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Structure in High-Dimensional Data
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« Structure can be used to reduce dimensionality of
data

« Structure can tell us something useful about the
underlying phenomena

« Structure can be used to make inferences about new
data




MOTIVATION: GENE EXPRESSION CLUSTERING

6.047/6.878 Lecture 13: Gene Expression Clustering
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Hmaga in the public domain. This graph was generated using the program Cluster from Michael Eisen, which is available from
http://rana.IbI.gov/EisenSoftware.htn'{, with data extracted from the StemBase database of gene expression data.

Figure 15.6: A sample matrix of gene expression values, represented as a heatmap and with hierarchal
clusters.



DEFINITION

Data clustering aims to extract the natural structure of a set
of data

Given N objects, they are clustered into K groups so that
objects belonging to the same group are more “similar”
than objects of different groups

Objects can be D-dimensional vectors X, = {x;(d)}

* There’s not a unique definition of similarity

* The number of cluster 1s not fixed and depends on the
level of knowledge of objects

—> Clustering is an ill-posed problem



15.3.1 K-Means Clustering

The k-means algorithm clusters n objects based on their attributes into & partitions. This is an example of
partitioning, where each point is assigned to exactly one cluster such that the sum of distances from each
point to its correspondingly labeled center is minimized. The motivation underlying this process is to make
the most compact clusters possible, usually in terms of a Euclidean distance metric.

K-means 2) k groups are
An unsupervised method. each .,:‘",. at ...'
MacQueen, 1967 nearest center.

1) k initial centers are
randomly selected
among all data..

ends when
centers are
stabilized.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see [nttp://ocw.mit.edu/help/fag-fair-use/.

Figure 15.8: The k-means clustering algorithm



The k-means algorithm, as illustrated in figure|15.8| is implemented as follows:

1. Assume a fixed number of clusters, k

2. Initialization: Randomly initialize the k means p; associated with the clusters and assign each data
point z; to the nearest cluster, where the distance between z; and py is given by d; . = (z; — ux)?%

3. Iteration: Recalculate the centroid of the cluster given the points assigned to it: pyp(n+1)= ). |—;‘g~|
:z:,ek

where z;, is the number of points with label k. Reassign data points to the k new centroids by the given

distance metric. The new centers are effectively calculated to be the average of the points assigned to

each cluster.

4. Termination: Iterate until convergence or until a user-specified number of iterations has been reached.
Note that the iteration may be trapped at some local optima.



COMPARING CLUSTERINGS
(see Maila2007)

2. Related work

A clustering C is a partition of a set of points, or data set D into mutually disjoint subsets
Ci, Cy, ..., Ck called clusters. Formally,

K
C ={Cy, Cy, ..., Ck)} suchthat CyNC; =@ and Uck=D.
k=1

Let the number of data points in D and in cluster C; be n and ny, respectively. We have, of course,
that

K
n = Z ng. (D
k=1
We also assume that n; > 0; in other words, that K represents the number of non-empty clusters.
Let a second clustering of the same data set D be C’ = {C], C3, ..., C,}, with cluster sizes

n;,. Note that the two clusterings may have different numbers of clusters.
Virtually all criteria for comparing clustering can be described using the so-called confusion
matrix, or association matrix or contingency table of the pair C, C’. The contingency table is a

K x K’ matrix, whose kk’th element is the number of points in the intersection of clusters C of
C and C;, of C'.

R = |Ck ﬂC,'c,I.



2.1. Comparing clusterings by counting pairs

An important class of criteria for comparing clusterings is based on counting the pairs of points

on which two clusterings agree/disagree. A pair of points from D can fall under one of four cases
described below.

N1 the number of point pairs that are in the same cluster under both C and C’
Noo number of point pairs in different clusters under both C and C’

Njp number of point pairs in the same cluster under C but not under C’

Np; number of point pairs in the same cluster under C’ but not under C

The four counts always satisfy
N11 + Noo + Nio + Not = n(n —1)/2.
They can be obtained from the contingency table [n;;/]. For example 2N;; = Zk' Iy nik, — n.

Wallace [20] proposed the two asymmetric criteria Wi, Wi below:

Ny
wiC,C) = , 2
(GO = S -2 @
, Ny Wallace criteria
Wi, C) = 3)

Zkl n;(,(n;c; - 1)/2.



Fowlkes and Mallows [4] introduced a criterion which is sym;netric, and is the geometric me
of Wi, Wir:

F(C,C) = YM(C,CHWu(C,C). Fowlkes & Mallows!!
It can be shown that this index represents a scalar product [2].

There are other criteria in the literature, to which the above discussion applies. For instance,
the Jaccard [2] index

Ny , @
N11 + No1 + Nio Jaccard’s &Mirkin

and the Mirkin [13] metric indexes

MEC,C) = ) mp+ Y ng—2) > nkp. 8)
k k' kK

JC,C) =



INFORMATION THEORETIC APPROACH

Fs A - -

Imagine the following game: if we were to pick a point of D, how much uncertainty is there
about which cluster is it going to be in? Assuming that each point has an equal probability of
being picked, it is easy to see that the probability of the outcome being in cluster C; equals

Pk) = 2k, (13)
n

Thus we have defined a discrete random variable taking K values, that is uniquely associated to
the clustering C. The uncertainty in our game is equal to the entropy of this random variable

K
H(C) = — ) P(k)log P(k). (14)
k=1



We now define the mutual information between two clusterings, i.e. the information that one
clustering has about the other. Denote by P(k), k = 1,...,K and P'(k)), k' = 1,..., K’ the
random variables associated with the clusterings C, C'. Let P (k, k') represent the probability that
a point belongs to Cy in clustering C and to C;, in C’, namely the joint distribution of the random
variables associated with the two clusterings:

c.NC,
Pk, K) = GGl
n

(15)

We define I (C, C’) the mutual information between the clusterings C, C’ to be equal to the mutual
information between the associated random variables

K K’

k, k
IC,C) = ) ) Pk K)log (k() - (11') (16)
k=1k'=1

Intuitively, we can think of I (C, C’) in the following way: we are given a random point in D. The
uncertainty about its cluster in C’ is measured by H(C’). Suppose now that we are told which
cluster the point belongs to in C. How much does this knowledge reduce the uncertainty about
C’? This reduction in uncertainty, averaged over all points, is equal to I (C, C).



The mutual information between two random variables is alw_ays non-negative and symmetric:

1¢,c) = 1(C,0) = 0. (17)
Also, the mutual information can never exceed the total uncertainty in a clustering, so

1(C,C") < min(H(C), H(C)). (18)

Equality in the above formula occurs when one clustering completely determines the other. For
example, if C’ is obtained from C by merging two or more clusters, then

I1(C,C"Yy = H({C') < H().
When the two clusterings are equal, and only then, we have

I(C,C") = H({C") = H().
We propose to use as a comparison criterion for two clusterings C, C’ the quantity

VI(C,C") = H(C)+ H(C') -2I(,C). (19)
At a closer examination, this is the sum of two positive terms

VI(C,C') = [H(CC) - IC,CN1+[H(C)—-1(C,CH]. (20)

By analogy with the total variation of a function, we call it VI between the two clusterings. The two
terms represent the conditional entropies H(C|C"), H(C'|C). The first term measures the amount



VI inducesc a metric in the space of clusterings
4.1. The VI is a metric

Property 1. The VI satisfies the metric axioms:
Non-negativity: VI (C, C') is always non-negative and VI (C,C') = Oifandonly if C = C'.
Symmetry: VI(C,C") = VI(C',C).

Triangle inequality: For any three clusterings Cy, Cp, C3 of D
VI(Cy, C2) + VI(C2,C3) 2 VI(Cy, C3). (23)

Hence the VI is a metric (or distance) on clusterings. The space of all clusterings is finite, so
this metric is necessarily bounded. A comparison criterion that is a metric has several important
advantages. The properties of a metric—mainly the symmetry and the triangle inequality—make
the criterion more understandable. Human intuition is more at ease with a metric than with an
arbitrary function of two variables.

Second, the triangle inequality tells us that if two elements of a metric space (i.e. clusterings)
are close to a third they cannot be too far apart from each other. This property is extremely useful
in designing efficient data structures and algorithms. With a metric, one can move from simply
comparing two clusterings to analyzing the structure of large sets of clusterings. For example,
one can design algorithms 4 la K-means [9] that cluster a set of clusterings, one can construct
ball trees of clusterings for efficient retrieval, or one can estimate the speed at which a search
algorithm (e.g. simulated annealing type algorithms) moves away from its initial point.



CONFUSION MATRICES& MODEL PERFORMACE TESTYS

D Confusion Matrix
Scorer View

Confusion Matrix

1 (Predicted)

0 (Predicted)

0.932

0.068

0.855

858

63

1 (Actual) 320 43 0.882
0 (Actual) 20 538 0.964
0.941 0.926
Class Statistics
Class | True Positives | False Positives | True Negatives | False Negatives | Recall | Precision | Sensitivity | Specificity | F-measure
1 320 20 538 43 0.882 0.941 0.882 0.964 0.910
0 538 43 320 20 0.964 0.926 0.964 0.882 0.945
Overall Statistics
Overall Accuracy | Overall Error | Cohen's kappa (x) | Correctly Classified | Incorrectly Classified

Reset Apply a Close a

https://towardsdatascience.com/confusion-matrix-and-class-

statistics-68b79141510b




T. Fawcett | Pattern Recognition Letters 27 (2006) 861-874

True class
o) n
y __ FP . _ TP
fp rate = tp rate = 5
Y True False
Positives Positives
Hypothesized L TP TP
class precision = zp5—5 recall = 5
N False True
Negatives Negatives - A
accuracy = TN
Column totals: P N F-measure = 2

1/precision+1/recall

Fig. 1. Confusion matrix and common performance metrics calculated from it.






