
Analisi Vettoriale aa 2023/24 (lt 30046) - E Montefusco - 20240122

Nome: Cognome: Matricola:

Avvertenze: La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti svolti e dalla chia-
rezza dell’esposizione, come anche dalla correttezza del risultato finale.

Esercizio 1 (punti: 2+2+2+2).
Data la funzione f :�3 −→� definita come f (x1,x2) = x1

(
x21 −3x

2
2

)
i. si spieghi perché tale funzione è differenziabile in tutto il piano,
ii. si scriva l’equazione del piano tangente al grafico della funzione nel punto (1,1,−2),
iii. si provi che Éf (x1,x2) = 0
iv. si trovi maxB (f ) dove B = {x21 + x22 ≤ 1} ⊆�

2.

Soluzione. i. L’espressione della funzione f è un polinomio, quindi si tratta di una funzione continua che
ha derivate parziali (di qualsiasi ordine) continue, in quanto anch’esse sono polinomi, infatti vale

�1f (x1,x2) = 3x21 −3x
2
2 �2f (x1,x2) = −6x1x2

�11f (x) = 6x1 �12f (x) = −6x2 �22f (x) = −6x1
�111f (x) = 6 �122f (x) = −6 e �i jkf (x) = 0 per le altre derivate di ordine 3

�i jkpf (x) = 0 per ogni derivata di ordine 4 (o più)

allora (per il teorema del differenziale totale) la funzione risulta differenziabile in tutto il piano.
ii. È noto dalla teoria che l’equazione del piano tangente al grafico di una funzione f nel punto (p, f (p)) è

x3 = f (p) +∇f (p) · (x − p) cioè x3 = f (p1,p2) +∇f (p1,p2) · (x1 − p1,x2 − p2)

Nel nostro caso abbiamo che

p = (p1,p2) = (1,1) f (p) = f (p1,p2) = −2 (p, f (p)) = (1,1,−2)

da cui otteniamo l’equazione del piano tangente

x3 = −2+ (0,−6) · (x1 −1,x2 −1) = 4−6x2
iii. Ricordando la definizione di operatore di Laplace abbiamo che

Éf (x1,x2) = ∇ ·∇f (x) = �11f (x1,x2) +�22f (x1,x2) = 6x1 −6x1 = 0

iv. Osseviamo subito che B è chiuso e limitato, quindi compatto, e f ∈ C∞(�2) ⊆ C0(B ), quindi il teorema
di Weierstrass prova l’esistenza del massimo e minimo assoluti della funzione ristretta su B . I punti critici
liberi di f sono le soluzioni del sistema

∇f (x) = 0 cioè

{
�1f (x1,x2) = 3x21 −3x

2
2 = 0

�2f (x1,x2) = −6x1x2 = 0

che ha il punto (0,0) come unica soluzione. Soi noti che tale punto è una sella poiché f (x1,0) = x31 che
assume valori positivi e negativi in punti arbitrariamente vicini a O .
Dunque il massimo della funzione deve essere assunto su un punto appartenente alla frontiera di B , ricor-
dando che �B = {x21 + x22 = 1} possiamo studiare il problema in due differenti maniere.
Poiché il testo non richiede un metodo in particolare è possibile descrivere �B come una curva regola-
re, semplice e chiusa, tramite la parametrizzazione (x1(s),x2(s)) = (cos(s),sin(s)) con s ∈ [0,2á], e quindi
studiare la funzione che ottiene componendo f con x(s), in modo da avere

F (s) = f (x1(s),x2(s)) = cos(s)
(
cos2(s)−3sin2(s)

)
= 4cos3(s)−3cos(s) s ∈ [0,2á]

I punti stazionari sono le soluzione dell’equazione

F ′(s) = −12sin(s)cos2(s) + 3sin(s) = 3sin(s)
[
1−4cos2(s)

]
= 0

e troviamo i seguenti valori critici del parametro s

s1,2 = 0,á s3,4,5,6 =
1
3
á,

2
3
á,

4
3
á,

5
3
á
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da cui ricaviamo i seguenti punti

s1 = 0 p1 = (cos(s1),sin(s1)) = (1,0) e f (p1) = 1

s2 = á p2 = (cos(s2),sin(s2)) = (−1,0) e f (p2) = −1

s3 =
1
3
á p3 = (cos(s3),sin(s3)) =

(
1
2
,

√
3
2

)
e f (p3) = −1

s4 =
2
3
á p4 = (cos(s4),sin(s4)) =

(
−1
2
,

√
3
2

)
e f (p4) = 1

s5 =
4
3
á p5 = (cos(s5),sin(s5)) =

(
−1
2
,−
√
3
2

)
e f (p5) = 1

s6 =
5
3
á p6 = (cos(s6),sin(s6)) =

(
−1
2
,

√
3
2

)
e f (p6) = −1

quindi vale che maxB (f ) = 1.
In alternativa possiamo ricorrere al metodo dei moltiplicatori di Lagrange e studiare i punti critici liberi della
funzione

L(x1,x2,c) = x31 −3x1x
2
2 + c[x21 + x22 −1] (x1,x2,c) ∈�3

cioè le soluzioni del sistema
�1L(x1,x2,c) = 3x21 −3x

2
2 +2cx1 = 0

�2L(x1,x2,c) = −6x1x2 +2cx2 = 2x2(c −3x1) = 0
�3L(x1,x2,c) = x21 + x22 −1 = 0

e dalla seconda equazione abbiamo che o x2 = 0 o x1 = c/3. Se x2 = 0 otteniamo, dalla terza equazione,
che x1 = ±1, cioè i punti p1 e p2 della precedente discussione. Invece la relazione x1 = c/3, sostituita nella
prima equazione ci permette di concludere che x22 = c2/3 e dall’equazione costitutiva del vincolo ricaviamo
che c = ±3/2, da cui otteniamo i punti p3, p4, p5 e p6.
Riassumendo entrambi i metodi ci portano ad affermare che

max
x∈B

f (x) = f (1,0) = f

(
−1
2
,

√
3
2

)
= f

(
−1
2
,−
√
3
2

)
= 1

il che conclude lo svolgimento. □

Esercizio 2 (punti: 2+2+2+2+2). Date le funzioni

fn(x) :=
n¼

k=0

(−1)ká2k+1

(2k +1)!
x2k+1 e f∗(x) := sin(áx) x ∈�

si determini, spiegando perché, se le seguenti affermazioni sono vere o false
i. le funzioni fn sono misurabili per ogni n ∈�,
ii. fn −→ f∗ puntualmente in �,
iii. fn −→ f∗ uniformemente in �,
iv. fn −→ f∗ in L2(0,1),
v. fn −→ f∗ in L2(�).

Soluzione. i. Una funzione è misurabile se la controimmagine di un aperto è un insieme misurabile, le
funzioni fn , per ogni n ∈ � sono dei polinomi, quindi funzioni continue. Poiché la controimmagine di un
aperto, tramite una funzione continua, è un aperto (e gli aperti sono misurabili secondo Lebesgue) possiamo
concludere che fn è una funzione misurabile per ogni n.
ii. La successione {fn} è la successione delle somme parziali di una serie di potenze che possiamo studiare
tramite la sostituzione z = áx, ottenendo

∞¼
k=0

(−1)k

(2k +1)!
(áx)2k+1 =

∞¼
n=0

1
(2k +1)!

z2k+1

La serie ottenuta ha raggio di convergenza R = +∞ nella variabile z e quindi anche rispetto ad x, per il criterio
di Hadamard, inoltre possiamo riconoscere la serie di Taylor della funzione sin, quindi possiamo affermare
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che
∞¼
k=0

(−1)k

(2k +1)!
(áx)2k+1 =

∞¼
k=0

1
(2k +1)!

z2k+1 = sin(z) = sin(áx) per ogni x ∈�

cioè fn(x) −→ f∗(x) puntualmente in �.
iii. Il teorema del raggio di convergenza afferma che la convergenza della serie di potenze è (totale ed)
uniforme solo sui sottoinsiemi compatti contenuti in (−R,R), quindi nel nostro caso abbiamo convergenza
uniforme di fn a f∗ negli intervalli del tipo [a,b], con −∞ < a < b < +∞. Non è possibile avere convergenza
uniforme in tutto l’asse reale perché

∥fn − f∗∥∞,� = sup
x∈�
|fn(x)− f∗(x)| = +∞ per ogni n ∈�

questo perché f∗ è una funzione limitata mentre fn è un polinomio, e i polinomi hanno sempre immagine
non limitata, infatti vale sempre lim

x−→±∞
fn(x) = ±∞.

iv. Proviamo che l’affermazione è vera in due modi differenti. Dal punto iii sappiamo che ∥fn− f∗∥∞,[0,1] −→ 0,
quindi possiamo scrivere che

∥fn−f∗∥2L2(0,1) =
∫ 1

0
|fn(x)−f∗(x)|2dx ≤

∫ 1

0
∥fn−f∗∥2∞,[0,1]dx = ∥fn−f∗∥2∞,[0,1]

∫ 1

0
dx = ∥fn−f∗∥2∞,[0,1] −→ 0

In alternativa possiamo provare la veridicità dell’affermazione ricorrendo al teorema della convergenza do-
minata di Lebesgue osservando innanzitutto che fn(x) −→ f∗(x) puntualmente in [0,1] ⊆ �, per quanto
discusso nel punto ii, e quindi segue che

gn(x) = |fn(x)− f∗(x)|2 −→ 0 q.o. in (0,1)

inoltre la monotonia della potenza (su [0,+∞)) ci permette di ricavare le seguenti maggiorazioni

|fn(x)− f∗(x)|2 ≤ [|fn(x)|+ |f∗(x)|]2 =


∣∣∣∣∣∣∣
n¼

k=0

(−1)k

(2n +1)!
(áx)2n+1

∣∣∣∣∣∣∣+ |f∗(x)|

2

≤

 n¼
k=0

á2k+1

(2k +1)!
+ 1


2

≤

 ∞¼
k=0

á2k+1

(2k +1)!
+ 1


2

≤ [sinh(á) + 1]2 per ogni x ∈ [0,1]

che di danno una funzione costante, quindi appartenente a L1(0,1), che controlla la successione {gn} e
garantisce l’applicabilità del teorema citato sopra.
v. Il precedente argomento non vale in �, perché le funzioni costanti e la funzione sinh (che sarebbero le
funzioni che compaiono nella generalizzazione delle maggiorazioni precedenti) non sono sommabili in �,
avendo integrale +∞, inoltre (per quanto osservato in iii) è evidente che fn < L2(�) per ogni n ∈�. □

Esercizio 3 (punti: 2+2+2+2). Dato il seguente problema di Cauchy{
w′(s) = e−w

2(s)

w(0) = 0

i. si spieghi perché esiste un’unica soluzione locale,
ii. si provi che la soluzione è strettamente crescente,
iii. si dimostri che la soluzione è una funzione dispari,
iv. si spieghi perché non è possbile scrivere esplicitamente la soluzione e se ne ricavi il polinomio di Taylor
del secondo ordine centrato in 0.

Soluzione. i. Abbiamo a che fare con una equazione differenziale del primo ordine in forma normale a va-

riabili separabili. Il secondo membro dell’equazione è identificato dalla funzione f (s,z) = e−z
2 ∈ C∞(�2), la

quale, essendo regolare, è localmente lipschitziana nella seconda variabile, avendo dervata parziale conti-
nua (quindi localmente limitata), questo ci permette di applicare il teorema di Picard-Lindelöff e di affermare
l’esistenza di un’unica soluzione.
ii. Poiché la funzione esponenziale è strettamente positiva, abbiamo che

w′(s) = e−w
2(s) > 0

quindi, dal teorema di Lagrange, segue la stretta monotonia della soluzione.
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iii. Sappiamo che una funzione è dispari se vale

w(s) = −w(−s) per ogni s

posto u(s) := −w(−s), notiamo che

u(0) = −w(0) = 0

u′(s) =
[
−w(−s)

]′
= −w′(−s) · (−1) = w′(−s) = ew

2(−s) = e[−w(−s)]
2
= eu

2(s)

cioè u risolve lo stesso problema di Cauchy di w! L’unicità della soluzione implica che

u(s) = −w(−s) ≡ w(s) per ogni s

cioè w è una funzione dispari.
iv. Cerchiamo di risolvere il problema di Cauchy sfruttando il fatto che l’equazione differenziale è a variabili
separabili, infatti possiamo scrivere

ew
2(s)w′(s) = 1 da cui Erf(w(s)) =

∫ w(s)

0
er

2
dr =

∫ s

0
dt = s

e poiché non siamo in grado di scrivere esplicitamente la funzione Erf e tanto meno la sua inversa, non
riusciamo ad ottenere un’espressione esplicita della soluzione. Possiamo però ricavare una sua approssi-
mazione nel seguente modo: notiamo che

w(0) = 0 e w′(0) = ew
2(0) = 1

w′′(s) =
[
ew

2(s)
]′
= 2w(s)w′(s)ew

2(s) da cui w′′(0) = 0

per cui vale

Tw,2(s,0) = w(0) +w′(0)[s −0] + 1
2
w′′(0)[s −0]2 = s

che è il polinomio desiderato. □

Esercizio 4 (punti: 2+2+3).
i. Dati H,R,Ý > 0 parametri reali, si calcoli il volume del solido

D =
{
x21 + x22 ≤ R2e−2Ýx3/H ,0 ≤ x3 ≤ H

}
⊆�

3

ii. si scriva una parametrizzazione regolare della superficie laterale di D ,
ii. si calcoli il flusso del campo vettoriale F (x) = (x1,x2,0) attraverso la superficie laterale di D ,

Soluzione. i. Il solido D è generato dalla rotazione intorno all’asse x3 del dominio piano rappresentato di
seguito

x1

x3

O

(R,0)

(0,H) (Re−Ý,H)

il calcolo del volume m3(D ) può essere effettuato tramite un integrale triplo (per sezioni o per fili), usando
le coordinate cilindriche o il teorema di Guldino.
Integrare per sezioni significa effettuare il seguente calcolo, basato sui teoremi di Fubini e Tonelli,

m3(D ) =
∫ H

0
m2 (D (z))dz dove D (z) = D ∩ {x3 = z}
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nel nostro caso abbiamo che D (z) = {x : x21+x
2
2 ≤ R2e−2Ýz/H } è un cerchio e quindi m2(D (z)) = áR2e−2Ýz/H ,

da cui otteniamo

m3(D ) =
∫ H

0
áR2e−2Ýz/Hdz = −áR

2H
2Ý

[
e−2Ýz/H

]H
0
=
áR2H
2Ý

[
1− e−2Ý

]
In alternativa possiamo ricorrere alle coordinate cilindriche per svolgere i seguenti calcoli

m3(D ) =
$

D
1dx1dx2dx3 =

$
D̃
rdrdÚdz =

∫ H

0

∫ Re−Ýz/H

0

[∫ 2á

0
rdÚ

]
dr

dz
= 2á

∫ H

0

∫ Re−Ýz/H

0
rdr

dz = á

∫ H

0
R2e−2Ýz/Hdz =

áR2H
2Ý

[
1− e−2Ý

]
In questi ragionamenti abbiamo usato il fatto che D̃ =

{
0 ≤ z ≤ H,0 ≤ Ú ≤ 2á,0 ≤ r ≤ Re−Ýz/H

}
è il dominio

D visto tramite nello spazio delle coordinate cilindriche, che sono
x1 = r cos(Ú)
x2 = r sin(Ú)
x3 = z

e |det(J)| = r

Possiamo notare che il finale dei due calcoli è identico (ovviamente nel risultato, ma anche nello svolgimen-
to).
ii. Proponiamo una parametrizzazione della superficie laterale del solido suggerita dai precedenti calcoli
eseguiti con le coordinate cilindriche

x(u,w) = (x1(u,w),x2(u,w),x3(u,w)) =
(
Re−Ýu/H cos(w),Re−Ýu/H sin(w),u

)
con (u,w) ∈ K = [0,H]× [0,2á]

Questa parametrizzazione (naturalmente non è l’unica possibile) è composta di funzioni di classe C∞, quindi
derivabili e differenziabili, K è un rettangolo, quindi la chiusura di un aperto connesso e tale applicazione è
iniettiva nell’interno di K = (0,H)× (0,2á) perchè se (u1,w1) , (u2,w2) segue che(

Re−Ýu1/H cos(w1),Re
−Ýu1/H sin(w1),u1

)
,
(
Re−Ýu2/H cos(w2),Re

−Ýu2/H sin(w2),u2
)

perché o è differente la terza coordinata dei due punti (cioè u1 , u2), oppure vale (cos(w1),sin(w1)) ,
(cos(w2),sin(w2)), in quanto l’applicazione w 7−→ (cos(w),sin(w)) è iniettiva in (0,2á).
Adesso verifichiamo che la parametrizzazione ci permette di parlare di spazio tangente e vettore normale
in ogni punto dell’interno di K

�1x(u,w) =
(
−RÝ

H
e−Ýu/H cos(w),−RÝ

H
e−Ýu/H sin(w),1

)
�2x(u,w) =

(
−Re−Ýu/H sin(w),Re−Ýu/H cos(w),0

)
[�1x ∧�2x](u,w) = −Re−Ýu/H

(
cos(w),sin(w),

RÝ
H

e−Ýu/H
)
, (0,0,0)

quindi possiamo affermare con sicurezza che la parametrizzazione scritta è una superficie regolare nel senso
spiegato a lezione.
iii. L’ultimo quesito contiene un piccolo ”tranello” su cui bisogna stare attenti: calcolare il flusso del campo
vettoriale F (x) = (x1,x2,0) attraverso la sola superficie laterale di D sembra suggerire che bisogna effettuare
un integrale di superficie (metodo corretto) e che non sia possibile utilizzare il teorema della divergenza, in
realtà possiamo procedere in entrambi i modi.
Per usare il teorema della divergenza è sufficiente osservare che il dominio ha bordo regolare a tratti (infatti
�D = Î∪ C1 ∪ C2 dove Î è la superficie laterale parametrizzata in ii, mentre C1 e C2 sono i due cerchi a
quota 0 e H) e che il campo vettoriale è di classe C∞(�3), per cui possiamo ragionare come segue

Ð�D (F ) =
"

�D
F (x) · n(x)dã = ÐÎ(F ) +ÐC1

(F ) +ÐC2
(F ) e Ð�D (F ) =

$
D

div[F ](x)dx

quindi ÐÎ(F ) =
$

D
div[F ](x)dx −

"
C1

F (x) · n(x)dã −
"

C2

F (x) · n(x)dã
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a questo punto è sufficiente osservare che il versore normale ai due cerchi C1,2 è ±e3 e che F (x) ·e3 = 0 per
poter scrivere che

ÐÎ(F ) =
$

D
div[F ](x)dx = 2m3(D ) =

áR2H
Ý

[
1− e−2Ý

]
poiché div[F ](x) = ∇ · F (x) = �1x1 +�2x2 +�30 = 2.
Volendo calcolare effettivamente l’integrale di flusso abbiamo che

ÐÎ(F ) =
"

Î

F (x) · n(x)dã =
"

K
(x1(u,w),x2(u,w),0) · [�1x ∧�2x](u,w)dudw

=
∫ H

0

[∫ 2á

0
−R2e−2Ýu/Hdw

]
du = á

HR2

Ý

[
e−2Ýu/H

]H
0
= á

HR2

Ý

[
e−2Ý −1

]
ottenendo lo stesso valore trovato poco sopra, a meno del segno, questo perché la parametrizzazione scritta
produce un versore normale entrante rispetto a D , mentre il teorema della divergenza dà sempre il risul-
tato relativo al versone uscente. I due risultati sono entrmbi corretti, visto che il testo non richiede nulla
sull’orientazione di Î. □


