HIDDEN MARKOV MODELS AND THE LANGUAGE
OF THE PROTEIN UNIVERSE

Andrea Giansanti
Dipartimento di Fisica, Sapienza Universita di Roma

Andrea.Giansanti@roma1.infn.it

CB 23 24 L33&34, Rome 18 and 19 Dec 2023

DIPARTIMENTO DI FISICA

SAPIENZA

UNIVERSITA DI ROMA




Introduction to Hidden Markov
Models

From a set of slides by Pietro Lio

(notation same as in Higgs and
Attwood)



About letters, alphabets and states
First order Markov models

Higher order models

Hidden Markov models

Evaluation Problem

Decoding Problem

Learning problem

Used in computational structural biology
e.g. to associate to each family of functionally similar proteins
a generative probabilistic model as a fingerprint



Fasta Format

>gi|18089116|gb|BC020718.1| Homo sapiens I factor
AAATTTCAAAAGAATACCTGGAGTGGAAAAGAGTTCTCAGCAGAGACAAAGACCCCGAACACCTCCAACA
TGAAGCTTCTTCATGTTTTCCTGTTATTTCTGTGCTTCCACTTAAGGTTTTGCAAGGTCACTTATACATC
TCAAGAGGATCTGGTGGAGAAAAAGTGCTTAGCAAAAAAATATACTCACCTCTCCTGCGATAAAGTCTTC
TGCCAGCCATGGCAGAGATGCATTGAGGGCACCTGTGTTTGTAAACTACCGTATCAGTGCCCAAAGAATG
GCACTGCAGTGTGTGCAACTAACAGGAGAAGCTTCCCAACATACTGTCAACAAAAGAGTTTGGAATGTCT
TCATCCAGGGACAAAGTTTTTAAATAACGGAACATGCACAGCCGAAGGAAAGTTTAGTGTTTCCTTGAAG
CATGGAAATACAGATTCAGAGGGAATAGTTGAAGTAAAACTTGTGGACCAAGATAAGACAATGTTCATAT
GCAAAAGCAGCTGGAGCATGAGGGAAGCCAACGTGGCCTGCCTTGACCTTGGGTTTCAACAAGGTGCTGA
TACTCAAAGAAGGTTTAAGTTGTCTGATCTCTCTATAAATTCCACTGAATGTCTACATGTGCATTGCCGA
GGATTAGAGACCAGTTTGGCTGAATGTACTTTTACTAAGAGAAGAACTATGGGTTACCAGGATTTCGCTG
ATGTGGTTTGTTATACACAGAAAGCAGATTCTCCAATGGATGACTTCTTTCAGTGTGTGAATGGGAAATA
CATTTCTCAGATGAAAGCCTGTGATGGTATCAATGATTGTGGAGACCAAAGTGATGAACTGTGTTGTAAA
GCATGCCAAGGCAAAGGCTTCCATTGCAAATCGGGTGTTTGCATTCCAAGCCAGTATCAATGCAATGGTG
AGGTGGACTGCATTACAGGGGAAGATGAAGTTGGCTGTGCAGGCTTTGCATCTGTGGCTCAAGAAGAAAC
AGAAATTTTGACTGCTGACATGGATGCAGAAAGAAGACGGATAAAATCATTATTACCTAAACTATCTTGT
GGAGTTAAAAACAGAATGCACATTCGAAGGAAACGAATTGTGGGAGGAAAGCGAGCACAACTGGGAAAAA
TGAAGCAAATCTCATTGGATATTTTTAAAGGTCTCCACAGAGTTTATGCCATATTGGAATTTTGTTGTAT
AATTCTCAAATAAATATTTTGGTGAAGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



Probability of a Sequence of Events

2 (X3 s frasd 5 s s

You go out on a certain day and you (...crazy?) and start to
keep a record of the habits of people you come cross with:
do they wear sunglasses? Do they wear gloves? Do they
brandish an umbrella? You get a sequence of events...



Hidden Markov Models




Refresh: definition of a HMM

Definition: A hidden Markov model (HMM)

* Alphabet £Z={b,, b,, ..., by}

» Setofstates Q={1],..K}

* Transition probabilities between any two states

a; = transition prob from state i to state j

ay +..+ay=1, forallstatesi=1..K

 Start probabilities ay

Agy + .. tay=1

* Emission probabilities within each state
e(b)=P(x,=b | w =k)

e/(b,) + ... +e(b,) =1, forallstatesi=1..K

77



The three main questions on HMMs
1. Evaluation

GIVEN a HMM M, and a sequence X,
FIND Prob[x | M]

2. Decoding
GIVEN a HMM M, and a sequence X,
FIND the sequence m of states that maximizes P[x, 7t | M ]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence x,

FIND parameters 0 = (e(.), aij) that maximize P[x | 0]



Hidden Markov Models from proteins to GW

Hidden Markov model tracking of continuous gravitational waves from a neutron star
with wandering spin. 11I. Rotational phase tracking
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A HMM is a probabilistic finite state automaton de-
fined by a hidden (unobservable) state variable, g(t),
and an observable state variable, o(t). The automaton
jumps through a time-ordered sequence of observations,
O = {o(ty),...,o(tn,)}, at discrete times £y < --- < ty,.
In general there exist Ngr*”l possible hidden-state paths,
Q = {q{to),...,q(tn,)}, which are consistent with O.
Here Ng counts the finite number of discrete values, that
g(t) can take at time £.

we_assume that the automaton is Markovian, such that
the transition probability from g(t,) to g(t, ;) depends

only on g(t,,), then the probability that Q) gives rise to O

equals
Pr(Q|O) = Loty )attn, ) Aaltny Jaltay 1) X+

X Lioge)q(e:) Agte yatta) Hggeo) - (1)
In {1)),
Aq)q. = Prlg(t,-1) = 9j|9(tﬂ) = q;] (2)
is t} iti babili i
Lojq; — Prlo(tn) = 0)|Q(tu) = QI] (3)

is the emission probability matrix, namely the proba-
bility that the system is observed in state o(t,) while
occupying the hidden state g(t,,); and

I, = Prlg(to) = qi (4)

is_the prior vector, namely the probability that the sys-
tem occupies the hidden state g(t,) initially.



Q*(0), which maximizes Pr(Q|O) given O, viz.

Q*(0) = argmax Pr(Q|0) . (5)

The maximization can be done in many ways. In previous
gravitational wave applications as well as in this paper,
we employ the Viterbi algorithm, [14][15] whose logic and
pseudocode are summarized briefly in Appendix[A] The
Viterbi algorithm is a dynamic programming algorithm.
It is computationally efficient, executing of order (Np +
1)Ng In Ny floating point operations.

Bellman’s principle of optimality

Appendix A: Viterbi algorithm

The Viterbi al | | ¢ ible hid-
den state sequences () by appealing to Bellman's Prin-
ciple of Optimality: if a subpath {g*(¢,),--- ,¢"(t;)} is
optimal, then all of its subpaths are optimal as well.
[80] Dynamic programming is exploited to implement the
Principle of Optimality in an efficient, recursive fashion.
(14| [15[18] Pseudocode describing the implementation is
presented below in abridged form for ease of reference.




Ingredients of the Viterbi algorithm

At time £z (1 < k < N7), let the vector 8(t) store the
N, maximum probabilities

Bq:(t) = max Prlg(te) = aila(te—1) = 5 o®], (A1)

with 1 < i € Ng, and let the vector ®(%;) store the hid-
den states at ;.1 leading to the corresponding maximum
probabilities in &({z), viz.

@, (t) = argmaxPr[q(tk) = qi|q(tx—1) = q;;0"™] ,

q; (A2)
with O%) = {o(ty),...,0(tx)} and

Prlg(tx) = gilq(tk—1) = 455 0™] = Lo, )0, Agia;04, (t(kxicl&g |
The components of §(¢;.) and ®(%;.) are filled by running
forward through the N+ observations, then the optimal

path @Q*(0O) is reconstructed by backtracking.

Note that Higgs & Attwood use notation V, (stands for Viterbi) for the vector delta



1. Initialization:
6‘1:’ (t()) = Lo(tu )qi H‘Zi’

for 1 <1i < Np.
2. Recursion:

Jq‘ (tk) =L max [Aq,qj&b (tk—l)]’

otk)ai y SiEN,

(I)q. (tk) = arg max[Aq.qg 6q, (tk—1 )]a
1<j<Ng

for1<i< Ngand 1<k < Nry.
3. Termination:

max Pr(Q|0) = maxdy, (tx;)

q"(tn,) = argmaxdy, (tn,)
”

7

for 1 S ] S Nq.
4. Optimal path backtracking:

q"(tx) = Pg-e ) (Bry1)
for0< k< Np—1.

(Ad)

(A5)
(A6)

(A7)
(A8)



The language of the protein universe
Andrea Scaiewicz and Michael Levitt

Proteins, the main ceoll machinery which play a major role in
nearly overy collular process, have always been a contral focus

in biology. We ve in the post-genomic ora, and inferring
information from massive data sots is a steadily growing
universal challenge. The Increasing avallabliity of fully
sequenced genomes can be regarded as the “Rosetta Stone’ of
the protein universe, allowing the understanding of genomes
and thelr evolution, just as the original Rosetta Stone alowed
Champoliion to decipher the anclent Egyptian heroglyphics., In
this review, we consider aspects of the protein domain
architectures reportoire that are closely related 10 those of
human languages and aim 10 provide some insights about the
language of proteins,
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The vocabulary of proteins

Protein domains correspond to the words in the proteins
language. Domains can be distinguished by their se-
quence (sequence profiles) or their structure (classifica-
tion databases). Sequence profiles are most commonly
represented using statistical models such as position
specific scoring matrices (PSSM) and hidden Markov
models (HMM). HMM-based methods include Pfam
[9], EVEREST [10], SMART" [11], and PAN'THER
[12]. PSSM-based methods include PRINT'S [13], PRO-
SITE [14] and ProDom [15]. Here we refer to sequence
profiles as domains or words. Structure-based classifica-
tions including SCOP [16,17], SCOP2 [18] and CATH
[19-21], as well as predicted domain structures as in
SUPERFAMILY [22,23], Gene3D [24,25], ECOD [26]
and COPS [27] are not considered here.

Sequence-based methods differ in coverage, level of
curation and definition of families. Compilation databases
like CDAR'T" [28-30] and InterPro [31] match all sets of
profiles to all known sequences (FFigure 2). This facilitates
the classification of the protein universe into protein
families by providing the locations of different domains
along every sequence. Often two different sequence
profiles match the same region of sequence leading to
several domains, or words, for the same physical object.
T'his can lead to confusion and such synonyms need to be
recognized and possibly eliminated [32°°].



Figure 1

Human Language Protein Language
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Analogy between human and proteins languages. In this comparison,
the vocabulary (domains) of proteins is built from an alphabet of amino
acids. The syntax principles enable domain association to form multi-
domain architectures, a process governed by hierarchical rules
(grammar), that determine the structure and hence the biological
function (semantics) of proteins. In several languages, for example in
English, a number of different classes of words exist (nouns,
adjectives, verbs, adverbs, pronouns, conjunctions). Each class has its
task in the language, that is, nouns name words, adjectives describe
nouns, verbs are action words, conjunction connect words.
Analogously, one can also distinguish different classes of domains
with different tasks (motors, binding proteins, enzymes, signaling
proteins, structural proteins, targeting proteins).



Figure 2
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Sequence profile databases can be sequence-based (blue circles) or structure-based (orange circles). Sequence-based profiles are derived by
mainly two methods: HMMs (Hidden Markov Models) or PSSMs. (Position Sensitive Sequence Matrices). Structure-based profiles in Gene3D and
superfamily are generated from HMMs built from actual structures coming from CATH and SCOP, respectively. Two main integrative resources,
CDART and InterPro, are shown (green circles) with the databases they include.




