Molecular Dynamics Simulation of Viral Lysozymes (5KI1 & 206L) Using Gromacs

Flavio Scipione Andrea Belli Contarini Federico Loreto Krakowski Patryk

Computational Biophysics 2023-2024
Introduction & Objectives

- Pseudoenzymes
 - Catalytically-deficient variants
 - $\circ\,$ Same folding structure

Vasileios Chatzitolios Matteo Cacioppo

• Molecular Dynamics

 \circ How are dynamics affected by point mutations? \circ

What happens near mutated residues?

Introduction & Objectives

Pseudoenzymes

- Catalytically-deficient variants
- Same folding structure

• Molecular Dynamics

How are dynamics affected by point mutations?
 What happens near mutated residues?

Lysozyme

 \bullet Antimicrobial enzyme found in animal secretions \circ

Tears, saliva, mucus and milk

• Acts by degrading peptidoglycans in the bacterial

walls • Main active sites in Glu35 and Asp52

• Non-enzymatic function

Lysozyme

• Antimicrobial enzyme found in animal secretions

• Acts by degrading peptidoglycan in the bacterial

walls \circ Binds peptidoglycan in the cleft between its two domains \circ Hydrolysis of the glycosidic bonds

- Main active sites in Glu35 and Asp52
- Non-enzymatic function

Lysozyme

 Antimicrobial enzyme found in animal secretions
 Acts by degrading peptidoglycan in the bacterial walls
 Main active sites in Glu35

and Asp52

 $\circ\,$ Substitution leads to malfunction

• Non-enzymatic function

 Antimicrobial enzyme found in animal secretions
 Acts by degrading peptidoglycan in the bacterial walls
 Main active sites in Glu35 and Asp52

- Non-enzymatic function
 - \circ Asp52 \rightarrow Ser52 keeps some antimicrobial properties \circ

Possible interactions with T-cell receptors

T4 Lysozyme

• Lysozyme variant expressed in Tequatrovirus \circ

Used to infect bacteria

 $\circ\,$ Main active sites in Glu11 and Asp20 $\,$

• 206L Phage T4 Variant

• 5KI1 Pseudo T4 Mutant **T4 Lysozyme**

• Lysozyme variant expressed in Tequatrovirus •

206L Phage T4 Variant

• Expressed in E. Coli

 $\circ\,$ Displays standard function

• 5KI1 Pseudo T4 Mutant **T4 Lysozyme**

• Lysozyme variant expressed in

Tequatrovirus • 206L Phage T4 Variant

• 5KI1 Pseudo T4 Mutant

 $\circ \; \text{Ser42} \rightarrow \text{Ala42}$

 $\circ \; Tyr18 \rightarrow Phe18$

 $\circ\,$ The lost connection is bridged by water

 $\circ\,$ Structure remains intact

The viral lysozymes studied

Elailad Egmanetry: Asymmetric - C1 O Elailad Espirithianatry: Honorar - H O

Find Similar Assemblies

	Diseise Films +	@Journal Firs = 0	FOate-API	< Biological Assembly	• • >		B Dons File -	Ø towncet File +	€ turs HT
SELECT 1 SELECT 14 LYSC/LYME MUTANT - Y1 BE FOR THE INSTANCE MUTANT - Y1 Be FOR THE INSTANCE STREET SELECT 15 AND A SELECTION AND A SELECT 15 AND A SELECTION AND A SELECT 15 AND A SELECTION AND A SELECTION A S	18F Linker (NIF) Urited Zhales)				2 N	206L PHAGE T4 LYSOZYME P68-D06 https://doi.org/16.2010/pd6-000./pd6 Cassilioactive HYDR/CAM (2-02/YCOM) Organize(i) Tapateories T3 Expression Spatem: Instruction and Mutation(i) Tel Deposition Author(i) Status M, Mattews, BM.			
operimental Gala Ensystem	wwPOB Vehiction 0	 Compari 	Pui Report			Experimental Data Snapshot	wwPDB Nalidation 0	@150 Report	Ful Paper
Industal, BLOW DRIVENCTION Headuring LAB A Applice Press: 2007 Annue Rharts 0.180 Annue Rharts 0.180 Annue Observent: 8.192	Hards Brain Datheri Eineskedenseite Biskeisenseite Biskeisenseite Biskeisenseite Biskeisenseite Biskeisenseite Biskeisenseite			© Explore in 20: Structure Sergio Genton Density Velotion Repo Ligant Interaction (BHE) Global Symmetry: Asymmetric - C Global Structivemetry: Manome	ance Annotations rt 21 O At 1 O	Mathad: 8-Rev DETENCTION Resolution: 1,25-8 R-Value Observet: 0,120	Mabbi Partanan Ramahani na onfari Rabahan anfari Rabahan anfari Ra	Privatile Rate	

• 206L & 5KI1:

Both are from the same organism (bacteriophage Tequatrovirus T4), expressed in Escherichia coli. However, they differ in specific name, due to specific mutations made to amino acids in the

sequence

n tools: Gromacs & Computers' processors

GROMACS is one of the fastest and most popular software packages available designed for simulations of proteins, lipids and nucleic acids.

AMD Ryzen™53500X

Computing power of

computers :

MD Simulation Process

1. Topology Preparation & Examination 2. Defining the Unit Cell & Adding Solvent 3. Ions Addition

- 4. Energy Minimization
- 5. Equilibration
- 6. Production MD
- 7. Data Analysis

1. We clean our proteins

Topology Preparation & Examination

- Best performance for liquid simulations - LMP2 (Local Møller–Plesset perturbation)

- Better RMSD (Root Mean Squared Deviation)

Defining the Unit Cell & Adding Solvent

minimization

Parametri: emtol = 1000.0 (F_max=1000 KJ/Mol/nm) emstep = 0.01 (step size) nsteps = 50000

factors to evaluate to determine if EM was successful:

- E_{pot} should be negative on the order of 10^5 - 10^6
- the minimum is reached before the maximum number of steps

Equilibration reached through a steepest descent Equilibration

NVT ensemble

Equilibration reached through a modified Berendsen thermostat:

T_{206L}=300.001±1.508 K T_{5KI1}=299.992±1.480 K in both cases, temperature of the system quickly reaches the target value (300 K), and remains stable for 100 ps. Equilibration

NPT ensemble

� � = 2 *ps*, **k**=44.5*10-5 bar⁻¹, P_{bath}=1 bar

<u>)7 equil2.html</u>

 P_{206L} =0.834±124.955 bar

The densities are compatible with the predicted densities of the system **Production MD** P_{5KI1} =1.011±127.961 bar

Pressure widely fluctuate, but statistically in can't be distinguished by the target value (see

ttp://www.mdtutorials.com/gmx/lysozyme

We are now ready to release the position restraints and run production MD for data collection

Using

NPT ensemble:

- Berendsen thermostat: �� = 0.1ps
- Parrinello Rahman barostat: \$= 2 ps,
 K=44.5*10-5 bar⁻¹

- Time step: 2 fs (good compromise for computability)
- 3*10⁷ total steps

 $x(t) \rightarrow \text{position at step } t$ $v(t+1/2) \rightarrow \text{velocity at step } (t+1/2) \ a(t) \rightarrow \text{acceleration}$ $dt \rightarrow \text{time-step}$

http://www.mdtutorials.com/gmx/lysozyme/Files/md.r

Production MD

MD 206L MD 5KI1

energy fluctuation: ~ 0.2% energy fluctuation: ~ 0.2%

Comparison between the two lysozymes: alignment

Changes:

• number 18:

tyrosine phenylalanine

makes hydrogen-bonding with 30 when not mutated, otherwise H₂O bridges.

• <u>number 42</u>:

serine alanine

makes hydrogen-bonding with:

Sequences alignment, using BLAST: https://www.ncbi.nlm.nih.gov/

39, 17 & 45. Check everything on <mark>link</mark>.

Data Analysis

Comparison between the two lysozymes: RMSDs

Comparison between the two lysozymes: RMSDs

Specific plots of the RMSD for the protein and for the backbone

Comparison between the two lysozymes: RMSDs

Comparison between the two lysozymes: RMSFs

Comparison between the two lysozymes: RMSFs

comparison:

Possible causes in fluctuations difference

• Molecular structure: Differences in the 3D structures could influence the dynamics.

• **Binding characteristics**: for example a.a #18 cannot make hydrogen bonds with #11 and #30. •

Residue-residue interactions: interactions between residues (i.e. H-B, ionic bonds,

hydrophobic bonds) may influence structural stability, affecting the RMSF.

Data Analysis

Comparison between the two lysozymes: R18 & R30

Comparison between the two lysozymes: R18 & R11

Comparison between the two lysozymes: R42 & R17

Comparison between the two lysozymes: R42 & R39

Comparison between the two lysozymes: R42 & R45

Results- Cross Correlation Dynamical Matrices (CCDM)

Conclusions

Conclusions

The overall structure does not change → in the mutation in site #18 H₂O is able to bridge; however the overall activity is reduced, compared to the mutated version, as anticipated in the article. • Using a rhombic dodecahedron box is computationally less expensive (=30% less water). • Additional softwares to Gromacs (i.e. Blast, Biosig, ...) are very useful for a deeper understanding of the molecules behavior.