiamo subito che deve essere c , 1, a causa della prima equazione, quindi abbiamo
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x2 = x3 = 0 e x21 − 2x1 − 3 = 0, ottenendo altri due punti critici C = (−1,0,0) e D = (3,0,0), terminando la
ricerca dei punti critici vincolati.
iii. Poiché vale che g ∈ C∞(�3) ⊆ C0(�3) eM è compatto, in quanto chiuso e limitato, dal teorema di Weier-
strass sappiamo che esiste massimo e minimo assoluto di g suM, a questo punto possiamo procedere per
confronto

g(A) = 0 = g(B ) g(C) = 1 g(D ) = 9

e concludere che D è il punto di massimo assoluto di g ristretta su M, A e B sono due punti di minimo
assoluto e C è ”semplicemente” un punto di sella. □

Esercizio 3 (punti: 2+3+3). Dato E = {0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1,0 ≤ x3 ≤ (1− x21 )} ⊆�
3

i. si spieghi perché E è limitato e misurabile,
ii. si calcoli il volume m3(E),
iii. si calcoli il flusso, attraverso la superficie �E , del campo vettoriale F (x) =

(
0,x22 ,x

2
3

)
.

Soluzione. i. E è limitato perché dalla sua definizione si deduce che, se x = (x1,x2,x3) ∈ E , allora

0 ≤ x1,x2 ≤ 1 e 0 ≤ x3 ≤ 1− x21 ≤ 1

quindi E ⊆ [0,1]3 ⊆ �
3. E è misurabile perché è chiuso, in quanto intersezione di tre insiemi chiusi, e gli

insiemi chiusi sono misurabili secondo Lebesgue.
ii. Per calcolare il volume del solido ricorriamo alle formule di riduzione degli integrali sfruttando il fatto che
il solido è già descritto come un dominio normale. quindi integriamo per fili nel seguente modo

m3(E) =
∫ 1

0

∫ 1

0

∫ 1−x21

0
dx3

dx2
dx1 = ∫ 1

0

[∫ 1

0

[
1− x21

]
dx2

]
dx1

=
∫ 1

0

[
1− x21

]
dx1 =

x1 − x31
3

1
0

=
2
3

iii. Per il calcolo del flusso ricorriamo al teorema della divergenza che sancisce la relazione

Ð�E (F ) =
"

�E
F (x) · ndã =

$
E
∇ · F (x)dx

a patto che il dominio sia sufficientemente regolare (cioè con frontiera C1 a tratti) e che il campo F sia di
classe C1 su un aperto contenente E : nel nostro caso tutto è soddisfatto! Dunque abbiamo

Ð�E (F ) =
$

E

[
�2(x

2
2 ) +�3(x

2
3 )
]
dx = 2

∫ 1

0

∫ 1

0

∫ 1−x21

0
(x2 + x3)dx3

dx2
dx1

=
∫ 1

0

[∫ 1

0

[
2x2(1− x21 ) + (1− x21 )

2
]
dx2

]
dx1

=
∫ 1

0

[
(1− x21 ) + (1− x21 )

2
]
dx1 =

∫ 1

0

[
2−3x21 + x41

]
dx1 =

[
2x1 − x31 +

1
5
x51

]1
0
=
6
5

□

Esercizio 4 (punti: 2+2+2+2). Dato il problema di Cauchy{
w′(x) = xe−w(x)

w(0) = 0

si risponda ai seguenti quesiti esattamente nell’ordine in cui sono proposti
i. si spieghi perché il sistema possiede un’unica soluzione locale w,
ii. si calcoli il polinomio di Taylor, di grado 2 con centro x0 = 0, di w,
iii. si spieghi perché la soluzione non può essere monotona,
iv. si ricavi l’espressione esplicita di w.
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Soluzione. i. L’equazione differenziale del problema di Cauchy è un’equazione del primo ordine, a variabili
separabili, scritta in forma normale, cioè rientra nella tipologia

w′(x) = f (x,w(x)) con f (x,p) = xe−p ∈ C∞(�2)

Il fatto che la funzione sia molto regolare ci permette di provare che è localmente lipschitziana nella secon-
da variabile, per cui possiamo dire che il teorema di Cauhcy & Lipschitz prova l’esistenza e l’unicità della
soluzione. La lipschitzianità nella seconda variabile può essee provata nel seguente modo

|f (x,p)− f (x,q)| = |x| · |e−p − e−q | = |x| · | − e−c | · |p− q| ≤ L|p− q|

a patto che (x,p), (x,q) ∈ [−r1, r1]× [−r2, r2] ⊆�
2

ii. Sappiamo che il polinomio di Taylor di una funzione di classe C2 ha la seguente espressione

T2,f (x,x0) = f (x0) + f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2

Proviamo subto che w ha la regolarità richiesta, infatti è derivabile con derivata continua (f ∈ C∞, quindi
la composizione con w ∈ C0 dà luogo ad una funzione continua), per cui otteniamo che w ∈ C1. A questo
punto possiamo osservare che w′ è di classe C1, perché come prima f ∈ C∞, e concludere che w ∈ C2,
per cui possiamo applicare la formula nota calcolando i coefficienti dello sviluppo di Taylor. Nel nostro caso
vale x0 = 0 e anche

w(0) = 0 w′(0) = f (0,0) = 0

inoltre abbiamo

w′′(x) =
d
dx

[
xe−w(x)

]
= e−w(x) + x

(
−e−w(x)w′(x)

)
= e−w(x)

[
1− x2e−w(x)

]
w′′(0) = 1

da cui concludiamo che

T2,w(x,0) =
1
2
x2

iii. Abbiamo notato, in ii, che w′(0) = 0, cioè che x0 = 0 è sempre un punto critico per la soluzione del
problema di Cauchy. Volendo studiare il segno della derivata, dall’equazione differenziale possiamo dedurre
che

w′(x) = xe−w(x) ≥ 0 se e solo se x ≥ 0

per le proprietà della fuzione esponenziale, quindi w è decrescente a sinistra di 0 e crescente a destra, per
cui la funzione non è monotona e ha in x0 = 0 un punto di minimo (locale?).
iv. Abbiamo già scritto che l’equazione differenziale è a variabili separabili, quindi possiamo procedere nel
seguente modo∫ x

0
w′(x)ew(x)dx =

∫ x

0
xdx da cui ew(x) − e0 = 1

2
x2 −0

esplicitando l’espressione otteniamo che

w(x) = ln
(1
2
x2 +1

)
□


