

"Discovering Salmonella"

Kejsi Dervishi

Rome, April 18th, 2024

General Features

- Enterobacteriaceae
- Gram negative
- Rod shaped bacilli (2μm x 0,5μm)
- Facultative anaerobe
- Motile \rightarrow peritrichal flagella
- Numerous fimbriae

Escherichia Shigella Spi-2 Spi-2 Salmonella enterica Salmonella bongori Citrobacter Klebsiella Serratia Yersinia Proteus

<u>Classification</u>

Antigenic Types:

Salmonellosis

Food-borne infection caused by Salmonella bacteria

- Transmission: oral fecal route
- Sources: contaminated, improperly stored or handled food; contaminated water; household pets; environmental factors

Infective dose: 10⁶ bacteria (healthy)

Valerie Pavilonis/Yale News

Infection rate children <5 years is higher than all other diagnosed people

Elderly and immunocompromised individuals are more likely to present severe forms of the disease

Sharing about 90% genes, the residual 10% that differ include virulence factors (determines pathogenic potential)

18/04/2024

(NTS salmonellosis)

Tipically uncomplicated condition caused by non-typhoidal serotypes: **S. Typhimurium, S. Enteritidis**

- \rightarrow self-limiting, resolve without antibiotics
- → serious complications may occur in immunocompromised patients, young children and ederly (appendicitis, pancreatitis..)

Worldwide disease \rightarrow most common form of Salmonellosis

Incubation time: 6h to 2 days Symptoms: < 10 days

Caused by typhoidal serotypes: S. Typhi and S. Paratyphi

- \rightarrow Enlarged liver and spleen
- \rightarrow High mortality rate, especially if untreated (20%)
- \rightarrow Chronic asymptomatic human carriers can spread the disease (Mary Mallon)

Serious health threat in developing countries, especially for children (Africa, Latin America, Asia) \rightarrow inappropriate sewage disposal and poor sanitation

Science History Images / Alamy Stock Photo

Incubation time: 1 to 3 weeks Symptoms: variable, even months

Stomach (abdominal) pain. (u

"Rose spots" rash. (usually on chest/stomach).

Nausea, vomiting.

Diarrhea or constipation.

Other Clinical Features:

Treatments and Antibiotics

Non-typhoidal salmonellosis:

- No medical treatment required
- Fluid and electrolyte replacement: sodium, potassium and chloride ions
- Antibiotic treatment important in neonates

Typhoid fever:

- Bacteremia → dissemination to multiple organs (gallbladder = bacterial reservoir)
- Travel-associated disease
- Antibiotic treatment required: Ceftraxione, Ciproflaxin

Multiple drug resistance transmitted genetically by plasmids among bacteria → susceptibility testing for proper antibiotic treatment

Vaccines to prevent typhoid fever:

- Capsular polysaccharide vaccine (Vi antigen) ightarrow intramuscularly
- Live, attenuated (weakened) vaccine \rightarrow administered orally

Pathogenetic mechanisms

- 1. Microorganism ingested with contaminated food and/or water
- 2. Crosses the gastric barrier
- 3. Passes through the intestine to the distal part of the ileum (final part of the small intestine) and colonises it

Transit time: 90 minutes

Several adaptive strategies to neutralise aggressive action of the acidic pH of the stomach and bile salts in the small intestine:

- LPS with protective function
- Modifications in membrane composition
- ATR (acid tolerance response) to preserve against acid shock

ATR: expression of enzymes to increase intracellular pH and synthesis of ASPs (acid shock proteins) to protect and repair DNA and proteins

Pathogenetic mechanisms

Acute inflammatory response

Lumen of Small Intestine \rightarrow Peyer's Patch Page 10

https://youtu.be/q5-sxUbEu5M?feature=shared

Pathogenetic mechanisms

Gallbladder:

- acts as a reservoir in chronic cases of S. Typhi (chronic carriers)
- **biofilm** formation on gallstones ٠
- protects bacteria from the host immune system and environmental stress

provides an effective protective barrier and incite inflammation in tissues

Salmonella enterotoxin

- all Salmonella spp.
- contributes to the integrity of the OM (OmpA localisation)
- key factor in acute gastroenteritis and diarrhea (Na+ and Cl- ions in the lumen)

movement), biofilm formation

Pathogenesis Virulence factors

Plasmids

Genes associated with virulence and antimicrobial resistance

- In S. Typhimurium LT2: **pSLT** \rightarrow spv genes encoding SpvB toxin
- In S. Typhi: pR(ST98) → genes involved in drug resistance and induction of apoptosis in macrophages

SpvB (ADP-ribosylating toxin) → secreted by T3SS SPI-2 into the cytoplasm where it causes host cytotoxicity = actin depolymerisation

Taken Cheng and Wiedmann, 2019

SpvB

Salmonella Pathogenicity Islands (SPI)

Genomic islands coding for virulence factors or adhesion and invasion proteins infected host

- Acquired by horizontal gene transfer (HGT) → flanked by repeated sequences (IS elements), different G+C content (37-47%)
- Gene expression coordinated by environmental stimuli (T, pH, osmotic pressure)

<u>Salmonella Pathogenicity Islands (SPIs)</u>

SPI-3

SPI-4

SPI-5

- Variable dimensions (10-40 kb) •
- Generally located on bacterial chromosomes (or • plasmids)
- 23 SPIs identified (to date) •
- Only 5 present in all serotypes and relevant for • virulence of the bacterium

T3SS-1 (Type III Secretion System):

- Sophisticated nanoinjection multi-protein system (20-30 proteins)
- 3 structures (needle complex, export apparatus, sorting platform)
 - Contact-dependent release of effector proteins into the host cell cytoplasm
- SPI-1 translocated effectors drive the cell invasion process

18/04/2024

Taken from Park et al., 2018

T3SS secreted effector protein

Probable acyl carrier protein

Transcriptional regulator

Secretion apparatus

Cell invasion protein

Chaperone

Cell invasion

Mechanism of bacterial infectivity: **TRIGGER** (reorganisation of the actin cytoskeleton → ruffling of the membrane and bacterium enclosed within)

Taken from Park et al., 2018

Salmonella effectors trigger bacterial uptake

Taken from Davidson et al., 2023

- **1.** SipB and SipC (trasclocases) \rightarrow binds caspase-1 (pro-inflammatory cytokines IL-18 and IL-1 β)
- **2.** SipD (tip protein) \rightarrow mediates the sensing phase

First effector to be released: **DsbA** \rightarrow verifies correct assembly and function of T3SS

All three effectors are injected into the host membrane to form the translocon channel

<u>Cell invasion</u>

Mechanism of bacterial infectivity: **TRIGGER** (reorganisation of the actin cytoskeleton → ruffling of the membrane and bacterium enclosed within)

Salmonella effectors trigger bacterial uptake

Taken from Davidson et al., 2023

Taken from Park et al., 2018

- **1.** SipC \rightarrow translocon component promotes actin polymerisation (rapid growth)
- SipA → recruits regulatory proteins to stabilise neosynthesised filaments, contributes to their localisation. Activates NF-kB and recruits neutrophiles.
- **3.** SopE1/SopE2 (SPI-5) → target Rho family GTPases (Rac-1 and Cdc42) that modulate the cytoskeleton (ramification) and, via NF-kB, induce pro-inflammatory cytokines (IL-8)
- 4. **SopB** \rightarrow actin rearrangements

Cell invasion

Single mutants induce ripples with lower efficiency than WT (smaller and less distinct)

 Δ sopB/sopE/E2 triple mutant does not create ripples (no invasion)

SopE/E2 \rightarrow Rho GTPase Rac-1 \rightarrow AnxA2 (enrichment at the invasion site)

with AHNAK → reorganisation of the actin cytoskeleton through activation of several small GTPases → contributing to invasion

Taken from Jolly et al., 2014

Cell invasion

Taken from Darwin and Miller, 1999

Salmonella coordinates the expression of invasion genes and regulates them according to a time hierarchy \rightarrow progressively expressed effectors

Cytoskeleton of the cell returns to its natural conformation and microvilli are completely reassembled:

- **SptP** effector that inactivates Rac-1 and Cdc42
- **villin** which remodels the actin cytoskeleton of the brush border \rightarrow constitution of microvilli and thus epithelial restitution after damage

Taken from Jolly et al., 2014

Transition to the intracellular lifestyle

Taken from Pérez-Morales, Banda et al., 2017

Invasion phase → HilD directly or indirectly activates the expression of

- SPI-1 genes
- many other genes located outside SPI-1 (T3SS)
- flhDC flagellar regulatory operon required for host cell invasion

Intracellular phase → After invasion, Salmonella in SCVs and here SsrB induces

- expression of
 - SPI-2 genes
 - other genes located outside SPI-2, which are necessary for survival and replication
- repression of
 - hilD and hilA regulatory genes
 - SPI-1 genes
 - flagellum-based motility genes

SsrB molecular regulatory switch that helps *Salmonella* transition to an intracellular lifestyle

NUCLEUS

ACTIN

CYTOSKELETON

18/04/2024

T3SS-2 \rightarrow translocation of effector proteins (around 30) into the host cytoplasm leading to a series of bacterial adaptations

- Vacuolar remodelling
- Intracellular survival (maintenance of SCV integrity)
- Intracellular replication

MICROTUBULES

00

SECRETORY VESICLES

Taken from Figueira and Holden, 2012

GOLGI

- Interference with immune signalling
- Localisation in the peri-Golgi region

Salmonella adapts to the intracellular environment and SPI-2 genes are differentially expressed.

Expression regulated by **two-component systems**:

- OmpR-EnvZ \rightarrow regulates the expression of SsrA
- SsrA-SsrB \rightarrow encoded by SPI-2
- PhoP-PhoQ → activated by the low pH intraphagosomal environment (PhoP regulates > 20 genes including SsrB)

T3SS-2 effectors

- SifA → main effector, Salmonella-induced filament formation (SIF). Together with PipB2 interacts with SKIP protein (binds kinesin-1) for anterograde transport on microtubules (SCV localisation)
 - SseF → SCV localisation, microtubule clustering and SIF formation
 - SpiC \rightarrow prevents fusion with phagolysosome
 - SpvC → anti-inflammatory effect (MAPK)

SifA is regulated by SsrA → for vacuolar membrane maintenance

Maturation of the SCV

Evading antimicrobial activities arsenal by staying within the SCV

SCV undergo a maturation process (latency 2-3 hours) before cell replication takes place:

- volume growth by fusion with endocytic vesicles
- membrane remodelling → lysosomal membrane glycoproteins (LAMP1 and Rab7)
- lumen acidification (vacuolar-type V-ATPases)
- no fusion with lysosome (no acid hydrolases, no mannose 6-P receptors) → remains in late endosome state

Movement from the cell periphery to the perinuclear region \rightarrow pH decrease \rightarrow inducing expression of T3SS-2 and its effectors

Salmonella-induced filaments (SIF)

Taken from Zhang and Hensel, 2013

• Same composition as SCV (LAMP1 and Rab7)

 Support intracellular lifestyle by avoiding nutritional restriction → continuum with SIF (membranes and lumen)
→ endocytosed material

Crucial for intracellular

proliferation and survival

• SCV localisation

SIF formation coincides with initiation of *Salmonella* cell replication

<u>Cell proliferation</u>

Huo, Zhao, Zhang et al., 2020

Salmonella encodes for a homologous to PBP3 \rightarrow PBP3sal (63%) that promotes cell division independently from PBP3

- Allows Salmonella to grow in acidified media
- Contributes to the adaption of the bacterium to the intracellular lifestyle
- Low affinity for some β -lactam antibiotics wich binds PBP3 with high affinity

SCVs contain a single bacterium per vacuole

Image shows that many SCVs (96%) have a single bacterium (3 hours)

GFP (Salmonella)

Dinein inhibitor \rightarrow increased number of bacteria per SCV. Thus, **dinein** is involved in SCV division (concomitant with bacterial cell division)

SCVs are targets of lysosomes → addressing lysosomal degradation in an intelligent way

Advantages for Salmonella

- No competition for nutrients
- One lysosome targets one SCV (n. lysosomes insufficient if n. SCV grows)

Overlay

Rab7 (SCV)

Bright field

Taken from Eswarappa et al., 2010

Non-canonical function of SsrB: new lifestyle

Taken from Tze Fui Liew et al., 2019

 EnZ/OmpR → OmpR regulates the promoter of SsrA
PhoP/Q → PhoP regulates the SsrB promoter

Acid pH (5.6) activates SPI-2 expression:

increase TCS expression SsrA/B

SsrA (HK) membrane phosphorylates and activates SsrB (cytoplasmic RR) \rightarrow binds to DNA regions and activates SPI-2 gene transcription (by removing H-NS binding protein)

At neutral pH (6.8) SsrB also plays a non-canonical role: biofilm formation on gallstones in the gallbladder and establishment of carrier state

SsrA kinase is almost absent and SsrB is not phosphorylated \rightarrow de-represses H-NS in the *csg*D promoter (main regulator of biofilms)

 \rightarrow activates cellulose operon = structural role in biofilm (scaffold that protects and supports growth)

18/04/2024

Immune response

Host-Salmonella complex dialogue culminating in **induction of host immune response**

- Lipopolysaccharide (**lipid A**) \rightarrow TLR4
- **FliC** of the flagellum \rightarrow TLR5
- Cell wall (PG) → NOD1/NOD2
- **Curls** (biofilm fimbriae) \rightarrow TLR1/2
- T3SS-1-dependent cytosolic process causes inflammasome activation (NLRC4 and NLRP3)
- Enterocyte-bacterium contact, flagellin release (FliC) → inflammatory response with NF-kB activation → proinflammatory cytokines for neutrophil and macrophage recall

Inflammation supports Salmonella infection

Taken from Thiennimitr et al., 2012

<u>Salmonella – gut microbiota interactions</u>

Gut microbiota:

- community of microorganisms that dwell in a mutualistic relationship with hosts in gastrointestinal tract
- contains about 10¹⁴ microbial cells (Bacteroides, Firmicutes and Actinobacteria)
- contributes to protection against pathogens (competition for nutrients; activation and support of immune response)

<u>Salmonella – gut microbiota interactions</u>

- Prolonged treatment with antibiotics → negative effects on the microbiota
- *S*. exploits **ETHANOLAMMINE** to gain significant growth advantage
- S. synthesises SALMOCHELIN to acquire iron in the inflamed gut
- *S*. exploits **TETRATHIONATE** for anaerobic respiration

Taken from Thiennimitr et al., 2012

Bacteria-mediated cancer therapy (BMCT)

In the 20th century orthopaedic surgeon (Coley) injected heat-inactivated *Streptococcus pyogenes* into bone sarcomas → tumour regression

Triggering anti-tumour immune responses and destroying the **tumour microenvironment**

- Down-regulation of tumour antigens
- Formation of an immunosuppressive environment
 - Kill NK cells
 - Inhibition of DC activity (IL-10 and TGF-α)
 - Recruit T reg → suppress immune response
 - M2 macrophages (TAM) → immunosuppression
 - VEGF production → promotes angiogenesis
- Surrounding matrix of fibrillar collagen, elastin, fibronectin

Bacteria-mediated cancer therapy (BMCT)

S. Typhimurium = nanomachines

- Colonises tumour tissues (1000 times more)
- Prefers hypoxic, poorly vascularised and acidic environment
- Induces anti-tumour immune responses
- Gene transport system (Bactofection → plasmids encoding tumour genes under eukaryotic promoter)
- Drug transport system to directly target the tumour (reduces toxicity dosages)
- 3. Induces **apoptosis** in tumour cells via toxin release
- Induces anti-tumour responses by expression of proinflammatory chemokines and cytokines → increase in immune cell numbers (CD4+ helper T cells, CD8+ cytotoxic T cells, NK cells, macrophages)

Therapeutic option with great potential

The genome of *S*. enterica can be **genetically engineered** like a programmable robot to ensure safety (attenuated) and increase its therapeutic activity CD8+ -reg ci flagellin < Drug-loaded lasmi **Tumor Cell** arrying CI IDO OMVs carrying Page 34 drugs/pro-drug Taken from Yang et al., 2023

"Chassis" for exogenous proteins study

Focused on the **peptidoglycan** of uncultured bacteria of the Candidate Phyla Radiation (CPR):

- understudied bacteria
- > monophyletic radiation making up 15% of the bacterial domain
- tiny cells (expected size from 100 to 300 nm)
- \succ streamlined genomes (~1.0-1.2 Mb) \rightarrow influence metabolic activity
- predicted a (epi)-symbiotic lifestyle (type IV pili)
- unusual ribosomal composition

Salmonella enterica serovar Typhimurium (S. Typhimurium) cells as "chassis" to express enzymes of non-cultured microbes

Taken from Luef, Frischkorn, Wrighton et al., 2015

Created with BioRender

Plasmid with

gene of interest

<u>Study of enzymes related to PG metabolism of</u> <u>non-cultured microbes</u>

<u>Thank you for your</u> <u>attention!</u>

Picture from Robert Koch-Institut