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Statistical mechanics of gene expression

Gene expression can be measured at the mRNA level: Transcriptome
CONTROLED BY TRANSCRIPTION FACTORS

Gene expression can be measured at the protein level: proteome
CONTROLLED By various mechanisms at the ribosome
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Figure 3.13 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.9 Electron microscopy
image of simultaneous
transcription and transiation. The
image shows bacterial DNA and its
associated mRNA transcripts, each
of which is occupied by ribosomes.
(Adapted from O. L. Miller et al.,
Science 169:392, 1970.)

Figure 6.7 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Heterogeneity of phenotypes: noise

Pictoresquely, originating from cellular “decisions”
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Figure 2

Transcription process resulting in change in mRNA census between times # and ¢ + Az. The schematic histogram
shows thedistribution of the number of mRNA molecules found per cell. We refer to the average number of mRNA at
time ¢ as m(2); it is found by adding up the total number of mRNA over all cells and dividing by the number of cells.
The number of mRNA per cell increases because of transcription and decreases because of mRNA degradation.
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There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic
approach regards the time evolution as a kind of random-walk process which is governed by a single dif-
ferential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way
to make exact numerical calculations within the framework of the stochastic formulation without having to
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like
the master equation, this “stochastic simulation algorithm” correctly accounts for the inherent fluctuations
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal
time increments d¢ by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and
the Oregonator. '

The Journal of Physical Chemistry, Vol. 81, No. 25, 1977



In this paper we shall be concerned with the following
general problem: If a fixed volume V contains a spatially
uniform mixture of N chemical species which can inter-
react through M specified chemical reaction channels, then
given the numbers of molecules of each species present at
some initial time, what will these molecular population
levels be at any later time?



The traditional way of treating this problem begins by
translating it into the mathematical language of ordinary
differential equations. More specifically, if we assume that
the number of molecules of the ith species in V at time
t can be represented by a continuous, single-valued
function X;(t) (i = 1,...,N), and if we further assume that
each of the M chemical reactions can be regarded as a
continuous rate process, then we can easily construct a set
of coupled, first-order, ordinary differential equations of
the form

dX,/dt = (X, . ., XN)
dX,/dt = £,(Xy,. . ., XyN) (1)

dXy/dt = f5(Xy,. . X N)

The specific forms of the functions f; on the right (which
are usually nonlinear in the X;’s) are determined by the
structures and rate constants of the M chemical reaction
channels. These equations are called the “reaction-rate
equations”; solving them for the functions X,(t),...,Xxn(t),
subject to the prescribed initial conditions, is tantamount
to solving the time-evolution problem posed earlier.
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Continuous/deteministic/discrete/stochastic

Stochastic biochemical systems and the chemical master equation

Newton’s Law of Motion

XI(t),Xz(t),"' ,XN(t)
The Law of Mass Action
Cl(t)7 CZ(I)’ aCN(t)

h—0
H

V—o00

The Schrodinger Equation
w(xls X2, y XN, t)

The Chemical Master Equation
p(nla ny,-=-+,A0pN, t)

Figure 11.1 A schematic that illustrates the analogy between the theories for me-
chanical motions and for chemical dynamics. Newton’s law of motion, govern-

ing a collection of particles with positions x1(¢), x2(2), - - -

, xn(1), arises from

Schrodinger’s equation for the wave function ¢ in the limit 2 — 0. Similarly, the

chemical master equation for p(ny, ns, - - -

in the limit V — o0.

, nn, t) yields the law of mass action




The master Chemical Equation IN GENERAI
(see D. T. Gillespie, Physica A188 404-425 (1992)

Let us consider a system made of chemical reacting species,
contained in a thermally isolated stirred vessel

@ Composed of n chemical species { S, ..., Sn} and m chemical reaction
channels {Ry,...,Rn}.

@ Assume species contained within constant volume €.
@ Assume system is well-stirred to neglect spatial effects.

@ Assume system is in thermal equilibrium (i.e., at a constant temperature),
but not necessarily chemical equilibrium.



@ X;(t) is the number of molecules of S; at time t.
@ X(t)=(Xi(t),.... Xn(t)) is the state of a system at time ¢.
@ X(1o) = Xp is initial number of molecules at initial time .

@ After R, the new state is X’ = x4 v, where v, = (v4,,....Vp,) is the
state-change vector and vj, is the change in S; due to R,,.

@ The 2-dimensional array {v;, } is known as the stoichiometric matrix.

@ R, is elemental if it can be considered a distinct physical event that
happens nearly instantaneously.

@ For elemental R,, values of v, are constrained to 0,41, £2.



Every R, has a specific probability rate constant, c,, which is related to
the reaction rate constant, k,,.

c,dt is the probability that a randomly chosen combination of reactant
molecules react as defined by R, inside Q in [t. {4 df).

Multiplying ¢, by the number of possible combinations of reactant
molecules for R, in a state x yields the propensity function, a,,.

a,(x)dt is the probability that A, occurs in the state x within € in the next
infinitesimal time interval [t, t + dt).



@ Not possible to know the exact state X(1).

@ Only can know probability of being in a given state at time t starting from
a state X(fp) = Xo (i.e., P(x. t|Xo.%)).

@ Probability using a time-evolution of step dt is shown below:
m
P(x,t+dt|Xo.lo) = P(X.t|Xo.lo) x [1=) (a(x)dt)
j=1

+ P(X— V. t|Xo.lo) X (g(x—v;)dt).

j=1

@ dt is small enough that at most one reaction occurs during dt.



@ Chemical master equation (CME) defines time evolution of state
probabilities, P (X, t|Xo.l):

IP(x, t|Xo. lo) P(x,t+dt|xo.ty) — P(X. t|Xo, lo)

= |im

at dt—0 dt
m
— Z[aj(x — V) P(Xx— V. t[Xo.1o)
j=1

—aj(X)P(x, t|xo, )]

@ Typically cannot be solved analytically since it represents a set of
equations as large as the number of molecules in the system.



§Ven/V = V'inr,%v, 6t Rate constants that are probabilities: from molecular collisions

= average probability that a particular 1-2
molecular pair will collide in the next
vanishingly small time interval §¢ (2a)

For Maxwellian velocity distributions the average relative

speed vy, will be equal to (8kT/wmyg)'/? where k is
Boltzmann’s constant, 7" the absolute temperature, and
my, the reduced mass mymy/(m; + my). In any case, if we
are given that at time ¢ there are in V X, of the S, mol-
ecules and X, of the S, molecules, making a total of XX,
distinct 1-2 molecular pairs, then it follows from (2a) that?

XX,V 'nr,%v,, dt = probability that a 1-2
collision will occur some-

Stochastic Simulation of Coupled Chemical Reactions

where inside V in the next é
infinitesimal time interval . .
(¢, t + dt) (2b;

Figure 1. The “collision volume” & V., which molecule 1 will sweep
out relative to molecule 2 in the next small time interval d6t.

We see then that, although we cannot rigorously cal-
culate the number of 1-2 collisions occurring in V in any
infinitesimal time interval, we can rigorously calculate the
probability of a 1-2 collision occurring in V in any in-
finitesimal time interval. This means that we really ought
to characterize a system of thermally equilibrized mole-
cules by a “collision probability per unit time”-—namely,
the coefficient of d¢ in (2b)—instead of by a “collision
rate”. This is why these collisions constitute a stochastic
Markov process instead of a deterministic rate process.



(acC)

More generally, suppose the volume V contains a
spatially homogeneous (or thermally equilibrized) mixture
of X; molecules of chemical species S; (i = 1,...,N), and
suppose further that these /N species can interreact through
M specified chemical reaction channels R, (« = 1,...,.M).
Then we may assert the existence of M constants ¢, (u =
1,...,M), which depend only on the physical properties of
the molecules and the temperature of the system, such that

¢, dt = average probability that a particular
combination of R, reactant molecules will
react accordingly 1n the next infinitesimal
time interval di (4)

By “average” here we mean simply that, if we multiply c,
dt by the total number of distinct combinations of R,
reactant molecules in V at time ¢, we will obtain the
probability that an R, reaction will occur somewhere inside
V in the next infinitesimal time interval (¢, t + dt).
Equation 4 may be regarded both as the definition of
the stochastic reaction constant c,, and also as the fun-
damental hypothesw of the stochastlc formulation of
chemical kinetics. As is shown by more detailed arguments
in ref 1, we may expect this hypothesis to be valid for any
molecular system that is kept “well-mixed”, either by



IIIA. The Master Equation Approach. The traditional
method of calculating the stochastic time evolution of a
chemically reacting system is to set up and solve a so-called
“master equation” for the system. A good review of the
master equation approach to chemical kinetics has been
given by McQuarrie.> Here we would merely like to
summarize briefly the main features of the master equation
formalism in order to provide a conceptual setting for our
subsequent presentation of the stochastic simulation
approach. It should be emphasized, though, that the
master equation itself plays no role whatsoever in either
the derivation or the implementation of the stochastic
simulation algorithm.

The key element of the master equation formalism is
the “grand probability function”

P(X,,X,,. .., Xy;t) = probability that there will
be in V at time ¢t X,
molecules of species S;, and
X, molecules of species
S,,. . ., and Xy molecules of
species Sy (7

A knowledge of this function would evidently provide a
fairly complete characterization of the “stochastic state”
of the system at time t. Thus, for example, the kth
moment of P with respect to X;

X®i¢)= = - 3 X P X it D
X,=0 XN=0
(i=1,.,N; k=0,1,2,..) (8)

gives the “average (number)* of S; molecules in V at time
t”. By “average” here we mean an average taken over
many repeated “runs” from time 0 to time ¢ of the sto-
chastic process defined by (4), each run having the same
initial numbers of molecules. The number X; of S;
molecules found at time ¢ will vary from run to run, but
the average of the kth power of these numbers will ap-
proach X;*(¢) in the limit of infinitely many runs. Es-
pecially useful are the 2 = 1 and k& = 2 moments; this is
because X;V(t) and

Aft) = (X P @) - [X D)2 (9)



The master equation is simply the time-evolution
equation for the function P(X,,...,Xx; t). It may be de-
rived from (4) by using the addition and multiplication
laws of probability theory to write P(Xj,....Xn; t + dt) as
the sum of the probabilities of the 1 + M different ways

in which the system can arrive at the state (Xj,...,Xy) at
time t + dt:®
P(Xl, XNy b dt)‘P(Xx,- .o )1 -

za dt] + zB dt (11)

M=
Here we have.defmed the quantities a, by

G dt = ¢, dt X {number of distinct R, molecular
combinations in the state
(X150 XN}

= probability that an R, reaction will occur
in Vin (¢, t + dt), given that the system is
in the state (X;,...,Xy) at time ¢ (12)

t+ dt) The quantity B dt gives “the probability that the
system is one R, reactlon removed from the state (X,,.
.,Xy) at time t, and then undergoes an R, reaction in (¢,
t + dt). Thus, B, will be the product of P evaluated at the
appropriate once -removed state at ¢, times c,, times the
number of R, molecular reactant combmatlons available
in that once-removed state. Without going into any further
details, it is sufficient here to simply observe that (11) leads
directly to the “master equation”

e m Ry e mE e m W v AR

P M
'a—tP(Xh“"XN; t) - “§1 [Bu - auP(le"’XN; t)] (13)
In any particular case, the master equation is fairly easy
to write; however, solving it is quite another matter. The
number of problems for which the master equation (13)
can be solved analytically is even fewer than the number
of problems for which the deterministic reaction-rate

equations (1) can be solved analytically. In addition, unlike
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Prompted by these considerations, we introduce the
function P(r, u) defined by!

P(7, u) dr = probability that, given the state
(Xi,...,Xy) at time ¢, the next re-
action in V will occur in the infin-
itesimal time interval (¢t + 7, t + 7 +
dr), and will be an R, reaction  (14)

We call P(7, 1) the “reaction probability density function”,
because in mathematical terminology it is a joint proba-
bility density function on the space of the continuous
variable 7 (0 < 7 < ») and the discrete variable u (u = 1,
2,...,M). Notice that the variables r and u are quantities
whose respective values would give us answers to the two
questions mentioned above. Our first step toward finding
a legitimate method for assigning numerical values to 7 and
u is to derive, from the fundamental hypothesis (4), an
analytical expression for P(r, u).

To this end, we begin by defining for each reaction R,
a function h, according to

h, =number of distinct R, molecular reactant
combinations available in the state
(XI’X%'-"XN) (“ = 13'-°’M) (15)

Thus, if R, has the form S; + S, — anything, then we will

have h, = X 1Xy; if R, has the form 2S, — anything, then

we will have h,=1/ 2X 1(X1-=1). In general, h, will be some
combinatorial functlon of the variables X, X 9y e XN With

h, so defined, then (4) implies that [cf. (12)]

a, dt = hy,c, dt = probability that an R, re-

action will occur in ‘}‘m (t ¢+
dt), given that the system is in
the state (X;,...,Xy) at time
t (u=1,.,M) (16)
We now calculate the probability in (14) as the product
of: Py(7), the probability that, given the state (X,,...,Xy)
at time ¢, no reaction will occur in the time interval (¢, ¢

+ 7); times a, dr, the subsequent probability that an R,

reaction will occur in the time interval (¢ + 7, t + 7 + d7):°

P(r, u) dr = Py(7)a, dr (17a)



We now calculate the probability in (14) as the product
of: Py(r), the probability that, given the state (X,,...,Xy)
at time t, no reaction will occur in the time interval (¢, ¢
+ 1), times a, dr, the subsequent probability that an R,
reaction will occur in the time interval (t + 7, t + 7 + d7):°

P(r, u) dr = Py(r)a, dr (17a)
To find an expression for Py(7), we first note that [1 - 2,a,

d7’] is the probability that no reaction will occur in time
dr’ from the state (X,,...,Xy). Therefore

M
Po(r' + dr') = Po(r') [1 - Ela,, dr’] (17b)
V:

from which it is readily deduced that
M
Po(1) = exp[—_Z_)la,,'r] (17¢)

Inserting (17¢) into (17a), we conclude that the reaction

probability density function defined in (14) is given by’
a, exp(—apr) if0<7<=and

P(r,u)= u=1,..,.M (18)
0  otherwise

where
ay = h,c, (= 1,....M) (19a)
and
M M
@= Za = Zhe, (19Db)
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function P(r, u) in (18), the construction procedure turns
out to be as follows:
With r; and r, two random numbers from the unit-
interval uniform distribution, take

7= (1/ao) In (1/r) (21a)
and take u to be that integer for which
p=1 M

2 a,, = raQo < §]a,, (21b)

Our algorithm for simulating the stochastic time evo-
lution of a chemically reacting system should now be rather
obvious (see Figure 2):

Step 0 (Initialization). Input the desired values for the
M reaction constants cy,...,c3r and the N initial molecular
population numbers X;,...,Xy. Set the time variable ¢ and
the reaction counter n both to zero. Initialize the unit-
interval uniform random number generator (URN).

Step 1. Calculate and store the M quantities a; =
hicy,...,aym = hycy for the current molecular population
numbers, where h, is that function of X,,...,Xy defined
in (15). Also calculate and store as @, the sum of the M
a, values.

Step 2. Generate two random numbers r; and r; using
the unit-interval uniform random number generator, and
calculate 7 and u according to (21a) and (21b).

Step 3. Using the 7 and u values obtained in step 2,
increase t by 7, and adjust the molecular population levels
to reflect the occurrence of one R, reaction; e.g., if R, is
the reaction in (3a), then increase X; by 1 and decrease
X, by 1. Then increase the reaction counter n by 1 and
return to step 1.

In returning to step 1 from step 3, notice that it is
necessary to recalculate only those quantities a, corre-
sponding to reactions R, whose reactant population levels
were just altered in step 3; also, a; may be recalculated
simply by adding to a, the difference between each newly
changed a, value and its corresponding old value.

Of course, somewhere in the 1-2-3 loop one will want
to provide for writing out or plotting the (X,..., Xy, t)
values at'regular intervals of either ¢ or n. Also, one will
want to make provisions for halting the calculations when
either ¢ or n reaches some predetermined value, or if
should ever reach zero.



Stochastic simulation
algorithm (SSA): a Monte
Carlo procedure for
numerically generating time
trajectories of the molecular

populations in exact
accordance with the CME

distribution in the unit interval, and take

1 1
T = ao(x)ln(r_1>’ (10a)

J
j = the smallest integer satisfying Z aj/(x) > 12 A(X). (10b)
i=1

With this generating method (or any mathematically equivalent one), we have the
following stochastic simulation algorithm (SSA) for constructing an exact numerical
realization of the process X(¢) (8, 9):

0. Initialize the time # =17, and the system’s state x =Xxq.

1. With the system in state x at time ¢, evaluate all the #;(x) and their sum 2,(x).
2. Generate values for t and j using Equations 10a,b (or their equivalent).

3. Effect the next reaction by replacing t < ¢ + 7 and x < x+ ;.

4. Record (x, t) as desired. Return to Step 1, or else end the simulation.

The X(z) trajectory produced by the SSA may be thought of as a stochastic ver-
sion of the trajectory that would be obtained by solving the RRE (Equation 6). But
note that the time step t in the SSA is exact and not a finite approximation to some
infinitesimal d¢, as is the time step in a typical ODE solver. If it is found that every
SSA-generated trajectory is practically indistinguishable from the RRE trajectory,
then we may conclude that microscale randomness is ignorable. But if the SSA tra-
jectories are found to deviate significantly from the RRE trajectory, or from each
other, then we must conclude that microscale randomness is not ignorable, and the
deterministic RRE does not provide an accurate description of the system’s true
behavior.



2. STOCHASTIC CHEMICAL KINETICS: THE CHEMICAL
MASTER EQUATION AND THE STOCHASTIC
SIMULATION ALGORITHM

Let us consider a well-stirred system of molecules of N chemical species (8, ..., Sv),
which interact through M chemical reactions (Ry, ..., Ru). We assume that the sys-
tem is confined to a constant volume £ and is in thermal (but not chemical) equilib-
rium at some constant temperature, We let X(f) denote the number of molecules
of species S, in the system at time f. Our goal is to estimate the state vector
X(1) = (Xy(1), ... Xad0), given that the system was in state X(#,) = x, at some initial
time fo.

The justification for the tacit assumption that we can deseribe the system's state
by speci fying only the molecular populations, ignoring the positions and velocities of
the individual molecules, lies in the conditions responsible for the system being well
stirred. The fundamental assumption being made is that the overwhelming majority
of molecular collisions that take place in the system are elastic (nonreactive), and
further that the net effect of these elastic collisions is twofold: First, the positions of
the molecules become uniformly randomized throughout €; second, the velocities
of the molecules become thermally randomized to the Maxwell-Boltzmann distri-
bution, To the extent that this happens, we can ignore the nonreactive molecular
collisions, the simulation of which would occupy most of the computation time in a
molecular dynamics simulation, and concern ourselves only with events that change
the populations of the chemical species, This simplifies the problem enormously,

The changesin the species populations are of course a consequence of the chemical
reactions, Each reaction channel R, is characterized mathematically by two quantities,
The first is its state-change vector v, m(vy,, ..., vy), where v, is the change in the
S molecular population caused by one R, reaction, so if the system is in state x and
one R, reaction occurs, the system immediately jumps to state x + v,. The other
characterizing quantity for R, is its propensity function a,, which is defined so that

a,(x)dt & the probability, given X(r) = x, that one R, reaction will occur

somewhere inside €2 in the next infinitesimal time interval [¢, ¢ 4 d1). (2)

Definition 2 can be regarded as the fundamental premise of stochastic chemical ki-
netics because everything else in the theory follows from it via the laws of probability.
The physical rationale for Definition 2 for unimolecular and bimolecular reactions
<an be briefly summarized as follows,



Alcune slides tratte da una lezione di Marco S. Nobile

Poiché descriviamo il sistema in termini probabilistici, possiamo
essere interessati a determinare P (X, t|X,, ty)

- Owvero, la probabilita di trovarci nello stato X al tempo t, partendo dallo
stato iniziale X, al tempo t

Un metodo: Chemical Master Equation (CME)
aP (X, t|X,, ty)
at

M

= Z[a,, (X = v, )P(X = v, tIXo, to) = a, (X)P(X, t|Xo, to)]
p=1

- ay e la propensity function della reazione R,

- v, eilvettore di variazione di stato legato alla reazione R,

La CME determina la probabilita di trovarci in uno stato specifico
— Domanda: in quanti stati diversi puod trovarsi un sistema biochimico?



cudt = probabilita media che una particolare combinazione di molecole
che compaiono come reagenti nella reazione R, reagiscano
nell'intervallo di tempo infinitesimale dt

- Ragionamento «al limite»

-~ Stiamo negando ogni considerazione «spaziale»

a, (X(t)) = c,hy, (t) = propensity function della reazione R,

- Stato X(t) = (X, ..., Xy) ovwerol'esatto numero di molecole delle N specie
altempo t

- hy(t) éil numero di combinazioni distinte di reagenti di R, al tempo t

a, (X(t))dt = probabilita che una reazione R, awverra nell'intervallo
infinitesimale [¢t, t + dt), per via del fatto che ci troviamo nello stato X(t)



* SSA e un algoritmo di simulazione stocastica di sistemi biochimici

— Introdotto da Gillespie nel 1976

— Consente la simulazione dell’evoluzione stocastica temporale del sistema,
per ottenere realizzazioni della CME

— Impostazione Markoviana: il sistema evolve una reazione alla volta

* Dato uno stato iniziale del sistema, SSA procede iterativamente:

1. Calcolale propensity functions delle reazioni, sulla base dello stato attuale
del sistema X

2. Calcola P(t,u|X, t) owero la probabilita congiunta del tempo «di attesa»
T prima della prossima reazione R,

Determinaivaloriteu
Agglorna X in base al vettore di variazione v,, associato a R,
Aggiorna il tempo della simulazione calcolando t =t + 1

Se non possono piu essere eseguite reazioni, I'algoritmo termina;
altrimenti, itera da 1

o v s W



Determinazione di T

* Esiste un modo per campionare T dalla distribuzione esponenziale

1 | 1
T= e
ap(X) n
— Dove r; e un numero pseudo-casuale campionato con distribuzione
uniforme in [0,1)

* Osservazione: T e inversamente proporzionale a ay dunque piu
cresce e piu i time step dell’algoritmo saranno brevi

— Implica una simulazione piu lunga



Determinazione di u

Data la propensity function a, di una reazione R, e il valore cumulativo
a, € possibile determinare la probabilita che R, avvenga:

P(ﬂ)=z—::

Possiamo determinare lareazione che sara eseguita scegliendo l'indice
u tale per cui:

Z a;(X) <ry-ayX) < Z a; (X)
j=1,.,u-1 J=1..u

— Dove r; € un secondo numero pseudo-casuale campionato con distribuzione
uniforme in [0,1)

Osservazione: la probabilita di R, & proporzionale a a,

- Maa, = ¢, - h, (t) dunque la probabilita di una reazione & proporzionale alla
sua costante stocastica e al numero di molecole dei reagenti



L'algoritmo SSA

Inserimento di ~ Cakolodelle
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SUMMARY POINTS

L The SSA s a procedure for numerically simulating well-stirred chemically
reacting systems by stepping in time to successive molecular reaction events
in exact accond with the premises of the CME

2, The alility of the SSA to take proper account of the discrete, stochastic na-
ture of chemical reactions makes it better suited to cellular chemical kinetics
than the traditional RRE becawse in cellular systems the small mumbers of
molecules of some key reactants can amplify the effects of discreteness and
randomness,

3. Becawse the SSA simulates every successive molecular reaction event that
occurs in the system, it is often too show for practical simulation of realistic
cellular systems.

4. An approximate speedup to the SSA is provided by tu-leaping, in which
time isadvanced by a preselected amount r and the numbers of firings of the
individual reaction channelsare approximated by Poisson mandom numbers.

5. Hihe expected numberof firings of each reaction channel dunng a tau-leap is
much greater than one, the Poisson random mumbers are well approximated

by normal random numbers, and the result is equivalent to a Langevin-type
equation called the CLE.

6. In the thermodymamic (macroscopic) hmit, the noise tenns in the CLE
become negligibly small and the CLE reduces 1o the conventional RRE,
thereby establishing deterministic chemical kineties in the context of
stochastie chemical kineties,

7. For still systems—which evolve on both fast and slow timescales with the

fastest modes being stable—accuracy in tan-leaping requires r to be small
on the fastest imescale, which makes even tu-leaping seem too slow,

8. Twoacceleration procedures for stft systems are implicit tau-leaping, which
mirrors the implicit Euler method in ODE theory, and the sSSA, in which

the fast reactions are skipped over and only the show reactions are directly
simulated using specially modified propensity functions,



12. GILLESPIE ALGORITHM AND ENZYME
KINETICS

Rate equations vs chemical master equations
Gillespie' algorithm (see Gillespie1976,
Gillespie1977, Gillespie2007)

The Michaelis-Menten approximation for the
rate equations of enzymic catalysis

Rate equations for the rapid equilibrium model
(PBoC 15.2.6)

Michaelis-Menten Kinetics of enzymatic
catalysis (PBoC 15.2.7)

Reverse Michaelis-Menten (Fabrini2011,
Tang2015)

List of computational tools for chemical kinetic
(Deterministic and Stochastic Simulations)
COPASI (www.copasi.org )

StochPy (Marleeveld2013)

You can download the programming tools here
below from Sapienza with your INFOSTUD ID
(https://campus3.uniromal.it/campus/indexlo

gin.php )
in particular: Mathematica & Matlab



http://www.copasi.org
https://campus3.uniroma1.it/campus/indexlogin.php

