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Nome: Cognome:
ex.1
Avvertenze: o2
La valutazione degli esercizi aperti dipende dalla solidita dei ragionamenti ex'3
svolti e dalla chiarezza dell’esposizione, come anche dalla correttezza dei ex.4
passaggi matematici e del risultato finale. N t
ot.

Esercizio 1 (punti: 2+3+3). Data la funzione f: R3 — R di legge f(xq, x2, x3) = (x1 + xz)e‘xf‘xg‘xg
i. si spieghi perché tale funzione € differenziabile in tutto lo spazio,

ii. si scriva 'equazione dell’iperpiano tangente al grafico della funzione nel punto (0,0,0,0),

iii. si verifichi che (1/2,1/2,0) € un punto critico di f e se ne determini la natura.

Soluzione. i. Osserviamo immediatamente che & possibile derivare la funzione ottenendo le seguenti
derivate parziali

a]. f(X]_I X2, X3) = [1 — 2X1(X1 =+ Xz)] e_X%_XS_X?%
2 2 .2
d>f(x1, %2, x3) = [1 = 2x2(x1 + x2)] €7X17%273
2 2 2
d3f(x1,x2,x3) = —=2x3(X1 + x2)e 177273

e poiché tali derivate sono somma, prodotto e composizione di funzioni continue possiamo concludere
che f & continua, derivabile con derivate parziali continue in tutto lo spazio, quindi, grazie al teorema del
differenziale totale, risulta differenziabile in tutto lo spazio.

ii. Ricordiamo che I'equazione (astratta) dell'iperpiano tangente al grafico di una funzione f : R3> — R &
un’equazione algebrica in 4 variabili, perché il grafico & un sottorinsieme del prodotto cartesiano di dominio
e codominio: in questo caso di R* = R3x R. Tale equazione & il polinomio di Taylor del primo ordine, quindi
abbiamo che

x4 =f(0,0,0)+Vf(0,0,0)-(x1 —0,x>—0,x3—0)=0+(1,1,0) - (x1, x2, X3) = X1 + X2

iii. | punti critici sono punti in cui l'iperpiano tangente & parallelo all'iperpiano {x4 = 0}, cioé punti che
risolvono I'equazione vettoriale Vf(x) = 0, quindi

2_2_ 2
[1-2x1(x +xg)]e17275 =0 2x2+2x1x0 = 1
[1-2x(x1 + Xz)]ze—zr:z—’% =0 che equivale a 2x1x2+2x5 =1
-2x3(x1 +x2)e 17275 =0 2x3(x1+x2)=0

Notiamo che il testo chiede solo di verificare che P = (1/2,1/2,0) € un punto critico, cioé che & una soluzio-
ne del precedente sistema, non di trovare tutte le soluzioni! Nonostante questa osservazione procediamo
notando che un punto critico deve risolvere o x3 =0 0 x; = —x5, inoltre, sottrando le prime due equazioni,
otteniamo che xf - xg =0, Cioé x; = X2 0 X] = —X>.

Considerando la relazione {x; = —x5} e sostituendo nelle prime due equazioni troviamo che 0 = 1, quindi
non otteniamo alcun punto critico. Invece se prendiamo in esame le relazioni x3 = 0 e x; = x», sempre
sostituendo nelle prime due equazioni, otteniamo che x5 = 1/4, cioé che x, = x; = +1/2 e quindi abbiamo
identificato i due soli punti critici della funzione

bl e o-(hd
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Per determinare la natura di P possiamo studiare la matrice hessiana di f, svolgendo qualche derivata
abbiamo che

2_ 2

d11f(x1, X2, x3) = 2[4x1 X1+ X2)— 3x1—x2] —X-x5-x5

2

2
d22f(xq, x2,x3) = 2[4x2 X1+ X2)— x1—3x2] —x{-x3-x5

2.2 .2
X17X27%3

833f X1, X2, X3 —2[x1+x2]e

2.2 .2
X1 TX2TX3

91 f(x1, X2, x3) = 2(x1 +x2) [2x1x2 — 1] e

(
d12f(x1, X2, x3
(

d31f(x1, x2,x3) = =2x3[1 — 2x1 (X1 + X2)] e*Xf*XS*Xg

2 2 2
TXITXTX3

d32f(x1, X2, x3) = =2x3[1 = 2x3(x1 + x2)] €

)=
)
d13f(x1, X2, x3)
d23f(x1, x2,x3) =

(

questo perché f € C?(R3) e il teorema di Schwartz prova che le derivate miste non dipendono dall'ordine
delle derivazioni seguito. In particolare segue che

2 -1 0
11 1

HF(P) = Hf(ZZO):l—/Z 1 -2 0

€ 0 0 =2

Il polinomio caratteristico della matrice & p(1) = (2 + A)(A2 + 44+ 3) le cui radici sono i valori A = —1,-2,-3,
essendo tutti negativi possiamo concludere che P & un punto di massimo locale (in realta assoluto) per la
funzione f. O

Esercizio 2 (punti: 2+4+2). Data la funzione g : R® — R, di legge g(xq, x2, x3) = xf + x§, e il vincolo M =
{xf—2x1+X§+x§ =3}JCR3

i. si provi che M € non vuoto e limitato,

ii. si trovino i punti critici di g vincolati su M,

ii. si cerchi di determinare la natura dei punti critici trovati.

Soluzione. i. Manipoliamo I'equazione del vincolo per ottenere che

M= (x? =2x; + x5+ x5 =3} = {(x1 = 1)° + x5 + x5 = 4} = IB(ey, 2)

dunque il vincolo M & la superficie sferica centrata nel punto e; = (1,0,0) di raggio 2, e quindi risulta
automaticamente non vuota e limitata. In alternativa é sufficiente osservare che il punto (0, \/§,0) eMe
che se (p1, p2, p3) € M allora abbiamo

pf—2p1§p5—2p1+p§+p§:3 e quindi -1<p; <3
dalla precedente stima otteniamo che

—1+p§+p§§pf—2p1+p§+p§=3 da cui p2+p3<4

rispondendo alla domanda.
ii. Per identificare i punti critici di g su M possiamo studiare, come visto a lezione, i punti critici liberi della
seguente funzione di Lagrange

2.2 2
L(x,c) = x] + x5+ c(x1 2Xx1 + x5+ x3 -3)
cioé le soluzioni del seguente sistema di 4 equazioni

81 ( )_2X1+C(2X1—2)=2[(1+C)X1—C]:0

82 ( 2CX2 =0
93L(X,C) 2X3+2CX3:2(1+C) 3:0
84L(x,c):xf—2x1+xg+x3—3 0

La seconda equazione ci fornisce 'alternativao c =00 x, = 0.

La prima eventualita ci permette di ricavare dalla prima equazione che x; = 0 e dalla terza che x3 = 0,
infine 'equazione del vincolo ci da x5 = 3, cioé x, = +V3: in questo modo abbiamo trovato due punti critici
A=(0,¥3,0)e B=(0,-V3,0)

Consideriamo ora la seconda eventualita, cioé x> = 0, la terza equazione produce una nuova alternativa:
o ¢ = -1 o x3 = 0. Notiamo subito che deve essere ¢ # 1, a causa della prima equazione, quindi abbiamo
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x>=x3=0e xf —2x1 — 3 =0, ottenendo altri due punti critici C = (-1,0,0) e D = (3,0,0), terminando la
ricerca dei punti critici vincolati.

iii. Poiché vale che g € C*(IR3) € C(R3) e M & compatto, in quanto chiuso e limitato, dal teorema di Weier-
strass sappiamo che esiste massimo e minimo assoluto di g su M, a questo punto possiamo procedere per
confronto

g(A)=0=g(B) g(C)=1 g(D)=9

e concludere che D é il punto di massimo assoluto di g ristretta su M, A e B sono due punti di minimo
assoluto e C & "semplicemente” un punto disella. O

Esercizio 3 (punti: 2+3+3). Dato E={0<x; <1,0<x;<1,0<x3 < (1-x7)} CR3

i. si spieghi perché E é limitato e misurabile,

ii. si calcoli il volume m3(E),

iii. si calcoli il flusso, attraverso la superficie dE, del campo vettoriale F(x) = (O, X3, %2 )

Soluzione. i. E & limitato perché dalla sua definizione si deduce che, se x = (x1, x>, x3) € E, allora
2
0<x,x<1 e O§X3S].—X1§1

quindi £ € [0,1]3 € R3. E & misurabile perché & chiuso, in quanto intersezione di tre insiemi chiusi, e gli
insiemi chiusi sono misurabili secondo Lebesgue.

ii. Per calcolare il volume del solido ricorriamo alle formule di riduzione degli integrali sfruttando il fatto che
il solido & gia descritto come un dominio normale. quindi integriamo per fili nel seguente modo

ms(E) = J: U: UOH% dX3l dxz} dxp = Ll Uol [1-%¢] dxz] dx
- Ll[l—xf]dxl = {xl—%%}: = %

iii. Per il calcolo del flusso ricorriamo al teorema della divergenza che sancisce la relazione

Dy (F) = HBE F(x)- ndo = ﬂLV - F(x)dx

a patto che il dominio sia sufficientemente regolare (cioé con frontiera C! a tratti) e che il campo F sia di
classe C! su un aperto contenente E: nel nostro caso tutto & soddisfatto! Dunque abbiamo

oart) = [[[ sty a2 [ [ [ oo
- Ll Uol [2x2(1 ~-x2)+(1 —xf)z] dxz] dx

1 1 1
1 6
= [(1—xf)+(1—xf)2]dx1: [2—3xf+xf]dx1:[2x1—x%+—x?] ==
0 0 5 o b5

CIXZ“ Xm

Esercizio 4 (punti: 2+2+2+2). Dato il problema di Cauchy

w/(x) = xe W)
w(0)=0

si risponda ai sequenti quesiti esattamente nell'ordine in cui sono proposti
i. si spieghi perché il sistema possiede un’unica soluzione locale w,

ii. si calcoli il polinomio di Taylor, di grado 2 con centro xg =0, di w,

iii. si spieghi perché la soluzione non pud essere monotona,

iv. si ricavi I'espressione esplicita di w.



Soluzione. i. Lequazione differenziale del problema di Cauchy & un’equazione del primo ordine, a variabili
separabili, scritta in forma normale, cioé rientra nella tipologia

w'(x) = f(x, w(x)) con f(x, p) = xe P € C*(R?)

Il fatto che la funzione sia molto regolare ci permette di provare che & localmente lipschitziana nella secon-
da variabile, per cui possiamo dire che il teorema di Cauhcy & Lipschitz prova l'esistenza e I'unicita della
soluzione. La lipschitzianita nella seconda variabile pud essee provata nel seguente modo

[f(x,p) = f(x, q)l = |x|-|e" — e =|x]-[-e |- [p~ gl < LIp—ql
a patto che  (x,p),(x,q) € [-r, n]x[-r, ] C R?

ii. Sappiamo che il polinomio di Taylor di una funzione di classe C? ha la seguente espressione
) 1 2
T2,¢(x X0) = f(x0) + f'(x0)(x = x0) + 5 (x0) (x ~ x0)*

Proviamo subto che w ha la regolarita richiesta, infatti & derivabile con derivata continua (f € C*, quindi
la composizione con w € C° da luogo ad una funzione continua), per cui otteniamo che w € C!. A questo
punto possiamo osservare che w’ & di classe C!, perché come prima f € C*®, e concludere che w € C?,
per cui possiamo applicare la formula nota calcolando i coefficienti dello sviluppo di Taylor. Nel nostro caso
vale xg = 0 e anche

w(0)=0  w/(0)=f(0,0)=0
inoltre abbiamo
v AT w0l mw(x) W) p o\ mwi(x) 2 —w(x)
w(x)_a[xe ]_e +x(—e w(x))_e [1—x e ]
w”(0)=1
da cui concludiamo che

1
Tow(%,0) = 5x°
iii. Abbiamo notato, in ii, che w’(0) = O, cioé che xg = 0 & sempre un punto critico per la soluzione del
problema di Cauchy. Volendo studiare il segno della derivata, dall’equazione differenziale possiamo dedurre
che

w(x)=xe ¥ >0 se e solo se x>0

per le proprieta della fuzione esponenziale, quindi w & decrescente a sinistra di O e crescente a destra, per
cui la funzione non & monotona e ha in xg = 0 un punto di minimo (locale?).

iv. Abbiamo gia scritto che I'equazione differenziale & a variabili separabili, quindi possiamo procedere nel
seguente modo

X X
1
J w(x)e"Wdx = j xdx da cui e"™_el=Zx2_0
0 0 2

esplicitando 'espressione otteniamo che

w(x) = ln(%x2 + 1)



