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Nome: Cognome:
ex.1
Avvertenze: o2
La valutazione degli esercizi aperti dipende dalla solidita dei ragionamenti '3
svolti e dalla chiarezza dell'esposizione, come anche dalla correttezza dei ex‘4
passaggi matematici e del risultato finale. f:t.

Esercizio 1 (punti: 3+2+3).

Data la funzione f : R3 — R definita come f(x1, x, x3) = xf +4x1 4+ X2X3 + X2 — X3

i. si spieghi perché tale funzione € differenziabile in tutto lo spazio,

ii. si scriva l'equazione dell’iperpiano tangente al grafico della funzione nel punto (0,0, 0),
iii. si trovino i punti critici di f e si determini la loro natura.

Soluzione. i. La funzione f € una funzione polinomiale definita in tutto lo spazio, in quanto poli-
nomio € continua e derivabile e le sue derivate parziali del primo ordine sono

alf(Xl,Xz,X3):2X1 +4 82f(X1,X2,X3):X3+1 a3f(X1,X2,X3):X2—].

che, in quanto polinomi, sono continue in tutto R3, allora il teorema del differenziale totale ci
permette di affermare che la funzione é differenziabile in tutto lo spazio.
ii. Come visto a lezione, I'equazione del piano tangente al grafico nel punto (p, f(p)) &

x4 = f(p)+Vf(p)-(x - p)
nel nostro caso vale che p=(0,0,0), f(p) =0 e Vf(0,0,0) = (4,1,-1), da cui otteniamo

x4 =(4,1,-1)-(x1,x2,x3) = 4x1 + X2 — X3
i}i. | punti critici di f sono i punti p € R> tali che Vf(p) = (0,0, 0), nello specifico dobbiamo studiare
il sistema

d1f(x1,x2,x3)=2x1+4=0
d>f(x1,x2,x3)=x3+1=0 la cui soluzione & pc=(-2,1,-1)
a3f(X1,X2,X3) = X2 — 1=0

Poiché la matrice hessiana di f &

2
Hf(xq,x2,x3) = Hf(pc) =] O e det[Hf](x) = det[Hf](p.) = -2

e det[Hf] valeil prodotto degli autovalori, abbiamo la seguente alternativa: o tutti e tre gli autovalori
della matrice hessiana sono negativi o gli autovalori sono uno negativo e due positivi. D'altronde
€ evidente che

2 00 1 2
Hf(p.)er=|1 0 0 1 0 |=| 0 |=2e
010 0 0

cioé 2 > 0 € un autovalore della matrice con autovettore e, quindi non & possibile che tutti e tre
gli autovalori siano negativi, per cui possiamo affermare con certezza che un solo autovalore &
negativo e che gli altri due sono positivi, e questo significa che p. € un punto disella. O

Esercizio 2 (punti: 3+3+3). Data la forma differenziale

X1 X2
S —dat+—S——dxo+ ¢(x3)dx3 x=(x1,x2,x3) € C= R3\ {x; = x> =0}

Xl +X2 Xl +X2

w(x) =



2

i. per quali funzioni ¢ € C1(R) risulta w chiusa o esatta?
i. Per quali ¢ € C*(R) le primitive di w sono funzioni armoniche?

ii. Data ¢(t) = t e la curva y : {(cos(t),sin(t), t), t € [0, 7]} si calcoli J w.
14

Soluzione. i. Cerchiamo di capire quali funzioni ¢ rendono w chiusa, controllando che, detti a;(x)

i coefficienti della 1-forma differenziale, cioé w = a;(x)dx; + ax(x)dx, + az(x)dxs, valga d;a;(x) =

d;aj(x) per i = j. Nello specifico abbiamo

2X1X X
a — a X2 - _ 1X2 — a [ 1 ]: a
laZ(X) 1 X%-{—XZ ( $+X§)2 2 xf+x§ Zal(x)
32230 = 3 [Blx3)] = 0 = Bzan(x) = 33[ e
X] + X5
dzaj(x) =03 % =0=01[¢(x3)] = d1a3(x)
X7+ x5

quindi quanlunque ¢ € C1(R) (e in realta anche meno regolare) rende la forma chiusal!

Discutere |'esattezza di w richiede del lavoro in piu, perché l'aperto C dove la forma & definita non
é semplicemente connesso (& tutto lo spazio a cui € stata tolta una retta), quindi la chiusura della
forma non implica I'esattezza. Per un corollaro del teorema del rotore (visto a lezione) & sufficiente
provare che l'integrale lungo una qualsiasi curva chiusa che circuita la retta {x; = x> = 0} & nullo,
per cui scegliamo la circonferenza g contenuta nel piano {x3 = 0} di centro O(0,0,0) e raggio 1
parametrizzata nel seguente modo x(t) = (cos(t),sin(t),0), con t € [0, 27], e abbiamo che

(t) +sin?(t) cos?(t) +sin?(t)

27 )
96 ‘”:J [coszcos(t) (esin(t) + —0_(cos(t) + $(0) 0| dt = 0
Yo 0

ricordando la definizione di integrale di una 1-forma differenziale lungo una curva, in conclusione
w & esatta, oer ogni ¢ € C(R). Naturalmente & possibile provare direttamente I'affermazione cal-
colando una primitiva della forma differenziale, infatti detta U(x) la generica primitiva, integrando
le componenti di w, troviamo che

1
d1U(x) = a1(x) = % da cui U(xq, x2,x3) = > ln(xf + xg) + c1(x2, x3)
X] + X5
1
d>U(x) = ax(x) = % da cui U(xq1,x2,x3) = > ln(xf + XS) + ¢>(x1, x3)
X] + X5

X3
d3U(x) = ay(x) = P(x3)  dacui  U(xy,x,x3) = j P(s)ds + c3(x1, x2)
0
e confrontando le tre diverse rappresentazioni della primitiva U deduciamo che
1o 2.2 1L 2.2 (7
U(xq, x2,x3) = > In(x] +x5)+P(x3)+co = > In(x] +x5)+ P(s)ds+cg
0

per il teorema fondamentale del calcolo U & di classe C!(C), a patto che ¢ € CO(R).

ii. Dalla discussione precedente sappiamo che w & sempre esatta, e abbiamo anche scritto un’e-
spressione della sua generica primitiva, per verificare quando tali primitive sono delle funzioni
armoniche é sufficiente calcolare I'operatore di Laplace di U

AU(x) = d11U(x1, X2, x3) + 922 U(xq, X2, x3) + d33U(X1, X2, X3)
= d1a1(xq1, X2, X3) + drax(x1, X2, X3) + d3a3(x1, x2, X3)

x X R R T k. BT ,
= al > > +82 > > +a3¢(X3) =75 2\2 + > 2\ +¢ (X3) = (P (X3)
X] + x5 X7 + X5 (x{ +x5)° (X +x5)
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Quindi U & una funzione armonica se e solo se AU(x) = 0, cioé se e solo se ¢’(x3) =0, se e solo se
¢(s) = cg, cioé se € una funzione costante, poiché le funzioni aventi derivata nulla su un intervallo
sono necessariamente le funzioni costanti, per il teorema del valor medio.

iii. Per calcolare l'integrale richiesto possiamo procedere in due differenti maniere. il primo consi-
ste nell'applicare la definizione di integrale di una forma differenziale w = a;(x)dx; + ax(x)dx, +
az(x)dxz lungo una curva regolare y avente parametrizzazione x(t), per t € [a, b], come segue

rb
j w= | [ar((e)x)(t)+ ax(x(0)x5(t) + as(x(D)x5(t)] dt
’}/ J

a

(" cos(t)

Jo [cosz(t) +sin?(t)
Q7 [1 2]71 7.[2
= tdt=|=t
Jo 2

sin(t)
cos?(t) +sin?(t)

dt

“(=sin(t)) + (cos(t))+t-1

0 2

Il secondo metodo consiste nell'uso di una qualsiasi primitiva U, infatti vale
J w=U(B)-U(A)
14

dove A = x(a) e B = x(b) sono (rispettivamente) il punto iniziale e di finale del supporto della curva,
nel nostro caso abbiamo

2
J w = U(cos(n),sin(m), ) — U(cos(0),sin(0),0) = U(-1,0,7) - U(1,0,0) = %
Y
visto che
1 X3 1
U(x1, X2, x3) = 5 In(x§ + x5) +J sds+cg = 5 In(x? + x3) + % +co
0

Concludiamo sottolineando un fatto “ovvio™: i due metodi, se correttamente utilizzati, producvono
sempre lo stesso risultato! O

Esercizio 3 (punti: 4+5). Dato H € (0, +o0), si consideri il solido E generato dalla rotazione intorno
all'asse x5 della regione piana

1
S:{OSXlSz[eX3+e_X3],OSX3SH}Q{XZZO}ZRZ

i. si calcoli m3(E), cioé il volume del solido,
ii. si scriva una parametrizzazione che renda la superficie laterale del solido una superficie rego-
lare e se ne calcoli I'area.

Soluzione. i. Il metodo (quasi sempre) pit semplice per calcolare il volume di un solido di ro-
tazione & quello di integrare per sezioni o, se si preferisce pensare in termini di integrale di Lebe-
sgue, di usare la seguente formula di riduzione legata al teorema di Fubini (anche detto principio
di Cavalieri)

rH

m3(E) = m>(E)ds dove Es = EN{x3 =s}

JO

Per un solido di rotazione la sezione Eg & sempre un cerchio per cui vale

~H H

ms(E) = m>(Eg)ds = J ntlw(s)®ds
JO 0

dove (x1(s), x3(s)) = (w(s), s) € la parametrizzazione regolare, nel piano {x> = 0}, della curva che &
1 3 P g p 2
parte del bordo della regione S che ruotando genera il solido, precisamente il tratto che genera la
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superficie laterale. Nel nostro caso vale

W(S):i[

e quindi possiamo scrivere che

e®+ e °] =cosh(s) con s € [0, H]

(E) JHN h?(s)d RJH[ S, ’Zs]d n[l 254D L 2"
m3 = COS S S=— e e S=—|—€ S——e
0 4 Jo 412 2

= %n[eZH +4H - e2H]

0

ii. Abbiamo gia osservato che (x1(s), x3(s)) = (w(s), s) € una parametrizzazione regolare, da tale
applicazione possiamo ricavare una parametrizzazione per la superficie laterale nel seguente modo

x(6, s) = (w(s)cos(8), w(s)sin(B), s) con (6,s) e K=1[0,27] %[0, H]

adesso verifichiamo che la coppia (x, K) € una superficie regolare. Cominciamo osservando che
le componenti dela paramatrizzazione sono funzioni regolari (cioé almeno di classe C!) inoltre &
possibile verificare che la parametrizzazione € iniettiva sull'interno di K, perché ¢ iniettiva la terza
componente e la coppia (cos(0), sin(6)), sempre ricordando che w(s) > 0 per ogni s € [0, H]. A
questo punto possiamo calcolare le espressioni dei vettori tangenti e del vettore normale come
segue

d1x(8,s) = (—w(s)sin(B), w(s)cos(8),0)

d>x(0,s) = (w/(s)cos(B), w'(s)sin(6),1)

[d1x A d2x](6,s) = (w(s)cos(8), w(s)sin(B), —w(s)w'(s))
, 1/2

(91x A 32x)(6, Sl = Iw(s)I[1+ W' (s)]

e notiamo che, nei calcoli fatti, & cruciale la positivita della funzione w per avere |'esistenza del

vettore normale e, in ultima analisi, la regolarita della superficie ¥ = x(K).

Procediamo con il calcolo del valore dell'area

H do = j ||81XA32x||2d9ds_J2ﬂ[L 2(5)[1+|w'(s)|2]1/2ds]d9

H -s5\2 s —s\271/2
2l (e*+e™) (e*—e™)
n (M Yy
sz [es+e_s]3ds:zf [e3s+3es+3e_s+e‘35]ds
0 0

_”835 365365 e_3SH_7Z 3H | 9eH _ge~H _ g 3H
_23+e—e—30_ﬁ[e+e—e—e]

Si noti che nella prima parte dei calcoli di i e di ii abbiamo evitato di usare l'espressione esplicita
della funzione w, in modo da avere delle formule per il calcolo del volume e della superficie laterale
per solidi di rotazione. O

Esercizio 4 (punti: 3+3+3).
Dato il problema di Cauchy

, _ S
{ “(‘;)’:1(2— o)

si risponda ai sequenti quesiti esattamente nell’'ordine in cui sono proposti
i. si spieghi perché il sistema possiede un'unica soluzione locale,



ii. si calcoli il polinomio di Taylor, di grado 2 con centro sq = O, della soluzione,
iii. si ricavi l'espressione esplicita della soluzione.

Soluzione. i. Il problema di Cauchy da studiare riguarda un’equazione differenziale del primo
ordine nella seguente forma normale

u’(s) = f(s, u(s)) dove f(s,z) =
2-z

la funzione f & una funzione razionale (rapporto di polinomi) in due variabili ed & di classe C*® C
C! ¢ €O nel suo dominio massimale che & I'aperto A = R x (R \ {2}): per quanto visto a lezione
sappiamo che la derivabilita nella seconda entrata di f garantisce la locale lipschitzianita della
funzione rispetto alla variabile z, e quindi la validita del teorema di Picard e Lindeloff visto che il
dato iniziale (sp, ug) = (0,1) € A. E senza alcun timore possiamo affermare |'esistenza di un’unica
soluzione (locale) del problema di Cauchy.

ii. Sappiamo che il polinomio di Taylor (di grado 2, centrato in sg) di una funzione u ha la seguente
espressione

To,u(5,50) = u(s0) + ' (s0)(s — 50) + 5u”(s0)(s — s0)”

nel nostro caso specifico abbiamo che
so=0 uO)=ug=1 u’(0) = f(0,ug) =0

e, per calcolare la derivata seconda, dobbiamo osservare che la soluzione € sufficientemente re-
golare (perché la sua derivata prima & di classe C!, in quanto rapporto di funzioni C!) e, per il
teorema di derivazione delle funzioni composte, vale

B(5) = SLu(s) = <= Fls,u(s)) = VA(s,ul(s)) - ——(s, u(s)
1 s (1 u(s)) = 1 su’(s)
o) 2ouer) M T e 22

1 s? (2-u(s))?+s?

2-us) " 2-u(=)E | @2-uls)

ricordando I'espressione della derivata prima fornitaci dall'equazione differenziale. Per s = 0 otte-
niamo u”(0) = 1 da cui

Tu(s,0)=1+ 152
’ 2
Facciamo, per completezza, alcune osservazioni non richieste dal testo delll’esercizio. Innanzitutto
notiamo che il punto iniziale da cui "parte” il grafico della soluzione (0,1) appartiene all'aperto
A, = R x (-0, 2) (il dominio massimale di f & A che &€ composto dall’'unione di due aperti disgiunti)
e il grafico della soluzione del problema di Cauchy sara interamente contenuta in A,, cioé nella
componente a cui appartiene il punto iniziale. Questa osservazione implica che la quantita (2—u(s))
€ positiva per ogni s € dom(u), quindi la derivata seconda, la cui espressione abbiamo ottenuto
poco sopra, € sempre positiva, cioé u & una funzione convessa. Possiamo inoltre dimostrare che
u € una funzione pari, infatti se poniamo w(s) = u(—s) abbiamo che
d -s s

= gu(—s) =-u'(-s)= T3 s " 2 w(e) e w(0)=u(-0)=1

w'(s)

quindi w risolve lo stesso problema di Cauchy di u e l'unicita della soluzione si traduce nel fatto
che u(s) = w(s) = u(-s), cioé nella prova che la funzione u & pari.
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iii. Per ricavare I'espressione esplicita della soluzione procediamo per separazione di variabili, visto
che l'equazione differenziale ce lo permette. Quindi possiamo scrivere

(2—u(s))u'(s)=s

t t t 1
j (2—u(s))u’(s)ds = j sds = J- sds==t°
0 0 0 2
) 1

Lt(z_ u(s))u’(s)ds = J:(J;) (2—u)du = [2u(s)— 5uz(s)] = [2u(t)— %uz(t)—2+ Z

e confrontando le primitive ottenute ricaviamo la relazione
u?(s)—4u(s)+(3+s%)=0
da cui possiamo esplicitare la legge della funzione u ottenendo
1/2
u(s)=2=+ [4—(3—52)]

Sappiamo che la soluzione € unica, questo significa che solo una delle due precedenti espressioni
€ quella che ciinteressa, controllando che valga u(0) = 1 possiamo identificare I'espressione della
soluzione

u(s)=2- [1 - 52]1/2

Si noti che & una funzione pari e convessa (come dimostrato poco sopra), inoltre & immediato
verificare che dom(u) = (-1, 1) e che la soluzione non pud essere prolungata ulteriormente. O




