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This is a study on the precision of four known protein disorder predictors, ranked among the
best-performing ones: DISOPRED2, PONDR VSL2B, IUPred and ESpritz. We address here
the problem of a systematic overestimation of the number of disordered proteins recognized
through the use of these predictors, considered as a standard. Some of these predictors, used
with their default setting, have a low precision, implying a tendency to overestimate the oc-
currence of disordered proteins in genome-wide surveys. Moreover, di®erent predictors often
disagree on the evaluation of individual proteins. To cope with this problem and in order to
propose a simple procedure that enhances precision based on precision-recall curves, we re-tuned
the discriminative thresholds of the predictors by training and cross-validating their perfor-
mance on a cured dataset. After re-tuning, both the disagreement among predictors and the
tendency to overestimate the occurrence of disordered proteins are reduced. This is shown in a
dedicated study over the human proteome and a set of cancer-related human proteins, with no a
priori disorder annotation. Simple quantitative estimates suggest that the occurrence of dis-
order among cancer-related proteins and other similar large-scale surveys has been over-
estimated in the past.

Keywords: Intrinsically disordered proteins; disorder predictors; precision recall curves.

1. Introduction

The growing interest in intrinsically disordered proteins (IDPs) is a new and po-
tentially very relevant tendency in the recent protein science.1,2 IDPs lack a stable
three-dimensional structure, globally or in short or long segments of their chain.
Di®erent from structured proteins, IDPs can interact with many targets and
therefore ful¯ll important roles in numerous cellular processes such as signal trans-
duction, transcriptional regulation, and translation.3 Moreover, IDPs are thought
to have a key role in several human diseases,4,5 including cancer,6 cardiovascular
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diseases,7 neurodegenerative8 and genetic diseases,9 and in the formation of amy-
loidotic ¯brils in misfolding diseases.10 Therefore, considerable enthusiasm has arisen
in the study of these proteins, both experimentally2,11 and through bioinformatics
methods, particularly through the action of a few very active groups.11!15

To study IDPs, it is important, ¯rst of all, to ¯nd them in large databases, such as
proteomes or interactomes. Great e®orts have been devoted to this task, that led to
the development of many predictors of protein disorder (reviews in Refs. 12!15) and
to their use to scan large databases (reviews in Ref. 2). Disorder predictors aim at
identifying unfolded segments in polypeptide chains. Generally, they are trained to
dichotomically recognize residues as belonging to structured or unstructured poly-
peptide segments (named ordered and disordered residues, respectively), based on
amino acid composition and several physical!chemical properties (as, for example,
hydrophobicity, charge, packing). In this paper we consider four disorder predictors:
DISOPRED2,16 PONDR VSL2B,17,18 IUPred,19 and ESpritz.20 With the exception
of ESpritz, they have been widely used to extract IDPs from large sets of proteins.
We also include the recent ESpritz since it is trained on di®erent variants of disorder,
is fast, and has a good performance.

It has been shown, both by the authors of the predictors and in independent
assessments of the CASP experiments,21!23 that these methods have a high rate of
true predictions, i.e. in a large sets of residues, they e®ectively recognize disordered
residues out of ordered ones. However, when the predictors are used to recognize
IDPs (based on the presence of long segments of disordered residues), there are
remarkable discrepancies. Di®erent predictors reveal di®erent and, in some cases,
largely di®erent occurrences of IDPs in the same dataset.2 Moreover, di®erent pre-
dictors quite often do not agree in the exact identi¯cation of the boundaries of
disordered domains within protein sequences.12,13

The aim of this paper is to clearly assess the problem of the inconsistency of the
predictions returned by predictors and to propose a re-tuning of their settings to
partially address this problem. In particular, we investigate whether the inconsis-
tency can be due to an overestimate of the number of disordered proteins, as indicated
by a low selectivity, or precision. First, we re-assessed the performance of the pre-
dictors in identifying IDPs on a nonredundant set containing both well-structured
proteins selected from the Protein Data Bank (PDB)24 and disordered proteins from
the DisProt database.25 PONDR VSL2B and ESpritz have low precision, less than
35% of the predictions obtained are correct. This indicates that they can overestimate
the number of IDPs in a dataset by classifying many ordered proteins as disordered.

To limit the potential overestimate of disorder, we changed the parameters of the
predictors, so to set their precision to be quite close to their sensitivity, on the basis of
precision-recall curves. As we discuss below, in this way the number of proteins
predicted as disordered becomes quite similar to the number of IDPs actually present
in the dataset, and the overestimate of disorder can be controlled.

After this re-tuning, all predictors have sensitivity and precision close to or higher
than 0.6 and the rate of false positives is lower than 0.09. The percentage of IDPs in
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Homo sapiens (HS) ranges from 26% to 61% before our re-tuning procedure. After re-
tuning, we found that the percentage of IDPs is less than 45% and the disagreement
between predictors was reduced. In Homo sapiens cancer-related proteins (HSCPs),
re-tuned predictors found less than 54%.

In conclusion, our study points out that some widely used predictors tend to
overestimate the number of disordered proteins, due to their systematic low preci-
sion. The re-tuning of the settings to increase precision decreases in general the
disagreement among predictors and can limit the overestimation of the number of
IDPs in large sets of proteins.

2. Methods

There is no golden standard for the assignment of disorder to a given region of a
protein sequence. Protein disorder manifests itself under di®erent experimental sig-
natures and prediction methods depend on the particular °avor of disorder they are
trained over.26,27 Here, a protein is considered as intrinsically disordered if more than
30% of its residues (either predicted or experimentally found, or annotated) are
disordered. This criterion ¯nds an interesting validation in a study of the functional
regulation of IDPs in eukaryotes.28 A simple index to express the disagreement
between two predictors in estimating the percentage of IDPs in a dataset is given by
the ratio:

! ¼ ðnA=B
d þ nB=A

d Þ=nTOT

where nA=B
d is the number of proteins predicted as disordered by predictor A and as

ordered by predictor B; conversely nB=A
d is the number of proteins predicted as

disordered by predictor B and as ordered by predictor A, and nTOT is the total
number of proteins in the dataset. The! value ranges between 0 (perfect agreement)
and 1 (total disagreement).

2.1. Sets of proteins

We performed our analysis on a nonredundant set of 864 structured proteins from
PDB24 and 132 IDPs from DisProt database.25 In the following, we call this dataset
as ProtSel. The structured proteins we selected contain less than 30% of disordered
residues. They were selected from PDBSelect25, version February 2010, a nonre-
dundant set of proteins from the PDB, with less than 25% of sequence identity.29!31

From PDBSelect25, we ¯ltered out complex proteins (i.e. no \COMPLEX" nor
\COMPLEXED" term in the PDB record) and retained only structures with a
resolution lower than 2Å, an R-factor lower than 20%, no X character in their
sequences and less than 30% of disordered residues. Operationally, a residue is dis-
ordered (e.g. missing, unresolved) if it is present in the SEQRES ¯eld but not in the
ATOM ¯eld of the PDB ¯les. IDPs were extracted from DisProt database, version
1.57.25 We selected all proteins with more than 30% annotated disordered residues.

Precision Tuning of Predictors to Reduce Overestimation of Protein Disorders
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We excluded proteins with segments lacking either ordered or disordered annotation.
ProtSel is available online (ftp://aglab.phys.uniroma1.it/pub/databases/ProtSel.
txt).

For the case studies, we considered two protein sets: the Homo sapiens proteome
(HS) and the Homo sapiens cancer-associated proteins (HSCP). HS contains 20,236
proteins selected from the SwissProt database, version January 2011.32 HSCP con-
tains 3,176 proteins, selected by searching SwissProt with keywords: tumor, onco-
gene, anti-oncogene and proto-oncogene. In HS and HSPC no a priori signature of
disorder is known.

2.2. Predictors of protein disorder

Three of the four predictors we consider have been widely used to select out IDPs
from large sets of proteins. Just as an indication, let us quote the number of citations
found on the ISI Web of Knowledge (http://apps.webofknowledge.com/): 408 for
the PONDR family methods; 501 for DISOPRED2; 508 for IUPred. The methods of
the PONDR VSL2 family17,18 (we use the VSL2B version) and DISOPRED216 are
support vector machines trained to recognize disordered residues from the amino
acid composition of the region of the polypeptide chain in which they are embedded.
PONDR VSL2B is trained on 1,327 proteins selected both from PDB and DisProt. In
the training set, there are both proteins with long disordered segments experimen-
tally identi¯ed (>30 disordered amino acids) and proteins with short segments (<30
disordered amino acids). DISOPRED2 is trained on 7,169 structured proteins from
the PDB, with less than 95% of sequence similarity. IUPred makes use of a pairwise
energy function among residues in a protein and it is based on the empirical obser-
vation that known disordered residues have higher total energy than ordered ones. It
is trained on 785 structures proteins from PDB, with less than 25% of sequence
similarity.19

We also consider ESpritz,20 a recently published predictor that has shown quite
promising performances. ESpritz is based on a bi-directional recursive neural net-
work, trained on the °avors of disorder emerging both from crystallographic and
NMR structures.

2.3. Training and testing procedure

In this paper, we considered a protein as intrinsically disordered if more than 30% of
its residues are disordered. To identify disordered residues, we used the scores
returned by the predictors. If the score is higher than a ¯xed discriminative
threshold, then a residue is predicted as disordered. We veri¯ed that the precision of
some predictors in identifying IDPs is low if one uses the default discriminative
thresholds, indicated by the authors of the methods. So, we tried to re-evaluate these
thresholds to increase the performance of the predictors.

To obtain the new threshold and test the resulting performance of the predictors,
we used a ¯ve-fold cross-validation procedure.33 ProtSel was partitioned into ¯ve
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di®erent subsets. At each cross-validation step, four subsets were combined in a
training set, and the remaining subset was used to test predictors.

2.4. Performance measures

The performance of disorder predictors as dichotomic classi¯ers is usually assessed
on their ability to identify disordered residues in a test set. In this paper, however,
predictors are used to identify IDPs in datasets, not disordered residues. Therefore,
we tested the performance of predictors in ¯nding IDPs in our selection of proteins.
Let Nd and No be number of disordered and ordered proteins e®ectively present in a
set, and nd and no the number of predicted disordered and ordered proteins re-
spectively, returned by a given predictor. Clearly, no þ nd ¼ No þNd, but in general
nd 6¼ Nd and no 6¼ No. In an ideal predictor, nd and no coincide with Nd and No,
respectively. But in general, this is not the case, and the relative performance of a
predictor is evaluated by computing several ratios between correct and incorrect
predictions. The ¯rst step is to compute the following quantities: TP, number
of disordered proteins predicted as disordered (true positives); FN, number of dis-
ordered proteins predicted as ordered (false negatives); TN, number of ordered
proteins predicted as ordered (true negatives); FP, number of ordered proteins
predicted as disordered (false positives). Then the following indexes are
evaluated21!23:

Sensitivity ðor recallÞ : Sn ¼ TP

TP þ FN
¼ TP

Nd
ð1Þ

is the number of correctly identi¯ed disordered proteins normalized to the total
number of disordered proteins in the sample

Specificity : Sp ¼
TN

TN þ FP
¼ TN

No
ð2Þ

is the ratio between the number correctly identi¯ed ordered proteins and the total
number of ordered proteins in the sample;

Rate of false positives : fp ¼
FP

TN þ FP
¼ 1! Sp ð3Þ

is the ratio between the number of ordered proteins predicted as disordered and the
total number of ordered proteins in the sample;

Accuracy : ACC ¼
Sn þ Sp

2
ð4Þ

that is the average between sensitivity and speci¯city. It measures the overall
performance of the predictor. Then,

Precision ðor selectivityÞ : Pr ¼ TP

TP þ FP
¼ TP

nd
ð5Þ

Precision Tuning of Predictors to Reduce Overestimation of Protein Disorders
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is the ratio between the number of correctly predicted disordered proteins and the
total number of proteins predicted as disordered in the sample.

To evaluate if a predictor either overestimates or underestimates the number of
IDPs in a dataset, we used the index nd=Nd. It is easy to verify that

nd=Nd ¼ Sn=P r: ð6Þ

Clearly, a low precision enhances this index and it can indicate an overestimate of the
number of IDPs identi¯ed in a dataset.

3. Results

3.1. Performance of disorder predictors

Initially, we tested predictors with their default thresholds on ProtSel. DISOPRED2
and IUPred had the highest precision. PONDR VSL2B and ESpritz had low preci-
sion, not exceeding 0.35 (Table 1). Their ratio nd=Nd was higher than 2.4, indicating
that they predicted as disordered more than twice the real number of IDPs in the
dataset. Therefore, VSL2B and ESpritz seriously overestimated the frequency of
IDPs in this dataset.

To address this problem, we changed the discriminative thresholds used to
identify disordered residues in protein sequences (see Sec. 2.3) so to tune the precision
of predictors to be close to the sensitivity ðSn=P r & 1Þ. In this way, the number of
predicted IDPs is about equal to the number of IDPs present in the dataset
[nd=Nd & 1, see Eq. (6)] and the overestimation of disorder is kept under control. To
select the thresholds, we evaluated precision-recall (PR) curves, in which sensitivity
(recall) is plotted against precision (selectivity), for di®erent thresholds. PR curves
should be preferred to the generally used receiving operating characteristics (ROC)
curves, since, in skew datasets as those considered in the present paper (ProtSel
contains 87% structured and 13% disordered proteins), ROC curves are biased
toward a low rate of false positives, as is well known.34

Table 1. Performances of widely used disorder predictors in recognizing
IDPs over the ProtSel dataset, sorted by decreasing precision, before and
after retuning.

SN SP fP ACC Pr nd=Nd

Before retuning
DISOPRED2 0.68 0.94 0.06 0.81 0.66 1.03
IUPred 0.58 0.95 0.05 0.76 0.62 0.94
ESpritz 0.79 0.75 0.25 0.77 0.33 2.39
PONDR VSL2B 0.88 0.68 0.32 0.78 0.30 2.90

After retuning
DISOPRED2 0.66 0.94 0.06 0.80 0.66 1.00
PONDR VSL2B 0.62 0.94 0.06 0.78 0.65 1.00
IUPred 0.59 0.91 0.09 0.75 0.56 1.00
ESpritz 0.59 0.92 0.08 0.76 0.58 1.00
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The average discriminative thresholds that guarantee in each predictor a preci-
sion close to the sensitivity varied considerably, and they are reported in Table 2.

With these thresholds all predictors displayed similar sensitivity and precision,
close to 0.6 (see Table 1).

3.2. How many disordered proteins in the human genome?

As case studies, we evaluated the occurrence of IDPs in the two datasets HS and
HSCP (Homo sapiens proteome from Swiss-Prot and human proteins associated
with cancer, respectively), before and after re-tuning of the thresholds, and the
disagreement among the predictors, evaluated through the disagreement index !,
de¯ned in the ¯rst paragraph of Methods (Tables 3 and 4).

The ¯rst observation is that predictors gave quite di®erent estimates for the
number of IDPs in both HS SP and HSCP before re-tuning, with default thresholds
(Table 3). The VSL2B estimate in HS (61%) was signi¯cantly higher than those
of DISOPRED2 (46%), ESpritz (42%) and IUPred (26%). Since VSL2B and ESpritz

Fig. 1. Precision-recall curves.

Table 2. Thresholds to discriminate disordered residues from
ordered ones.

Predictor Default thresholds Retuned thresholds

DISOPRED2 0.05 0.051
PONDR VSL2B 0.5 0.692
ESpritz 0.063 0.122
IUPred 0.5 0.485

Precision Tuning of Predictors to Reduce Overestimation of Protein Disorders
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have a lower precision, their estimates can well be biased toward excess. After
re-tuning, both VSL2B and ESpritz showed a decrease in the number of identi¯ed
IDPs, and the percentages of IDPs, respectively, identi¯ed by VSL2B and ESpritz
were similar, close to 30%. DISOPRED2, which has a default precision of 0.66 and a
ratio nd=Nd close to 1, is less a®ected by the retuning procedure, as expected. Also in
the HSCP dataset, VSL2B and ESpritz showed, after retuning, a reduction of pre-
dicted IDPs, however the frequency of IDPs is higher in HSCP than in HS proteins
(see Table 3). From Table 3, we can conclude that the frequency of IDPs does not
exceed 45% in HS and 54% in HSCP.

The second observation is that, re-tuning the precision of the two predictors
generally decreases the disagreement index between them (Table 4), with the ex-
ception of DISOPRED2 versus ESpritz in the HSCP dataset. This result clearly
indicates that ¯nding a good compromise between sensitivity and precision improves
the agreement of predictors over single proteins.

4. Discussion and Conclusions

The problem raised in the present paper originated by the observation that disorder
predictors are generally tested and used in two quite di®erent kind of contexts:
(i) they are tested to search for short, rare structural disorder, as in the CASP

Table 3. Number of intrinsically disordered proteins in HS (human proteome) and in HSPC
(human cancer-associated proteins) predicted by PONDR VSL2B, DISOPRED2, ESpritz and
IUPred, before and after re-tuning. In parentheses relative percentages.

Before re-tuning After re-tuning Before re-tuning After re-tuning

PONDR VSL2B 12,274 (61%) 7,351 (36%) 2,154 (51%) 1,382 (44%)
DISOPRED2 9,362 (46%) 9,141 (45%) 1,769 (56%) 1,732 (54%)
ESpritz 8,529 (42%) 5,863 (29%) 1,552 (37%) 1,118 (35%)
IUPred 5,346 (26%) 5,726 (28%) 1,022 (32%) 1,098 (34%)

HS HSCP

Table 4. Disagreement index between PONDR VSL2B, ESpritz, IUPred and DISOPRED2 in HS (human
proteome) and in HSPC (human cancer-associated proteins), before and after the re-tuning procedure.

HS VSL2B ESpritz IUPred DISOPRED2 HSCP VSL2B ESpritz IUPred DISOPRED2

Before re-tuning
VSL2B 0 0.35 0.34 0.19 VSL2B 0 0.21 0.36 0.17
ESpritz 0 0.09 0.23 ESpritz 0 0.18 0.17
IUPred 0 0.22 IUPred 0 0.24

After re-tuning
VSL2B 0 0.13 0.11 0.16 VSL2B 0 0.14 0.12 0.16
ESpritz 0 0.09 0.21 ESpritz 0 0.10 0.23
IUPred 0 0.16 IUPred 0 0.22
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experiments; (ii) they are used to search for IDPs in large databases. However, we
have shown that a predictor with its default settings, tuned to have an optimum
sensitivity and speci¯city in context (i), can overestimate disorder in context (ii) if its
nd=Nd ratio is higher than 1. So, when one wants to use disorder predictors for
genome-wide, large scale surveys it is important to ¯ne-tune their performances to
get a good compromise between sensitivity and precision that allows to keep the
overestimate of the number of IDPs under control and, possibly, also the overesti-
mate of disordered residues at a reasonable level. In this paper, after having shown
that some predictors in their default settings tend to have low precision in identifying
IDPs, we have proposed a re-tuning of the predictor settings so to enhance their
precision and obtain a number of predicted IDPs reasonably similar to the number of
IDPs e®ectively present in the dataset.

In the case studies, we have shown that the predictors returned quite di®erent
occurrences of IDPs among human proteins, when used with default settings. The re-
tuning procedure generally reduces the disagreement among predictors, as indicated
by the disagreement index (Table 4). The percentage of putative IDPs found by
PONDR VSL2 and ESpritz in HS signi¯cantly decreases after re-tuning, and it is
lower than 45%. Also in HSCP, we observed a decrease in the disagreement index, in
particular between PONDR VSL2, ESpritz and IUPred, and a slight reduction in the
percentage of IDPs found by the predictors (less than 54%).

It has been reported that 79% of cancer-associated proteins in Homo sapiens are
intrinsically disordered.6 That estimate was based on the use of PONDR VL-XT and
on a di®erent operational de¯nition of a disordered protein, as containing at least one
long (>30 residue) disordered segment. We checked that, if one uses this criterion,
the number of IDPs predicted by the predictors with default settings is remarkably
higher than when one adopts the criterion we follow here, based on the occurrence of
at least 30% of disordered residues (compare Table 5 with Table 3). We believe that
our criterion is sound because the presence of a segment of 30 residues in proteins of
about 600 residues (average length of human proteins) is less signi¯cant than the
presence of at least 30% of disordered residues, i.e. about 180 disordered residues, to
classify that protein as disordered.

Table 5. Number of proteins with al least one long
disordered segment (> 30 residues) in HS (human
proteome) and in HSPC (human cancer-associated
proteins) predicted by PONDR VSL2B, DISOPRED2,
ESpritz and IUPred, with default settings.

HS HSCP

PONDR VSL2 15,481 (77%) 2,638 (83%)
DISOPRED2 13,244 (65%) 2,364 (74%)
ESpritz 10,888 (54%) 2,341 (74%)
IUPred 10,027 (50%) 1,904 (60%)

Precision Tuning of Predictors to Reduce Overestimation of Protein Disorders
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Our upper-bound estimate of 54%, based on the DISOPRED2, indicates that the
occurrence of IDPs in cancer-associated proteins had been overestimated in the past.

As a general conclusion, we believe to have shown that the use of disorder pre-
dictors in large scale, genome-wide surveys, should be complemented by a prelimi-
nary analysis of their precision over reliable experimental test sets, such as the
ProtSel used here. In this way, we can limit the overestimation of disorder observed
in some predictors. Nevertheless, looking at Table 3, it is evident that, even after our
proposed retuning, the estimates in the number of predicted IDPs vary considerably
among di®erent predictors, and the understanding of this variance is a major issue in
the ¯eld. Genomic estimates on how large is the unfoldome should consider the
observation by Orengo and Thornton that it is possible to assign about two thirds of
the sequences from completed genomes to as few as 1,400 domain families for which
structures are known.35 Since among the sequences that are hard to structurally
classify with family domains there are membrane proteins (folded even if hard to
crystallize) and structural singletons, this observation should be used to tune the
output of disorder predictors. Also a detailed and still missing study of how much
of the predicted disorder is covered by protein domain databases would be very
relevant.
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