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relevance of Bayes’ theorem in the analysis of sequences
generative probabilistic models
Markov order 0 models (urn models)

A bayesian classifier of disordered proteins ( a critique of, look at the priors)
(Bulashevska2008)

multinomial classification
look at the priors



The relevance of Bayes' theorem: see DILL &
BROMBERG: EXAMPLE1.11 ...BIOINFORMATIC CONTEXT
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EXAMPLE 1.11 Applying Bayes' rule: Predicting protein properties. Bayes'
rule, a combination of Equations (1.1 1) and (1.15), can help you compute hard-
to-get probabilities from ones that are easier to get. Here's a toy example. Let's
figure out a protein’s structure from its amino acid sequence. From modern
genomics, it is easy 10 learn protein sequences. It's harder to learn protein
structures. Suppose you discover a new type of protein structure, call it a heli-
coil h. It's rare; you've searched 5000 proteins and found only 20 helicoils, so
p(h) = 0.004. If you could discover some special amino acid sequence feature,
call it sf, that predicts the h structure, you could search other genomes to find
other helicoil proteins in nature. It's easier to turn this around. Rather than
looking through 5000 sequences for patterns, you want to look at the 20 heli-
coil proteins for patterns. How do you compute p(sf | h)? You take the 20 given
helicoils and find the fraction of them that have your sequence feature. If your
sequence feature (say alternating glycine and lysine amino acids) appears in 19
out of the 20 helicoils, you have p(sf|h) = 0.95. You also need p(sf|h), the
fraction of non-helicoil proteins (let’s call those i) that have your sequence fea-
ture. Suppose you find p (sf | h) = 0.001. Combining Equations (1.11) and (1.15)
gives Bayes’ rule for the probability you want:

p(sf | h)p(h) p(sflh)p(h)
h|sf) = 5 h)p(h
p(h|sf) p(sf) p(sf|h)p(h) + p(sf | h)p(h)
.y (0.93)(0.004) 0.79. (1.16)

= (0.95)(0.004) + (0.001)(0.996)

In short, if a protein has the sf sequence, it will have the h structure about 80%
of the time.




example of bayesian classifier (Bulashevska2008)

Why not to try?
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ABSTRACT

Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under
physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular
eukaryotes, and is responsible for important protein functions including regulation and signaling. Many
disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this
paper, a new predictor model based on the Bayesian classification methodology is introduced to predict
for a given protein or protein region if it is intrinsically disordered or ordered using only its primary
sequence. The method allows to incorporate length-dependent amino acid compositional differences of
disordered regions by including separate statistical representations for short, middle and long
disordered regions. The predictor was trained on the constructed data set of protein regions with
known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for
disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when
evaluated on the previously published data set of Prilusky et al. [2005. Foldindex: a simple tool to
predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438).
Further strength of our approach is the ease of implementation.

© 2008 Elsevier Ltd. All rights reserved.
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The focus of the paper

In this paper, we introduce a new prediction method, which
exploits the Bayesian classification procedure to predict disor-
dered property for a given protein or protein region from its
primary sequence. Bayesian Markov chain model-based classifica-
tion has already found its application in proteomics for the
prediction of protein subcellular locations (Bulashevska and Eils,
2006). This approach represents each class with a single
probabilistic summary. Since the AAC of disordered regions is
distinct from that of ordered, we propose to use multinomial
models for the description of class-conditional densities. The
intuition behind this approach is that each protein sequence
belonging to a certain class can be considered as a realization of
an independent random process that emits symbols from an
alphabet of 20 amino acids.



2.2. Multinomial models

Multinomial models assume a bag-of-amino acid sequence
representation, which considers the appearance of each amino

acid as an independent event. The order in which amino acids
occur in a given amino acid sequence is ignored; the only

information retained is a vector of counts n = (n4,...,ny), where
n; is the number of occurrences of amino acid i in the sequence.

We assume that the probability of a sequence s to come from a
certain class c¢ is given by a multinomial probability function
governed by its vector of parameters 0, = (0.1, ...,0:0) € [0, 11%°:

p(s|Oc) = Hen, (1)
l 1 l i=1

where n =) ;n; denotes the length of the sequence. The

parameter 6, denotes the cth class-conditional probability of

amino acid i to occur in a sequence. The parameters of the model

corresponding to class c¢ are estimated from the training regions

belonging to the class c. Thus, the parameter 0 is calculated as

ks (2)

Zl lna

where n. is the number of occurrences of amino acid i in the
sequences of class c. This way of estimating parameters of the

Od = —5—



Note!

NOTE!

2.3. Bayesian multinomial classifier

Bayesian classification is a widely applied method in the
machine learning and statistical community, which is based on
Bayes' theorem (Bayes rule). According to Bayes' rule, the class for
an unlabeled sequence s can be inferred using the posterior
probability:

POP(SIC) _  pO)p(sic) 3)
p(s) > p)p(sic)’

We assume class prior probabilities p(c) to be equally dis-
tributed. We further assume that the sequences of each class are
generated from multinomial models. Thus, given the parameters
{0} of the models for each class, the term p(s|c) denoting the prior
probability of a sequence s to belong to the class ¢ can be
computed using the formula (1) for p(sif.) from previous
subsection.

Since we model short, middle and long disordered regions
separately, the estimation of the class-conditional densities
involves four subproblems (for short, middle, long disordered
and ordered classes), in which each of the class-conditional
density is estimated based on the data belonging to the
corresponding class only.

BWMMMW . | ; bability f h cl

p(cls) =

WWWM . | . babili
To classify an input sequence as disordered or ordered, we sum
the posterior probabilities for short, middle and long disordered
subtypes into a single value describing the posterior probability of a
sequence to be disordered and then use the standard decision rule
to come up with a discrete output, i.e. predict one of the two classes
(disordered/ordered) showing the biggest posterior probability.



2.4. Performance evaluation

The prediction performance of our predictor was validated
with Jack-knife test (or leave-one-out cross-validation) (Mardia
et al.,, 1979). By Jack-knife test the learning step is performed
with all training instances except the one for which the class is to
be predicted.

The prediction quality was evaluated using the standard
measures of sensitivity (SN) and specificity (SP), where the
sensitivity, or true positive rate, is the percentage of disordered
sequences correctly predicted, and the SP, or true negative rate, is
the percentage of ordered sequences correctly predicted. We
calculate the overall accuracy (ACC) as the average of SN and SP,
which is more suitable than the percentage of all correctly
predicted sequences for data sets with imbalanced class distribu-
tions. We also show receiver operating characteristic (ROC) curve
and report area under the ROC curve (AUC) calculated using the R
package ROCR (Sing et al., 2005).



Jackknife

One of the earliest techniques to obtain reliable statistical estimators is the jackknife
technique. It requires less computational power than more recent techniques.

Suppose we have a sample x=(x,,x,,...,x,) and an estimator 6= s(x). The jackknife
focuses on the samples that leave out one observation at a time:

Xy = (X Xy50ees Xy 13 X105 X,)

for i=1,2,...,n, called jackknife samples. The ith jackknife sample consists of the data set

with the ith observation removed. Let 9“) = s(x,,) be the ith jackknife replication of 6.
The jackknife estimate of standard error defined by

SEjack - [_Z(a(l) -0()) ] (3)
where 9(_) = ié(;)/ﬂ o
i=1

The jackknife only works well for linear statistics (e.g., mean). It fails to give accurate
estimation for non-smooth (e.g., median) and nonlinear (e.g., correlation coefficient)
cases. Thus improvements to this technique were developed.

https://www.datasciencecentral.com/profiles/blogs/resampling-methods-comparison




True Positive:

Interpretation: You predicted positive and it’s true.
You predicted that a woman 1s pregnant and she
actually 1s.

True Negative:

Interpretation: You predicted negative and it’s true.
You predicted that a man 1s not pregnant and he
actually 1s not.

False Positive: (Type 1 Error)

Interpretation: You predicted positive and it’s false.
You predicted that a man 1s pregnant but he actually
1S not.

False Negative: (Type 2 Error)

Interpretation: You predicted negative and 1t’s false.
You predicted that a woman 1s not pregnant but she
actually 1s.



Indicators to evaluate methods

TP TP

Sensitivity (or recall) : S, = TP+ FN N, (1)

is the number of correctly identified disordered proteins normalized to the total
number of disordered proteins in the sample

TN 1IN @)
TN + FP N,

Specificity : S, =

is the ratio between the number correctly identified ordered proteins and the total
number of ordered proteins in the sample;

FP

Rate of false positives : f, = TN + FP

1-S5, (3)
is the ratio between the number of ordered proteins predicted as disordered and the
total number of ordered proteins in the sample;

S, +38,

Accuracy : ACC = 5 (4)

that is the average between sensitivity and specificity. It measures the overall
performance of the predictor. Then,

TP TP -

Precision (or selectivity) : Pr =



Model comparison by Bayes factors

A model M,, in the Bayesian sense, is a pair consisting of a conditional likelihood function
P(D | 0, M,) for observable data [D together with a prior P(/ | M;) over parameter vector (). Ideally,
we might like to assess the absolute probability of model M, after seeing data ). We can express this

quantity using Bayes rule:
PM;) P(D | M,)

PM; | D
[ P(M;) P(D | M;)dM,

Quantifying over the whole class of possible models is dauntingly complex. This likely remains true

even for a fixed data set and within a confined sub-genre of models (e.g., all regression models with
combinations of a finite set of explanatory factors).

A good solution is to be more modest and to compare ]Ust two models to each other. The questnon to

ask is then: How g 2 atz 5 s :
probabilities? We can express this using Bayes rule as the ratio of our posterior beliefs about models,
which eliminates the need to have the normalizing constant for the previous equation, like so:

PM, | D) _ P(M;) P(D| M)

P(M> | D) P(M>) P(D|M>)

Hf——J
pustcri.,, odds priot odkds

Bayes factor

The fraction on the left-hand side is the posterior odds ratio: our relative beliefs about models M, and
M, after seeing data [J. On the right-hand side we have a product of two intuitively interpretable
quantities. First, there is the prior odds: our relative beliefs about models M, and M, before seeing
data . Second, there is the so-called Bayes factor. This way of introducing Bayes factors invites to
think of them as the factor by which our prior odds change in the light of the data.

1 https://michael-franke.github.io/statistics ,/modeling/2017/07/07/
synthesis try computer codes at: g o TS
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Appendix B

Information Theory, Entropy,
and Relative Entropy

Here we briefly review the most basic concepts of information theory used in
this book and in many other machine learning applications. For more in-depth
treatments, the reader should consult [483], [71], [137], and [577]. The three
most basic concepts and measures of information are the entropy, the mutual
information, and the relative entropy. These concepts are essential for the
study of how information is transformed through a variety of operations such
as information coding, transmission, and compression. The relative entropy is
the most general concept, from which the other two can be derived. As in most
presentations of information theory, we begin here with the slightly simpler

concept of entropy.

B.1 Entropy
The entropy H (P) of a probability distribution P = (p,,..., p,) is defined by

H(P)=E(-logP) = —ﬂp‘logp‘. (B.1)

The units used to measure entropy depend on the base used for the loga-
rithms. When the base is 2, the entropy is measured in bits. The entropy

measures the prior uncertainty in the outcome of a random experiment de-
scribed by P, or the information gained when the outcome is observed. It is
also the minimum average number of bits (when the |ogarltm are taken base

2) needed to transmit the outcome in the absence of noise.
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Homework complete the study of Appendix
E in Baldi and Brunak’s textbook
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Underfitting/Overfitting
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