Analisi Vettoriale aa 2023/24 (It 30046) - E Montefusco - 20240122

Nome: Cognome: Matricola:

Avvertenze: La valutazione degli esercizi aperti dipende dalla solidita dei ragionamenti svolti e dalla chia-
rezza dell'esposizione, come anche dalla correttezza del risultato finale.

Esercizio 1 (punti: 2+2+2+2).

Data la funzione f : R3 —s R definita come f(x1, x2) = x1 (xf - 3x§)

i. si spieghi perché tale funzione € differenziabile in tutto il piano,

ii. si scriva 'equazione del piano tangente al grafico della funzione nel punto (1,1,-2),

iii. si provi che Af(xq,x2)=0

iv. si trovi maxg(f) dove B = {xf +x§ <1}CR2

Soluzione. i. Lespressione della funzione f & un polinomio, quindi si tratta di una funzione continua che

ha derivate parziali (di qualsiasi ordine) continue, in quanto anch’esse sono polinomi, infatti vale
d1f(x1,x2) = 3Xf—3x§ d>f(x1,x2) = —6x1 X2
811 f(X) = 6X1 812 f(X) = —6X2 822 f(X) = —6X1
d111f(x)=6 d12>f(x)= -6 e dijkf(x)=0 perle altre derivate di ordine 3
dijkpf(x) =0 per ogni derivata di ordine 4 (o pit)

allora (per il teorema del differenziale totale) la funzione risulta differenziabile in tutto il piano.

ii. E noto dalla teoria che I'equazione del piano tangente al grafico di una funzione f nel punto (p, f(p)) &
x3=f(p)+Vf(p)-(x—p)  cioé  x3="f(p1,pz)+Vf(p1,p2):(x1-p1,x2-p2)

Nel nostro caso abbiamo che
p=(p1,p2)=(L1)  f(p)=flp,p2)==-2  (pf(p)=(11-2)

da cui otteniamo l'equazione del piano tangente
x3==2+(0,-6)-(x1-1,x2—-1)=4-6x>

iii. Ricordando la definizione di operatore di Laplace abbiamo che
Af(x1,x2) = V- VFf(x) = d11f(xq, x2) + d2af(x1, x2) =6x; —6x1 =0

iv. Osseviamo subito che B & chiuso e limitato, quindi compatto, e f € C*(R?) C C°(B), quindi il teorema
di Weierstrass prova |'esistenza del massimo e minimo assoluti della funzione ristretta su B. | punti critici
liberi di f sono le soluzioni del sistema

d1f(x1,x2) = 3xf - 3x§ =0

Vf(x)=0 cioé { D Flxy. xo) = —Bx1xp = O

che ha il punto (0,0) come unica soluzione. Soi noti che tale punto & una sella poiché f(x;,0) = x; che
assume valori positivi e negativi in punti arbitrariamente vicini a O.

Dunque il massimo della funzione deve essere assunto su un punto appartenente alla frontiera di B, ricor-
dando che 9B = {x{ + x5 = 1} possiamo studiare il problema in due differenti maniere.

Poiché il testo non richiede un metodo in particolare & possibile descrivere dB come una curva regola-
re, semplice e chiusa, tramite la parametrizzazione (x1(s), x2(s)) = (cos(s),sin(s)) con s € [0, 27], e quindi
studiare la funzione che ottiene componendo f con x(s), in modo da avere

F(s)=f(x1(s), x2(s)) = cos(s)(cosz(s) - 3sin2(s)) = 4cos3(s) - 3cos(s) s € [0, 2x]
| punti stazionari sono le soluzione dell'equazione
F’(s) = —12sin(s)cos?(s) + 3sin(s) = 3sin(s)[1 - 4c052(s)] =0

e troviamo i seguenti valori critici del parametro s

1 2 4 5
s12=0,7 3456 = 3T 33T
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da cui ricaviamo i seguenti punti

s;=0 p1 = (cos(sy),sin(s1))=(1,0) e flp1)=1
S;=T p> = (cos(sy),sin(sy)) = (-1,0) e f(p2)=-1
s3= %n p3 = (cos(s3),sin(s3)) = (%, ?) e fpz)=-1
S4= %n P4 = (cos(sy),sin(sy)) = (—%, ?) e f(ps)=1
S5 = gn ps = (cos(ssg),sin(ss)) = (—%,—\/?g) e f(ps) =1
sg = gn pe = (cos(sg),sin(sg)) = (—%, ?) e f(pe) = -1

quindi vale che maxg(f) =1.
In alternativa possiamo ricorrere al metodo dei moltiplicatori di Lagrange e studiare i punti critici liberi della
funzione

L(xq,x2,€) = xf—3x1x§+c[xf+x§—1] (x1,X2,¢) € R3

cioé le soluzioni del sistema

d1L(x1,x2,¢) = 3xF = 3x5 +2cx; =0

92L(x1,x2, C) = —6X1X2 + 2CX2 = ZXZ(C— 3X1) =0

d3L(x1,x3,¢) = xf + xg -1=0
e dalla seconda equazione abbiamo che 0 x, = 0 0 x; = ¢/3. Se x> = 0 otteniamo, dalla terza equazione,
che x; = £1, cioé i punti p; e p, della precedente discussione. Invece la relazione x; = ¢/3, sostituita nella
prima equazione ci permette di concludere che x5 = c?/3 e dall'equazione costitutiva del vincolo ricaviamo

che ¢ = +3/2, da cui otteniamo i punti ps3, ps, ps € pe.
Riassumendo entrambi i metodi ci portano ad affermare che

)32

22 Z

max f(x) = f(1,0) = f(

xeB
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il che conclude lo svolgimento. O

Esercizio 2 (punti: 2+2+2+2+2). Date le funzioni

n (—1)k7'(2k+1 ki1 .
fo(x):= —x e f.(x) := sin(mtx) x€R
é (2k+1)!

si determini, spiegando perché, se le sequenti affermazioni sono vere o false
i. le funzioni f,, sono misurabili per ogni n € N,

ii. f, — f, puntualmente in R,

iii. f, — f, uniformemente in R,

iv. f, — f, in L?(0,1),

v. f, — f, in L%(R).

Soluzione. i. Una funzione & misurabile se la controimmagine di un aperto € un insieme misurabile, le
funzioni f,,, per ogni n € IN sono dei polinomi, quindi funzioni continue. Poiché la controimmagine di un
aperto, tramite una funzione continua, & un aperto (e gli aperti sono misurabili secondo Lebesgue) possiamo
concludere che f, & una funzione misurabile per ogni n.

i. La successione {f,} & la successione delle somme parziali di una serie di potenze che possiamo studiare
tramite la sostituzione z = 7t x, ottenendo

o (-1)k 2k+1 _ c 1 2k+1
;(2“1)!(”) ‘r;(zkﬂ)!Z

La serie ottenuta ha raggio di convergenza R = +oo nella variabile z e quindi anche rispetto ad x, peril criterio
di Hadamard, inoltre possiamo riconoscere la serie di Taylor della funzione sin, quindi possiamo affermare



che

© 1)k >0 1 .
D e =) ey sin(z =sintm)  perogni xR
k=0 ’ k=0 )

cioé f,(x) — f.(x) puntualmente in R.

iii. Il teorema del raggio di convergenza afferma che la convergenza della serie di potenze é (totale ed)
uniforme solo sui sottoinsiemi compatti contenuti in (—R, R), quindi nel nostro caso abbiamo convergenza
uniforme di f, a f, negli intervalli del tipo [a, b], con —co < a < b < +00. Non €& possibile avere convergenza
uniforme in tutto I'asse reale perché

1 = flloo,R =Suplfn(X)—ﬂ(X)| =+oo  perognineMN

questo perché f, & una funzione limitata mentre f, &€ un polinomio, e i polinomi hanno sempre immagine
non limitata, |nfatt| vale sempre lim f,(x) = +c0.
X—>*00

iv. Proviamo che I'affermazione é vera in due modi differenti. Dal punto iii sappiamo che ||f, = .|| [0,1] — O.
quindi possiamo scrivere che

Il 01, = f|f |2dx<f =12, .0 cx = 1 FI2 [onf dx = 1,12, 5.1 — O

In alternativa possiamo provare la veridicita dell'affermazione ricorrendo al teorema della convergenza do-
minata di Lebesgue osservando innanzitutto che f,,(x) — f.(x) puntualmente in [0,1] C R, per quanto
discusso nel punto ii, e quindi segue che

gn(¥) = f,(x) = f(x))?—0  qo.in(0,1)
inoltre la monotonia della potenza (su [0, +00)) ci permette di ricavare le seguenti maggiorazioni

n

_1\k 2 n 2k+1 2
1(3) ~ £ < (101 + £ (I [%(;n—i’mnxﬁwulﬂv)ll S[;—(zﬂmn”l

2
& 2k+l .
= S <
_[Z(2k+1)!+1 [sinh(m)+1]*  per ogni x € [0,1]

che di danno una funzione costante, quindi appartenente a L1(0,1), che controlla la successione {g,} e
garantisce 'applicabilita del teorema citato sopra.

v. Il precedente argomento non vale in R, perché le funzioni costanti e la funzione sinh (che sarebbero le
funzioni che compaiono nella generalizzazione delle maggiorazioni precedenti) non sono sommabili in R,
avendo integrale +oo, inoltre (per quanto osservato in iii) & evidente che f, ¢ L?(R) perognineN. O

Esercizio 3 (punti: 2+2+2+2). Dato il sequente problema di Cauchy

w'(s) = e WA(s)
w(0)=0

i. si spieghi perché esiste un'unica soluzione locale,

ii. si provi che la soluzione é strettamente crescente,

iii. si dimostri che la soluzione é una funzione dispari,

iv. si spieghi perché non € possbile scrivere esplicitamente la soluzione e se ne ricavi il polinomio di Taylor
del secondo ordine centrato in O.

Soluzione. i. Abbiamo a che fare con una equazione differenziale del primo ordine in forma normale a va-
riabili separabili. Il secondo membro dell'equazione é identificato dalla funzione f(s, z) = e e C®(R?), la
quale, essendo regolare, & localmente lipschitziana nella seconda variabile, avendo dervata parziale conti-
nua (quindi localmente limitata), questo ci permette di applicare il teorema di Picard-Lindel6ff e di affermare
I'esistenza di un’unica soluzione.

ii. Poiché la funzione esponenziale é strettamente positiva, abbiamo che

w(s) = e (&) >0

quindi, dal teorema di Lagrange, segue la stretta monotonia della soluzione.
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iii. Sappiamo che una funzione & dispari se vale
w(s) =—-w(-s) per ogni s

posto u(s) := —w(-s), notiamo che
u(0) (0)=0

5(5)= [~ wl-s)] =-w(=5)-(-1) = w/(-5) = &

-5) _ gl-w=s)? _ gu?(s)

cioé u risolve lo stesso problema di Cauchy di w! Lunicita della soluzione implica che
u(s) = —w(-s) = w(s) per ogni s

cioé w & una funzione dispari.

iv. Cerchiamo di risolvere il problema di Cauchy sfruttando il fatto che I'equazione differenziale & a variabili
separabili, infatti possiamo scrivere

%(

w

w(s) s
e Blw/(s)=1 da cui Erf(w(s)) = J e dr= f dt=s
0 0

e poiché non siamo in grado di scrivere esplicitamente la funzione Erf e tanto meno la sua inversa, non

riusciamo ad ottenere un’espressione esplicita della soluzione. Possiamo pero ricavare una sua approssi-
mazione nel seguente modo: notiamo che

per cui vale
Ty,2(s,0) = w(0) + w/(0)[s — 0] + %W”(O)[S -0 =s

che & il polinomio desiderato. O

Esercizio 4 (punti: 2+2+3).
i. Dati H, R, A > 0 parametri reali, si calcoli il volume del solido

D={xf+x3 <R2e MM 0< x5 <H}CR?

ii. si scriva una parametrizzazione regolare della superficie laterale di D,
ii. si calcoli il flusso del campo vettoriale F(x) = (x1, x2,0) attraverso la superficie laterale di D,

Soluzione. i. Il solido D & generato dalla rotazione intorno all'asse x3 del dominio piano rappresentato di
seguito
X3
(0,H) (Re™*, H)
@] X1
(R,0)

il calcolo del volume m3(D) pud essere effettuato tramite un integrale triplo (per sezioni o per fili), usando
le coordinate cilindriche o il teorema di Guldino.
Integrare per sezioni significa effettuare il seguente calcolo, basato sui teoremi di Fubini e Tonelli,

H
m3(D) = L m (D(z))dz dove D(z)=DnN{x3 =2z}
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nel nostro caso abbiamo che D(z) = {x: xf+x§ < R2e=2*#/H} & un cerchio e quindi my(D(z)) = tR%e~24#/H,
da cui otteniamo

H 2
_ 2 -2dz/H 4 _ TRHr 5y mH nR H o2
m3(D)_L nR2e Mz = -5 [ (= == [1- e

In alternativa possiamo ricorrere alle coordinate cilindriche per svolgere i seguenti calcoli

1= [[] 1essaoci = [[] raravaz= [ [ [

H Re—)\z/H
=27 dz=m Rzefz)‘Z/Hdz NR H [1 72’\]
0 0

J rdr
0

In questi ragionamenti abbiamo usato il fatto che D= {O <z<HO0<0<2n,0<r<Re”
D visto tramite nello spazio delle coordinate cilindriche, che sono

Re™ /\Z/H

rde] drl dz

/\Z/H} € il dominio

x1 = rcos(6)

x5 = rsin(0) e |det(J)| =

X3 =2z
Possiamo notare che il finale dei due calcoli & identico (ovviamente nel risultato, ma anche nello svolgimen-
to).
ii. Proponiamo una parametrizzazione della superficie laterale del solido suggerita dai precedenti calcoli
eseguiti con le coordinate cilindriche

x(u, w) = (x1(u, w), x2(u, w), x3(u, w)) = (Re_’\“/H cos(w), Re " Hsin(w), u)
con (u,w)eK=[0,H]x]0,2n]
Questa parametrizzazione (naturalmente non & I'unica possibile) &€ composta di funzioni di classe C*, quindi

derivabili e differenziabili, K & un rettangolo, quindi la chiusura di un aperto connesso e tale applicazione &
iniettiva nell'interno di K = (0, H) x (0, 27t) perché se (uy, wy) # (us, w>) segue che

(Ref/\ul/H cos(wy ), Re 1 H sin(wy), u1) # (RefAUZ/H cos(ws), Re 2/ sin(ws), u2)

perché o & differente la terza coordinata dei due punti (cioé u; # uy), oppure vale (cos(wq),sin(wy)) #
(cos(ws),sin(w>)), in quanto I'applicazione w — (cos(w), sin(w)) € iniettiva in (0, 27).

Adesso verifichiamo che la parametrizzazione ci permette di parlare di spazio tangente e vettore normale
in ogni punto dell'interno di K

RA
H
d>x(u,w) = (—Re_/\“/Hsin(W), Re */H cos(w), O)

RA
d1x(u,w) = (— e AH cos(w),—we_’\”/Hsin(w),l)

[31x A 95x](u, w) = —Re~*/H (cos(w),sin(w), R—I_;\e_’\“/H) #(0,0,0)

quindi possiamo affermare con sicurezza che la parametrizzazione scritta € una superficie regolare nel senso
spiegato a lezione.

iii. Lultimo quesito contiene un piccolo "tranello” su cui bisogna stare attenti: calcolare il flusso del campo
vettoriale F(x) = (x1, x, 0) attraverso la sola superficie laterale di D sembra suggerire che bisogna effettuare
un integrale di superficie (metodo corretto) e che non sia possibile utilizzare il teorema della divergenza, in
realta possiamo procedere in entrambi i modi.

Per usare il teorema della divergenza é sufficiente osservare che il dominio ha bordo regolare a tratti (infatti
dD =Y U C, UG5 dove X ¢ la superficie laterale parametrizzata in ii, mentre C; e C, sono i due cerchi a
quota 0 e H) e che il campo vettoriale & di classe C*(R3), per cui possiamo ragionare come segue

®op(F JLD x)do = &5 (F)+ D¢, (F) + P, (F) e ¢8D(F):JJDdiV[F](X)dX

quindi Dy (F)= ﬂ. ; div[F](x)dx — Hq F(x)- n(x)do — J]-Cz F(x)- n(x)do
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a questo punto € sufficiente osservare che il versore normale ai due cerchi C; , & ez e che F(x)-e3 =0 per
poter scrivere che

Oy (F) = JI . div[F](x)dx = 2m3(D) = KR;H [1 _ e-ZA]

poiché div[F](x) = V- F(x) = d1x1 + daxa + d30 = 2.
Volendo calcolare effettivamente l'integrale di flusso abbiamo che

by (F) = J] F(x)- n(x)do = JL(xl(u, w), xo(u, w),0) - [d1x A d>x](u, w)dudw

)
Py
_ JH fzn—RZeZ"“/Hdw du = nH_RZ [e—Zx\u/H]H _ nH_RZ o 2h_ 1]
ottenendo lo stesso valore trovato poco sopra, a meno del segno, questo perché la parametrizzazione scritta
produce un versore normale entrante rispetto a D, mentre il teorema della divergenza da sempre il risul-
tato relativo al versone uscente. | due risultati sono entrmbi corretti, visto che il testo non richiede nulla
sull'orientazione di¥. O




