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OUTLINE

- K-Mean (recap) (partitioning)

- An information based metric in the space of clusterings
- DBSCAN (density based)

- Superparamagnetic (couplings, interactions)



K-means (recap 1)
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K-means (recap 2)
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K-means (recap 3)
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K-means (recap4)
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K-means; algorithm to find minima
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E=Total Sum of Squares vs K

K MEANS
Total Sum of Within Cluster Squaie Distances 15. Numbei of Clusters

600 - |

400 - |
(V)] i
(/)] {
= z

200 - |

O_‘
°© 0
—O
o l 90000000000
0 3 6 9 12 15



K-means - Summary

Result depends on initial centroids’ position

Fast algorithm: compute distances from data
points to centroids

O(N) operations (vs O(N?))

Must preset K

Fails for non-spherical distributions



Entropies, Mutual Information Between Clusterings

We now define the mutual information between two clusterings, i.e. the information that one
clustering has about the other. Denote by P(k), k = 1,...,K and P'(k), k' = 1,...,K’ the
random variables associated with the clusterings C, C’. Let P (k, k") represent the probability that
a point belongs to Cy in clustering C and to C;, in C’, namely the joint distribution of the random
variables associated with the two clusterings:
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We define I (C, C’) the mutual information between the clusterings C, C’ to be equal to the mutual
information between the associated random variables

P(k, k')
(k) P'(k")
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Intuitively, we can think of 7 (C, C’) in the following way: we are given a random point in D. The
uncertainty about its cluster in C’ is measured by H(C’). Suppose now that we are told which
cluster the point belongs to in C. How much does this knowledge reduce the uncertainty about
C'? This reduction in uncertainty, averaged over all points, is equal to 7(C, C’).



IC,C) = I(C,C) =2 0. (17)
Also, the mutual information can never exceed the total uncertainty in a clustering, so
I(C,C") < min(H(C), H(C)). (18)

Equality in the above formula occurs when one clustering completely determines the other. For
example, if C’ is obtained from C by merging two or more clusters, then

1C,C") = H([C") < H(Q).
When the two clusterings are equal, and only then, we have

I(C,C") = H({C") = H().
We propose to use as a comparison criterion for two clusterings C, C’ the quantity

VI(C,C") = H(C)+ H(C') -2I(,C). (19)
At a closer examination, this is the sum of two positive terms

VI(C,C") = [HCC)—-IC,CH1+[H({C)—-I(C,C)H]I. (20)

By analogy with the total variation of a function, we call it VI between the two clusterings. The two
terms represent the conditional entropies H(C|C"), H(C'|C). The first term measures the amount



VI induces a metric in the space of clusterings (Mei1la2007)
4.1. The VI is a metric

Property 1. The VI satisfies the metric axioms:
Non-negativity: VI (C, C') is always non-negative and VI (C,C') = Oifandonly if C = C'.
Symmetry: VI(C,C") = VI(C',C).

Triangle inequality: For any three clusterings Cy, Cp, C3 of D
VI(Cy, C2) + VI(C2,C3) 2 VI(Cy, C3). (23)

Hence the VI is a metric (or distance) on clusterings. The space of all clusterings is finite, so
this metric is necessarily bounded. A comparison criterion that is a metric has several important
advantages. The properties of a metric—mainly the symmetry and the triangle inequality—make
the criterion more understandable. Human intuition is more at ease with a metric than with an
arbitrary function of two variables.

Second, the triangle inequality tells us that if two elements of a metric space (i.e. clusterings)
are close to a third they cannot be too far apart from each other. This property is extremely useful
in designing efficient data structures and algorithms. With a metric, one can move from simply
comparing two clusterings to analyzing the structure of large sets of clusterings. For example,
one can design algorithms 4 la K-means [9] that cluster a set of clusterings, one can construct
ball trees of clusterings for efficient retrieval, or one can estimate the speed at which a search
algorithm (e.g. simulated annealing type algorithms) moves away from its initial point.



DBSCAN Clustering — Explained. Detailed theorotical explana... https://towardsdatascience com/dbscan-clustering-explained-97...
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DBSCAN Clustering —
Explained

Detailed theorotical explanation and scikit-learn
implementation

'&‘ Soner Yildinm Apr22 - Tminread #

Clustering is a way to group a set of data points in a way that similar
data points are grouped together. Therefore, clustering algorithms
look for similarities or dissimilarities among data points. Clustering
is an unsupervised learning method so there is no label associated
with data points. The algorithm tries to find the underlying structure
of the data.



Partition-based and hierarchical clustering techniques are highly
efficient with normal shaped clusters. However, when it comes to
arbitrary shaped clusters or detecting outliers, density-based
techniques are more efficient.

For example, the dataset in the figure below can easily be divided
into three clusters using k-means algoritm.

k-means clustering

Consider the following figures: A topological data analysis is
required, particularly in the
presence of noise: what is

R noise? ...QOutliers,
> ", “evaporated” data



DBSCAN algorithm

DBSCAN stands for density-based spatial clustering of applications
with noise. It is able to find arbitrary shaped clusters and clusters

with noise (i.e. outliers).

There are two key parameters of DBSCAN:

e eps: The distance that specifies the neighborhoods. Two points
are considered to be neighbors if the distance between them are
less than or equal to eps.

e minPts: Minimum number of data points to define a cluster.

Based on these two parameters, points are classified as core point,
border point, or outlier:

e Core point: A point is a core point if there are at least minPts
number of points (including the point itself) in its surrounding
area with radius eps.

e Border point: A point is a border point if it is reachable from a
core point and there are less than minPts number of points within
its surrounding area.

e Qutlier: A point is an outlier if it is not a core point and not
reachable from any core points.



Eigure soyrce

In this case, minPts is 4. Red points are core points because there are
at least 4 points within their surrounding area with radius eps. This
area is shown with the circles in the figure. The yellow points are
border points because they are reachable from a core point and have
less than 4 points within their neighborhood. Reachable means being
in the surrounding area of a core point. The points B and C have two
points (including the point itself) within their neigborhood (i.e. the
surrounding area with a radius of eps). Finally N is an outlier

because it is not a core point and cannot be reached from a core
point.



Dbscan LINKS fro towards datascience.com
with practical applications in python

Soner Yildirim
https://towardsdatascience.com/dbscan-clustering-explained-97556a2ad556

Kamil Mysiak
https://towardsdatascience.com/explaining-dbscan-clustering-18eaf5c83b31

DBScan in Wikipedia
https://en.wikipedia.org/wiki/DBSCAN

Original paper Ester1996 and DBSCAN revisited by the same authors
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Abstract

Clustering is an important technique in exploratory data analysis, with applications in image
processing, object classification, target recognition, data mining etc. The aim is to partition data
according to natural classes present in it, assigning data points that are "more similar” to the
same "cluster”. We solved this ill-posed problem without making any assumptions about the
structure of the data, by using a physical system as an analog computer. The physical system
we use is a disordered (granular) magnet. The method was tested successfully on a variety of
artificial and real-life problems, such as classification of flowers, processing of satellite images,
speech recognition and identification of textures and images. We are currently involved in several
collaborations, applying the method to image classification, fMRI data analysis and classification

of protein structures.




I review here work done using' a novel clustering technique, Super Paramagnetic Clus-
tering (SPC)[5,6]. The motivation for the method originates in the physics of disordered
granular magnets. In Sec 2.1 I introduce the cost function used by SPC; this cost function
has the form of the Hamiltonian of a disordered Potts ferromagnet. The connection to
Equilibrium Statistical Mechanics is natural and is explained in Sec 2.2. As we will see, the
temperature T controls the resolution at which the data are clustered. Various equilibrium
properties of the system are measured by Monte Carlo; in particular, the correlations of
neighboring pairs is measured and serves to determine the assignment of data points to
clusters, as explained in Sec 2.3. In Sec 3 we apply the method to a variety of problems.



2 Superparamagnetic Clustering of Data
2.1 The Cost Function

The basic premise of our approach is the following; data points i, j that are highly
similar to one another, i.e. with small d;;, are likely to belong to the same clusters; the
closer two points are, the more unlikely they are to belong to different clusters. To put
this statement on a formal ground, we assign to every data point 2 a Potts spin variable
2 S; = 1,2,...q. Any particular clustering assignment is represented as a configuration
{S} = {S1,S52,..Sx} of all the Potts spin variables. Losely speaking, S; = S; indicates
that i and j belong to the same cluster. An assignment with S; # S; means that the
two points are in different clusters, and such an assignment draws a penalty J;;. A cost
function that reflects these statements has the form

H{SH = X Jy (1 -ds.s)) (1)

<i,j>

with J;; a decreasing function of the "distance” d;; between the data points , j. In most
applications we used a Gaussian decay of the interaction strength with distance, cut off
beyond some distance or some number of neighbors; we expect, however, that neither the
kind of spins used, nor the precise functional form of Ji;j(d;;) has a qualitative effect on
the results. In particular, the number of Potts components ¢ has nothig to do with the
number of clusters.

At temperature T' = 0 such a disordered ferromagnet is in its ground state, in which
all spins are aligned. At high temperatures the system is completely disordered, with
vanishing correlation between any pair of spins. The manner in which the system changes
as T varies between these extremes depends on the struture in the data. If we have one



PRACTICAL APPLICATIONS

Super paramagnetic unsupervised clustering (P) (Blatt1996,
Tetko2005 see also:

http://www.vcclab.org/lab/spc/and also the very useful link to
Rudy Stoop’'s computational biology clustering page

http://stoop.ini.uzh.ch/research/clustering).










