Analisi Vettoriale aa 2023/24 (It 30046) - E Montefusco - 20240111

Nome: Cognome: Matricola:

Avvertenze: La valutazione degli esercizi aperti dipende dalla solidita dei ragionamenti svolti e dalla chia-
rezza dell'esposizione, come anche dalla correttezza del risultato finale.

Esercizio 1 (punti: 3+2+3).
Dato il problema di Cauchy

{ 2u'(x) = u?(x) -1
u(0)=0
si risponda alle sequenti domande esattamente nell'ordine in cui sono proposte:
i. si spieghi perché esiste un’unica soluzione locale,
ii. si provi che dom(u) 2 [0, +00),
iii. si calcoli /espressmne esplicita della soluzione.

Soluzione. i. Il problema di Cauchy possiede un’unica soluzione locale se sono soddisfatte le ipotesi del
teorema di Picard e Lindelof. Nel caso in esame abbiamo che I'equazione differenziale risulta scritta in forma
normale u’(x) = f(x, u(x)) dove

f(x,s) = %[ ?-1]e c*(R?) c C1(R?)

e siccome f & un polinomio & una funzione regolare, in partciolare derivabile con derivate continue, quindi
localmente lipschitziana. Volendo essere molto pignoli possiamo verificare I'ipotesi svolgendo alcuni calcoli
in dettaglio, posto R = [xg—r, xg + | X [ug— 2, Ug + ] = [—r, ] x [-r, ], segue che

1 1 1
|f(x,s)—f(x,t)|:§|52—t2|:§|s+t|-|s—t|g§-2r2|s—r|:r2|s—t|

il che prova la lipschitzianita della funzione f nel rettangolo R.

ii. Il teorema di Picard e Lindelof prova I'esistenza di una soluzione del problema di Cauchy in un intervallo
le = [-¢ €], dove € = min{r, n/M} e M = maxg|f(x, s)| e, in generale, non & detto che la soluzione sia pro-
lungabile su tutto I'asse reale o anche solo su una semiretta. Laffermazione ii. segue dai teoremi di esistenza
globale della soluzione che illustriamo nel caso particolare in oggetto.

Relativamente al nostro problema di Cauchy possiamo fissare r» = 1, visto che le funzioni costanti u*(x) = 1
e u,(x) = -1 sono soluzioni dell’equazione differenziale con dato iniziale u*(0) = 1 e u,(0) = -1 rispettiva-
mente. Quindi (per l'unicita della soluzione del problema di Cauchy) segue che -1 < ug = 0 < 1 implica
-1 < u(x) < 1 per ogni x € dom(u), per cui il grafico della soluzione u & contenuto nella striscia orizzontale
S ={-1 < s < 1} C IR?. Notiamo anche che, nel nostro caso, M = maxse[-1,1]1f(x, s)| = 1/2 e che le ascisse
non influenzano il valore di M, le osservazioni fatte implicano che possiamo scegliere € = 2 e che la soluzione
del problema di Cauchy é definita in [-2,2].

A questo punto possiamo considerare il problema di Cauchy

ripetendo i ragionamenti precedenti possiamo dedurre che esiste un’unica soluzione w definita nell'inter-
vallo [0, 4] che, per l'unicita della soluzione del problema di Cauchy, deve coincidere con u in tutto [0, 2] e
prolungare la soluzione u nel seguente modo

w(x) sexe|[24]
ulx) = { u(x) sexel[-2,2]

ripetendo il ragionamento fatto possiamo concludere che dom(u) =R 2 [0, +o0).
Notiamo anche che, siccome in S vale che f(x,s) < 0 e (x,u(x)) € S, allora u’(x) < O e, per il teorema
dell'asintoto, ricaviamo che u(x) — —1 per x — +o0 e u(x) — +1 per x — —oo.
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iii. Poiché I'equazione € a variabili separabili e ug = 0 non & uno zero della funzione f, possiamo procedere
come segue
val u’(x) 1
equivale a ——— ==
u?(x)-1 2

calcando le primitive otteniamo

Jde 1
—dads=—X
02 2

JX u’(s) ds_j“‘” 1 dw_lf““)[ 11 ]dw—lln 1-u(x)
o ui(s)-1 " Jyo w2-1 " 2Jg Llw-1 w+l T2 \u(x)+1

si noti che, nel secondo integrale, abbiamo usato la sostituzione w = u(s) e il fatto che -1 < u(x) < 1 per
ogni x. A questo punto possiamo procedere con altri calcoli, cercando di esplicitare la funzione u

%ln(%) = %x la funzione logaritmo & invertibile, quindi % =e*
1-¢e*
i 1- =e* 1 i0€ =
da cui segue u(x)=e*(u(x)+1) cioé u(x) =11

I'espressione esplicita della soluzione conclude lo svolgimento. O

Esercizio 2 (punti: 4+4).

Dato C = {x} + x5 +x3 — x5 <O} CR>

i. si spieghi perché l'insieme € non vuoto, chiuso e limitato,

ii. usando il metodo dei moltiplicatori di Lagrange si identifichino i punti di C che hanno massima e minima
distanza da O = (0,0,0).

Soluzione. i. Osserviamo subito che C & non vuoto perché contiene qualcosa, per esempio i punti O =
(0,0,0),(0,0,+1)0canche (+1/4,+1/4,+1/2). Definendo g(x) = xf+x§+xg—x§ possiamo scivere C come una
controimmagine, cioé C = {x € R3: g(x) <0} = g71((~c0,0]) e siccome g € C*®(R3) € C°(R3), essendo un
polinomio, e (—oo0, 0] C R € un insieme chiuso, possiamo affermare che C & chiuso. Per provare la limitatezza
di C possiamo ragionare nel seguente modo

4 2 4 2 2

x%(xi -1)=x3—x35 <x3—Xx3+X] +x§ =g(x)<0 per ogni (xq1, X2, x3) € C

quindi i punti x € C hanno la terza componente x3 tale che (x5 —1) < 0, ovvero —1 < x3 < 1. Aquesto punto
abbiamo che

xf+x§ < max (xg—xg):

er ogni (x1, x>, eC
Jmax per ogni (x, %2, x3)

NS

per cui possiamo scrivere che

CQ{X%+X§ < %}x{—l <x3<1}= B(O,%)x[—1,+1]g R x R
si noti che

Cck:= B(O,%)x [-1,+1]C B(0,2) C R

quindi C & compatto (perché chiuso e limitato) e non vuoto.

ii. Il teorema di Weierstrass assicura l'esistenza del massimo e del minimo della funzione distanza da O per
x € C, visto che C & compatto (per quanto osservato in i.) e la funzione distanza continua. Per identificare
tali punti possiamo prcedere come segue: prima di tutto osserviamo che é sufficiente studiare la funzione
f(x) = d%(x,O) =||x - O||§ = xf + x§ + x§ perché la funzione distanza & non negativa e l'elevamento al
quadrato & una funzione strettamente crescente se ristretta su [0,+o0), in pit il quadrato della funzione
distanza permette di semplificare alcuni calcoli...

Cominciamo cercando punti critici liberi in C, poiché f € C*(RR3) studiamo |'equazione

Vf(x)=2x=2(x1,x2,x3)=(0,0,0)= O

quindi I'unico punto critico libero di f & l'origine O € C che é chiaramente un punto di minimo assoluto della
funzione, in quanto f(O) = 0 < f(x) per ogni x € R3.
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Il massimo deve necessariamente essere realizzato su dC, perindividuare i punti di massimo (come richiesto
dal testo) utilizziamo il metodo dei moltiplicatori di Lagrange. Ricordando che dC = {g(x) = 0} studiamo i
punti critici liberi della funzione

L(x1,x2,x3,¢) = f(x)— cg(x )—xf+x§+x3—c[xl+x2+x_§)1 ] (x,c) e R3xR
cioé le soluzioni del sistema
L(x,c)=2x1(1-¢)=0
- o ' L(x,c)=2x2(1-¢c)=0
(x,c)= o meglio 83L(x,c):ZX3—ZCX3(1 2x3):0
L(x,c)=—x] —xg—x§+x§ =0
Le prime due equazioni implicano l'alternativa
X1 =Xy = 0 (0] c=1
nel primo caso la quarta equazione fornisce i valori x3 = —1,0,1 (il valore di c & ininfluente), mentre nel

secondo caso la terza equazione diventa
X3—X3(1—2X§): 2x§ =0

dunque abbiamo individuato i seguenti tre punti critici vincolati
0=(0,0,0) A=(0,0,-1) B=(0,0,1)

e, per sostituzione, abbiamo che

f(O) =0 =minf(x) e f(A) = f(B) = 1 = maxf(x)

xeC xeC

il che conclude lo svolgimento. 0O

Esercizio 3 (punti: 3+3+2).

Data la funzione f : R3 —s R definita come f(xq, X2, X3) = X1 X3 + X2 X3 + X1 X3

i. si spieghi perché tale funzione € differenziabile in tutto lo spazio,

ii. si calcoli il vettore Vf(ey) per k = 1,2,3 e si dica per quali versori w € R3 si ha d,,f(e1) = 0,

iii. si scriva I'equazione dell'iperpiano tangente al grafico della funzione nel punto (e1, f(e;)) € R*.

Soluzione. i. La funzione f & differenziabile in tutto R3 per il teorema del differenziale totale: questo perché

la funzione & un polinomio, quindi f € C*(R3) C C!(IR3), infatti le sue derivate parziali sono
Vf(X) = (91 f(Xl,Xz, X3), azf(Xl, X2, X3), 93f(X1,X2, X3)) = (X2 + X), X1 + X3, X1 + X2)

che sono funzioni continue in tutto lo spazio.

ii. Ricordando che e; =(1,0,0), e =(0,1,0) e e3 = (0,0, 1) e la formula precedente otteniamo
Vf(e;)=(0,1,1) Vf(es)=(1,0,1) Vf(e3)=(1,1,0)

Poiché f & differenziabile abbiamo la seguente relazione d,,f(e;) = Vf(e1)- w, da cui ricaviamo
dwfler)=1(0,1,1)-w=(0,1,1)- (wq,ws,w3) = wor + w3 =0

quindi i versori w € R3 per cui tale prodotto scalare & nullo devono soddisfare la relazione w» + w3 = 0, da
cui deduciamo che
(t,s,—s)

= cont,seR
[t2+2$2]1/2

iii. Per iniziare osserviamo che il grafico di una funzione f : R3> — R & l'insieme I C R* dove I' = {y =
(x, f(x)) = (x1, X2, x3, f(x))}, € poiché (in generale) I'espressione dell'iperpiano tangente & {x4 = T; ,(x)}, dove
Th,p € il polinomio di Taylor del primo ordine centrato in p, ricordando che f(e;) = 0, otteniamo

x4=Ty e (x)="f(e1)+Vf(er) (x—e1)=0+(0,1,1)-(x3 = 1,x2,x3) = xp + x3

dunque l'equazione richiesta € {x4 = x, + x3}. O
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Esercizio 4 (punti: 4+5).

i. Data 1 : K € R? —s R3, definita come (u, w) = (w, e~ (utew), u) con K =[0,11?, si spieghi perché (,K) &
una superficie regolare orientabile.

ii. Dato il campo vettoriale E(x) = (a,0, b) si calcoli il flusso ®5(E), usando l'orientazione indotta dalla
parametrizzazione, e si trovino i valori dei parametri (a, b) € K che rendano che tale flusso minimo.

Soluzione. i. Affinché la coppia (3, K) sia una superficie orientabile dobbiamo verificare alcuni fatti: in-
nanzitutto notiamo che K = [0,1]° & un quadrato chiuso, quindi & la chiusura di un aperto semplicemente
connesso. Lapplicazione 1 & una funzione a valori in R avente componenti di classe C* ed ¢ iniettiva visto
che, confrontando la prima e la terza componente di i, vale

(ur+2wy) (up+2w>)

P(u, wy) = (wi, e Jup) % (wp e () =P(uz,wa)  sse (ug,wi)# (up, wa)

| vettori tangenti alla superficie sono
dp(uw)=(0,-e W2, 1) e Ipp(u,w)=(1,-2e742,0)
e sono linearmente indipendenti visto che
(1 A I2P) (u,w) = (2e‘(“+2‘”), 1, e_(‘“zw)) #(0,0,0) per ogni (u, w) € K

quindi possiamo concludere che (1, K) & una superficie regolare.

Provare |'orientabilita della superficie & molto pit delicato, di fatto sappiamo riconoscere una superficie
orientabile quando si tratta di una parte di un grafico di una funzione o del bordo di un aperto connesso. Nel
caso in esame la nostra superficie & una parte del grafico I' C R* della funzione F € C!(RR?), definita come
F(x1,x2) = eX172%2, su cui agisce I'applicazione lineare (e regolare)

010
()’L)’Z:YB)'—)(YZ:)’B:)’l):[O 0 1 |1,y2y3)
100

ii. Poiché la superficie & una parte di un grafico, ¥ non pud essere una superficie chiusa, cioé il bordo di un
aperto connesso, quindi il flusso del campo deve essere calcolato tramite un integrale di superficie, visto
che il teorema della divergenza non puo essere applicato. Allora, ricordando la definizione di integrale di
superficie, abbiamo che

Pp(X) = ﬂ E(x)- n(x)do = ﬂK(a, 0,b)- (311 A I1p) (u, w)dudw
1

3

1 1 1

:f [J (a,O,b)-(Ze(‘”Zw),l,e(“+2W))du]dW:(2a+b)J [—[ e(“+2w)du}dw
0 0 0 0

1 1
1
:(2a+b)J‘ [—e_(“+2w)] dw:(2a+b)J- [—e_(2W+1)+e_2W]dw
0 0 0

- (2a+ b)(l - l)jl e dw=(2a+ b)(l - l)(1 - i) —: ¢(a, b)
B el Jo -2 e e?) Pla
Essendo tutti i fattori non negativi il flusso & minimo per a = b = 0, infatti ¢(a, b) € lineare ed ha gradiente
mai nullo

1 1 1

Vea,b) = —(1 _ —)(1 _ —)(2,1) —¢(2,1) conc>0

2 e e?
quindi il massimo e il minimo (che esistono per il teorema di Weierstrass, poiché K &€ compatto) sono assunti
su dK, Ma V¢ non & mai parallelo alla normale a dK, cioé ai vettori e; o e, visto che dK & un quadrato
con i lati paralleli agli assi coordinati, per cui i punti estremali devono essere i vertici del quadrilatero e, in
particolare, (0,0) & il punto di minimo. O




