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Nome: Cognome: Matricola:

Avvertenze: La valutazione degli esercizi aperti dipende dalla solidità dei ragionamenti svolti e dalla chia-
rezza dell’esposizione, come anche dalla correttezza del risultato finale.

Esercizio 1 (punti: 3+2+3).
Dato il problema di Cauchy{

2u′(x) = u2(x)−1
u(0) = 0

si risponda alle seguenti domande esattamente nell’ordine in cui sono proposte:
i. si spieghi perché esiste un’unica soluzione locale,
ii. si provi che dom(u) ⊇ [0,+∞),
iii. si calcoli l’espressione esplicita della soluzione.

Soluzione. i. Il problema di Cauchy possiede un’unica soluzione locale se sono soddisfatte le ipotesi del
teorema di Picard e Lindelöf. Nel caso in esame abbiamo che l’equazione differenziale risulta scritta in forma
normale u′(x) = f (x,u(x)) dove

f (x,s) =
1
2

[
s2 −1

]
∈ C∞(�2) ⊆ C1(�2)

e siccome f è un polinomio è una funzione regolare, in partciolare derivabile con derivate continue, quindi
localmente lipschitziana. Volendo essere molto pignoli possiamo verificare l’ipotesi svolgendo alcuni calcoli
in dettaglio, posto R = [x0 − r1,x0 + r1]× [u0 − r2,u0 + r2] = [−r1, r1]× [−r2, r2], segue che

|f (x,s)− f (x, t)| =
1
2

∣∣∣s2 − t2∣∣∣ = 1
2
|s + t| · |s − t| ≤

1
2
·2r2 |s − t| = r2 |s − t|

il che prova la lipschitzianità della funzione f nel rettangolo R .
ii. Il teorema di Picard e Lindelöf prova l’esistenza di una soluzione del problema di Cauchy in un intervallo
Iê = [−ê,ê], dove ê = min{r1, r2/M} e M = maxR |f (x,s)| e, in generale, non è detto che la soluzione sia pro-
lungabile su tutto l’asse reale o anche solo su una semiretta. L’affermazione ii. segue dai teoremi di esistenza
globale della soluzione che illustriamo nel caso particolare in oggetto.
Relativamente al nostro problema di Cauchy possiamo fissare r2 = 1, visto che le funzioni costanti u∗(x) ≡ 1
e u∗(x) ≡ −1 sono soluzioni dell’equazione differenziale con dato iniziale u∗(0) = 1 e u∗(0) = −1 rispettiva-
mente. Quindi (per l’unicità della soluzione del problema di Cauchy) segue che −1 < u0 = 0 < 1 implica
−1 < u(x) < 1 per ogni x ∈ dom(u), per cui il grafico della soluzione u è contenuto nella striscia orizzontale
S = {−1 < s < 1} ⊆ �

2. Notiamo anche che, nel nostro caso, M = maxs∈[−1,1] |f (x,s)| = 1/2 e che le ascisse
non influenzano il valore di M, le osservazioni fatte implicano che possiamo scegliere ê = 2 e che la soluzione
del problema di Cauchy è definita in [−2,2].
A questo punto possiamo considerare il problema di Cauchy w′(x) =

w2(x)−1
2

w(2) = u(2)

ripetendo i ragionamenti precedenti possiamo dedurre che esiste un’unica soluzione w definita nell’inter-
vallo [0,4] che, per l’unicità della soluzione del problema di Cauchy, deve coincidere con u in tutto [0,2] e
prolungare la soluzione u nel seguente modo

u(x) :=

{
w(x) se x ∈ [2,4]
u(x) se x ∈ [−2,2]

ripetendo il ragionamento fatto possiamo concludere che dom(u) =� ⊇ [0,+∞).
Notiamo anche che, siccome in S vale che f (x,s) < 0 e (x,u(x)) ∈ S, allora u′(x) < 0 e, per il teorema
dell’asintoto, ricaviamo che u(x) −→ −1 per x −→ +∞ e u(x) −→ +1 per x −→ −∞.
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iii. Poiché l’equazione è a variabili separabili e u0 = 0 non è uno zero della funzione f , possiamo procedere
come segue

u′(x) =
u2(x)−1

2
equivale a

u′(x)
u2(x)−1

=
1
2

calcando le primitive otteniamo∫ x

0

1
2
ds =

1
2
x∫ x

0

u′(s)
u2(s)−1

ds =
∫ u(x)

u(0)

1
w2 −1

dw =
1
2

∫ u(x)

0

[ 1
w −1

− 1
w +1

]
dw =

1
2
ln

(
1− u(x)
u(x) + 1

)
si noti che, nel secondo integrale, abbiamo usato la sostituzione w = u(s) e il fatto che −1 < u(x) < 1 per
ogni x. A questo punto possiamo procedere con altri calcoli, cercando di esplicitare la funzione u

1
2
ln

(
1− u(x)
u(x) + 1

)
=
1
2
x la funzione logaritmo è invertibile, quindi

1− u(x)
u(x) + 1

= ex

da cui segue 1− u(x) = ex (u(x) + 1) cioè u(x) =
1− ex

ex +1
l’espressione esplicita della soluzione conclude lo svolgimento. □

Esercizio 2 (punti: 4+4).
Dato C = {x21 + x22 + x43 − x

2
3 ≤ 0} ⊆�

3

i. si spieghi perché l’insieme è non vuoto, chiuso e limitato,
ii. usando il metodo dei moltiplicatori di Lagrange si identifichino i punti di C che hanno massima e minima
distanza da O = (0,0,0).

Soluzione. i. Osserviamo subito che C è non vuoto perché contiene qualcosa, per esempio i punti O =
(0,0,0), (0,0,±1)o anche (±1/4,±1/4,±1/2). Definendo g(x) = x21+x

2
2+x

4
3−x

2
3 possiamo scivereC come una

controimmagine, cioè C = {x ∈ �3 : g(x) ≤ 0} = g−1((−∞,0]) e siccome g ∈ C∞(�3) ⊆ C0(�3), essendo un
polinomio, e (−∞,0] ⊆� è un insieme chiuso, possiamo affermare che C è chiuso. Per provare la limitatezza
di C possiamo ragionare nel seguente modo

x23(x
2
3 −1) = x43 − x

2
3 ≤ x43 − x

2
3 + x21 + x22 = g(x) ≤ 0 per ogni (x1,x2,x3) ∈ C

quindi i punti x ∈ C hanno la terza componente x3 tale che (x23 −1) ≤ 0, ovvero −1 ≤ x3 ≤ 1. A questo punto
abbiamo che

x21 + x22 ≤ max
x3∈[−1,1]

(x23 − x
4
3 ) =

1
4

per ogni (x1,x2,x3) ∈ C

per cui possiamo scrivere che

C ⊆
{
x21 + x22 ≤

1
4

}
× {−1 ≤ x3 ≤ 1} = B

(
O ,

1
2

)
× [−1,+1] ⊆�

2 ×�

si noti che

C ⊆ K := B
(
O ,

1
2

)
× [−1,+1] ⊆ B (O ,2) ⊆�

3

quindi C è compatto (perché chiuso e limitato) e non vuoto.
ii. Il teorema di Weierstrass assicura l’esistenza del massimo e del minimo della funzione distanza da O per
x ∈ C , visto che C è compatto (per quanto osservato in i.) e la funzione distanza continua. Per identificare
tali punti possiamo prcedere come segue: prima di tutto osserviamo che è sufficiente studiare la funzione
f (x) = d2

2 (x,O ) = ∥x − O∥22 = x21 + x22 + x23 perché la funzione distanza è non negativa e l’elevamento al
quadrato è una funzione strettamente crescente se ristretta su [0,+∞), in più il quadrato della funzione
distanza permette di semplificare alcuni calcoli...
Cominciamo cercando punti critici liberi in C , poiché f ∈ C∞(�3) studiamo l’equazione

∇f (x) = 2x = 2(x1,x2,x3) = (0,0,0) = O

quindi l’unico punto critico libero di f è l’origine O ∈ C che è chiaramente un punto di minimo assoluto della
funzione, in quanto f (O ) = 0 ≤ f (x) per ogni x ∈�3.
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Il massimo deve necessariamente essere realizzato su�C , per individuare i punti di massimo (come richiesto
dal testo) utilizziamo il metodo dei moltiplicatori di Lagrange. Ricordando che �C = {g(x) = 0} studiamo i
punti critici liberi della funzione

L(x1,x2,x3,c) = f (x)− cg(x) = x21 + x22 + x23 − c
[
x21 + x22 + x43 − x

2
3

]
(x,c) ∈�3 ×�

cioè le soluzioni del sistema

∇L(x,c) = O o meglio


�1L(x,c) = 2x1(1− c) = 0
�2L(x,c) = 2x2(1− c) = 0
�3L(x,c) = 2x3 −2cx3

(
1−2x23

)
= 0

�4L(x,c) = −x21 − x
2
2 − x

4
3 + x23 = 0

Le prime due equazioni implicano l’alternativa

x1 = x2 = 0 o c = 1

nel primo caso la quarta equazione fornisce i valori x3 = −1,0,1 (il valore di c è ininfluente), mentre nel
secondo caso la terza equazione diventa

x3 − x3
(
1−2x23

)
= 2x33 = 0

dunque abbiamo individuato i seguenti tre punti critici vincolati

O = (0,0,0) A = (0,0,−1) B = (0,0,1)

e, per sostituzione, abbiamo che

f (O ) = 0 = min
x∈C

f (x) e f (A) = f (B ) = 1 = max
x∈C

f (x)

il che conclude lo svolgimento. □

Esercizio 3 (punti: 3+3+2).
Data la funzione f :�3 −→� definita come f (x1,x2,x3) = x1x2 + x2x3 + x1x3
i. si spieghi perché tale funzione è differenziabile in tutto lo spazio,
ii. si calcoli il vettore ∇f (ek) per k = 1,2,3 e si dica per quali versori w ∈�3 si ha �w f (e1) = 0,
iii. si scriva l’equazione dell’iperpiano tangente al grafico della funzione nel punto (e1, f (e1)) ∈�4.

Soluzione. i. La funzione f è differenziabile in tutto �
3 per il teorema del differenziale totale: questo perché

la funzione è un polinomio, quindi f ∈ C∞(�3) ⊆ C1(�3), infatti le sue derivate parziali sono

∇f (x) = (�1f (x1,x2,x3),�2f (x1,x2,x3),�3f (x1,x2,x3)) =
(
x2 + x),x1 + x3,x1 + x2

)
che sono funzioni continue in tutto lo spazio.
ii. Ricordando che e1 = (1,0,0), e2 = (0,1,0) e e3 = (0,0,1) e la formula precedente otteniamo

∇f (e1) = (0,1,1) ∇f (e2) = (1,0,1) ∇f (e3) = (1,1,0)

Poiché f è differenziabile abbiamo la seguente relazione �w f (e1) = ∇f (e1) ·w, da cui ricaviamo

�w f (e1) = (0,1,1) ·w = (0,1,1) · (w1,w2,w3) = w2 +w3 = 0

quindi i versori w ∈ �3 per cui tale prodotto scalare è nullo devono soddisfare la relazione w2 +w3 = 0, da
cui deduciamo che

w =
(t,s,−s)

[t2 +2s2]1/2
con t,s ∈�

iii. Per iniziare osserviamo che il grafico di una funzione f : �3 −→ � è l’insieme Èf ⊆ �
4, dove È = {y =

(x, f (x)) = (x1,x2,x3, f (x))}, e poiché (in generale) l’espressione dell’iperpiano tangente è {x4 = T1,p(x)}, dove
T1,p è il polinomio di Taylor del primo ordine centrato in p, ricordando che f (e1) = 0, otteniamo

x4 = T1,e1 (x) = f (e1) +∇f (e1) · (x − e1) = 0+ (0,1,1) · (x1 −1,x2,x3) = x2 + x3

dunque l’equazione richiesta è {x4 = x2 + x3}. □
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Esercizio 4 (punti: 4+5).
i. Data è : K ⊆�

2 −→�
3, definita come è(u,w) =

(
w,e−(u+2w),u

)
con K = [0,1]2, si spieghi perché (è,K) è

una superficie regolare orientabile.
ii. Dato il campo vettoriale E(x) = (a,0,b) si calcoli il flusso ÐÎ(E), usando l’orientazione indotta dalla
parametrizzazione, e si trovino i valori dei parametri (a,b) ∈ K che rendano che tale flusso minimo.

Soluzione. i. Affinché la coppia (è,K) sia una superficie orientabile dobbiamo verificare alcuni fatti: in-
nanzitutto notiamo che K = [0,1]2 è un quadrato chiuso, quindi è la chiusura di un aperto semplicemente
connesso. L’applicazione è è una funzione a valori in �

3 avente componenti di classe C∞ ed è iniettiva visto
che, confrontando la prima e la terza componente di è, vale

è(u1,w1) =
(
w1,e

−(u1+2w1),u1
)
,
(
w2,e

−(u2+2w2),u2
)
= è(u2,w2) sse (u1,w1) , (u2,w2)

I vettori tangenti alla superficie sono

�1è(u,w) =
(
0,−e−(u+2w),1

)
e �2è(u,w) =

(
1,−2e−(u+2w),0

)
e sono linearmente indipendenti visto che

(�1è∧�2è) (u,w) =
(
2e−(u+2w),1,e−(u+2w)

)
, (0,0,0) per ogni (u,w) ∈ K

quindi possiamo concludere che (è,K) è una superficie regolare.
Provare l’orientabilità della superficie è molto più delicato, di fatto sappiamo riconoscere una superficie
orientabile quando si tratta di una parte di un grafico di una funzione o del bordo di un aperto connesso. Nel
caso in esame la nostra superficie è una parte del grafico È ⊆ �

3 della funzione F ∈ C1(�2), definita come
F (x1,x2) = e−x1−2x2 , su cui agisce l’applicazione lineare (e regolare)

(y1,y2,y3) 7−→ (y2,y3,y1) =

 0 1 0
0 0 1
1 0 0

 (y1,y2,y3)t
ii. Poiché la superficie è una parte di un grafico, Î non può essere una superficie chiusa, cioè il bordo di un
aperto connesso, quindi il flusso del campo deve essere calcolato tramite un integrale di superficie, visto
che il teorema della divergenza non può essere applicato. Allora, ricordando la definizione di integrale di
superficie, abbiamo che

ÐE (Î) =
"

Î

E(x) · n(x)dã =
"

K
(a,0,b) · (�1è∧�2è) (u,w)dudw

=
∫ 1

0

[∫ 1

0
(a,0,b) ·

(
2e−(u+2w),1,e−(u+2w)

)
du

]
dw = (2a+ b)

∫ 1

0

[∫ 1

0
e−(u+2w)du

]
dw

= (2a+ b)
∫ 1

0

[
−e−(u+2w)

]1
0
dw = (2a+ b)

∫ 1

0

[
−e−(2w+1) + e−2w

]
dw

= (2a+ b)
(
1− 1

e

)∫ 1

0
e−2wdw =

1
2
(2a+ b)

(
1− 1

e

)(
1− 1

e2

)
=: æ(a,b)

Essendo tutti i fattori non negativi il flusso è minimo per a = b = 0, infatti æ(a,b) è lineare ed ha gradiente
mai nullo

∇æ(a,b) = 1
2

(
1− 1

e

)(
1− 1

e2

)
(2,1) = c(2,1) con c > 0

quindi il massimo e il minimo (che esistono per il teorema di Weierstrass, poiché K è compatto) sono assunti
su �K, Ma ∇æ non è mai parallelo alla normale a �K, cioè ai vettori e1 o e2, visto che �K è un quadrato
con i lati paralleli agli assi coordinati, per cui i punti estremali devono essere i vertici del quadrilatero e, in
particolare, (0,0) è il punto di minimo. □


