Taylor &Francis
Molecular Physics

An International Journal at the Interface Between Chemistry and
Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

Using collective variables to drive molecular
dynamics simulations

Giacomo Fiorin, Michael L. Klein & Jérome Hénin

To cite this article: Giacomo Fiorin, Michael L. Klein & Jérdme Hénin (2013) Using collective
variables to drive molecular dynamics simulations, Molecular Physics, 111:22-23, 3345-3362, DOI:
10.1080/00268976.2013.813594

To link to this article: https://doi.org/10.1080/00268976.2013.813594

© 2013 The Author(s). Published by Taylor &
Francis.

@ Accepted author version posted online: 14
Jun 2013.
Published online: 16 Jul 2013.

N
CJ/ Submit your article to this journal &

||I| Article views: 15336

A
h View related articles &'

@ Citing articles: 241 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=tmph20


https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/loi/tmph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2013.813594
https://doi.org/10.1080/00268976.2013.813594
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2013.813594
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2013.813594
https://www.tandfonline.com/doi/citedby/10.1080/00268976.2013.813594#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00268976.2013.813594#tabModule

Molecular Physics, 2013

Vol. 111, Nos. 22-23, 3345-3362, http://dx.doi.org/10.1080/00268976.2013.813594

Taylor & Francis
Taybor & Francis Group

INVITED ARTICLE

Using collective variables to drive molecular dynamics simulations

Giacomo Fiorin®*, Michael L. Klein® and Jéréme Hénin®

“Department of Chemistry and Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA; ®Laboratoire
de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS, Paris, France

(Received 24 April 2013; final version received 4 June 2013)

A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type
commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is
presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable
with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted
MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive
biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.
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Introduction

The potential energy functions used in molecular dynam-
ics (MD) simulations are often augmented with additional
biasing terms, either to overcome limitations in the phys-
ical model itself or to obtain higher statistical sampling.
Approaches to this goal are often founded on the selection
of certain collective variables (in short, ‘colvars’) [1-9] to
describe macroscopic phenomena. Few colvars can be sam-
pled extensively to calculate statistical quantities accurately,
unlike the far more numerous atomic positions. Further-
more, reduced representations based on colvars easily lend
themselves to comparison with experiments, or with empir-
ical models constructed at lower levels of detail. Depending
on a particular problem, the simplicity of this comparison
can be of great advantage over many other efficient ap-
proaches that bias ‘microscopically’ the exploration of the
phase space [10-17].

However, implementation of even the simpler meth-
ods based on colvars is often slowed down by the need to
re-implement all of the most commonly used variable func-
tions as well. While removing this bottleneck is mostly a
software design challenge, new methods are more easily
developed when previous software can be reused. Compu-
tational scientists also benefit from simultaneously gaining
access to a wide set of methods, all sharing a consistent
formalism. To this end, we wrote a software addition for
MD simulation programs, called the ‘collective variables
module’ (hereafter colvars module), wherein variables are
defined as an expansion over a set of commonly used func-
tional forms. First released as an integral component of the
NAMD program [18,19], the colvars module has been used

in a variety of applications and recently been interfaced with
the LAMMPS program [20]. One separate, notable effort to
implement several types of colvar biases is the PLUMED
package [21]. Our approach differs from that package by in-
cluding thermodynamic force measurements and the adap-
tive biasing force (ABF) family of algorithms, as well as
removing the need for artificial restraints in many occa-
sions by using a transparent formalism for treating moving
frames of reference. Conversely, our implementation does
not include exchange-based variants of the metadynamics
method, or other methods which require a posteriori cal-
culations to remove the effects of biasing potentials before
analysing statistical distributions.

The colvars module includes several commonly used
sampling algorithms, in combination with a wide set of
functions to be used as variables. A unique advantage is the
concurrent availability of methods based on the probability
density [1,3,4,7] alongside methods based on average forces
[5,22-24]. In a previous manuscript [25], we used this ver-
satility to directly compare a novel multidimensional imple-
mentation of the ABF method [5] with the metadynamics
method [7]. New implementations of other algorithms have
also been added by other researchers: the well-tempered
correction of metadynamics [26], the replica-exchange um-
brella sampling [10,11] and the ‘swarms of trajectories’
methods [8,27]. The computational overhead of this imple-
mentation is negligible in most typical applications, thanks
to a design that matches the requirements of modern com-
puting resources. Algorithms that use more than one replica
of the system but do not require strict synchronisation
can also take advantage of a specialised communication
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algorithm that preserves near-ideal efficiency in massively
parallel runs.

One of the innovations of our formalism is a generic
and robust treatment of rotational degrees of freedom. Typ-
ical solutions to define variables on rotating frames such
as flexible macromolecules require applying artificial re-
straints that prevent rotation, but also perturb the inter-
nal dynamics of the system. Using an approach based
on quaternions [28], we generalise the least-squares su-
perposition approach used for root-mean-square deviations
(RMSDs) to any type of colvar that is not intrinsically in-
variant under rotations. This choice allows for a straight-
forward comparison with simulation studies that rely on
a rigid-body assumption [29-34]. We further extend the
quaternion-based approach to define several novel colvars,
to model the orientation of macromolecules and flexible
structures.

Our transferable software, founded on a relatively sim-
ple formalism, can be used to leverage the most advanced
computational resources and to attack increasingly com-
plex problems. We here demonstrate several applications
through usage cases, which enable the reader with the abil-
ity to tackle advanced applications or to develop new meth-
ods as well.

1. Defining collective variables and their derived
physical quantities

The most general definition of a colvar £ is as a differen-

tiable function of the vector of 3N atomic Cartesian coor-

dinates, X:

§(X) =§(x1, X2, ... Xp). (1)

Depending on the structure of the system, £(X) is often
a function of much fewer arguments than 3N, or can be
expressed as a combination of such functions:

£X) =£ (VX)) 2X), ...29X%)...) (2

with the number of basis functions z*) much smaller than
the number of atoms. We refer to z*(X) as a colvar com-
ponent: in the simpler and most common scenario, a single
component z is identified with the colvar &. Historically,
these elementary functions have been distances, angles or
dihedrals, effectively mimicking the interaction terms of
many empirical Hamiltonians [35-41]. More recently MD
simulations are applied to complex macromolecules; there-
fore, components are used that mimic many-body interac-
tions or track collective motions, such as moments of in-
ertia, principal components from covariance analysis [42],
etc. By implementing the calculation of derivatives for the
most commonly used components z(®(X), as well as com-
bination rules following Equation (2) (in our current soft-
ware implementation, a polynomial expansion), algorithms

are automatically generalised to a virtually unlimited set
of variable functions. Such combinations may be used, for
example, after an initial mapping of the colvar space has
been performed by any method: for an efficient calcula-
tion of a potential of mean force (PMF), colvars known to
be relevant may be combined to obtain a single ‘reaction
coordinate’.

The Cartesian gradient of the colvar, Vx&(X) =
(Vy, €(X), Vy,E(X), ...), is straightforwardly written as a
function of those of the components using the chain rule.
In most applications the gradient is needed to apply biasing
forces to the colvars, and, when applicable, to compute a
colvar’s velocity d&/dz.

Another relevant physical quantity is the so-called ‘in-
verse gradient’:

0X 0x; 090Xy oXy 3

3é_<3€’3$"“35> ®
which is needed in thermodynamic integration (TI) [22] to
evaluate the thermodynamic force exerted on the colvars
by the entire system [2]. Unlike the gradient, multiple def-
initions of the inverse gradient are valid, depending on the
choice of a differentiable map between the 3N Cartesian co-
ordinates and a set of 3N variables that includes the chosen
colvars &;. In practice, defining explicitly this map is not
necessary, and the inverse gradients may be defined as any
set of vector functions that satisfy the following orthonor-
mality condition for any two colvars &; and §; [23,24]:

X
% (Vx&;) = 8i;. “4)

When the inverse gradients are integrated over an en-
semble of states, a Jacobian derivative should be introduced
to preserve the density of phase space as a function of &:

/X _ 39, oxi (5)
& - &

For a ‘statistical’ definition of the PMF F(£) under the TI
formalism [2], the Jacobian term must be explicitly included
in the estimate of the thermodynamic gradient dF(£)/0§.
However, a more traditional definition of the PMF describes
only actual interaction terms, excluding this geometric en-
tropy contribution. That definition originates in the statisti-
cal theory of simple liquids, and is based on the normalised
radial distribution function g():

F(r) = —ksT In(g(r)), (6)

where g(r) is obtained dividing by 477 the probability
density of r. This ensures that the interparticle PMEF, like
g(r), decays to a plateau at large separations: the value
of the plateau is usually set at zero. This convention is
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intuitive in the case of interparticle distances, but loses its
simple interpretation when applied to geometric quantities
that are incommensurable with the distance between two
molecular species. In the colvars module, we consider any
PMF as following the ‘statistical’ convention, i.e. including
the Jacobian term [25]: for distances, this term is equal
to —2kgTIn (). This provides a more consistent treatment
among colvars of different types.

Each colvar may be harmonically coupled to an ex-
tended degree of freedom, which is set to undergo Hamilto-
nian or Langevin dynamics. The extended coordinate acts
as a numerically convenient proxy for the actual variable.
For appropriate values of the extended system temperature
and friction coefficient, this implements the temperature-
accelerated MD (TAMD) paradigm [8], which has been
proposed as a way to sample conformational changes in
proteins [43]. While TAMD does not yield free-energy esti-
mates, it treats all biased degrees of freedom independently,
making it applicable to high-dimensional problems — which
it effectively treats as separate, one-dimensional problems.

In the remainder of this section, we discuss the proper-
ties of different types of colvars. Because the most frequent
scenario involves colvars £(X) with only one component
z(X) each, we will identify z with & for the remainder
of this section, unless otherwise noted. The remainder of
our discussion also applies to the most general scenario of
colvars constructed from combining many different compo-
nents (Equation (2)). Physically meaningful colvars should
be invariant under global translations and rotations of the
model system; however, certain functions are only invariant
when combined with a change of coordinates to a moving
frame of reference. We group the colvar components into
six classes (Classes I-VI) based on their rotational and
translational invariance, and on other more specific criteria.
With the only exception of Class IV, all components feature
a computational cost O(N).

Class I components describe the relative arrangement
of few geometric centres (individual atoms or groups of
atoms): these include the traditionally used distances, an-
gles and dihedrals. Class II components describe the distri-
bution of atomic positions around their centre-of-geometry
or centre-of-mass, via physically measurable quantities
such as the radius of gyration or the moment of inertia.
Class III components are defined based on the connec-
tivity within a macromolecule (for example, a protein or
nucleic acid): members of this class include a score func-
tion for the secondary structure in protein segments, and
projections of a set of dihedral angles on to dikedral prin-
cipal components [44]. Class IV components are based on
distances between all pairs of atoms within two groups;
therefore, variables constructed upon components of this
class are the only ones with (O(N?) computational cost.
Class V components describe the quasi-rigid orientation
of a group of atoms, computed by least-squares fitting
against a set of reference coordinates: the full orientation is

described by a unit quaternion, from which other variables
are extracted to isolate individual subrotations; several of
such variables are a novel feature of our software. Class
VI components use the same approach as Class V com-
ponents to express the positions of a set of atoms in a
rotated frame: within that frame, the RMSD from the ref-
erence positions (rmsd component) and the projection on
a 3N-dimensional displacement vector (eigenvector) can
be calculated. Of the six classes, only the last two rely
on a least-squares superposition to remove the effect of
roto-translations. However, our software makes the super-
position procedure available transparently to all classes,
to allow for its reuse in the development of new types of
variables.

Class I colvar components: functions of few
centres-of-geometry

Many colvars are defined as simple quantities computed
between few positions. These are, for example, the distance
between two positions, the angle between three positions
and the dihedral (torsional angle) between four positions.
The components that define these and other variables of
similar type are listed in the appendix (Table Al). Each
position may be defined as the position of a single atom,
or the centre-of-mass of a group of atoms: under periodic
boundary conditions, the centre-of-mass is calculated as-
suming that all atomic positions are at their closest peri-
odic images from the centre-of-mass itself. However, all
distances between centres-of-mass are computed by the
minimal image convention. Optionally, the latter behaviour
can be disabled, for example, if the atoms are distributed
over a distance larger than half of the unit cell in any
direction.

The component dihedral and, under periodic boundary
conditions, the component distanceZ have values within a
periodic interval. When a colvar £ is defined based on a
periodic component, the software uses the minimal image
convention transparently when performing sums or differ-
ences between values of &.

Class II colvar components: internal structure

of a group of atoms

Class II colvar components, listed in the appendix (Ta-
ble A2), represent simple physical quantities associated
with a set of atoms taken as a whole. The radius of gy-
ration (gyration component) can be computed in two al-
ternative ways: one assumes equal weights for all the
atoms involved or one uses the atomic masses to weigh
the sum. The inertia component measures the moment of
inertia of the group of atoms, or the trace of the inertia
tensor. The inertiaZ component instead measures the di-
agonal element of the inertia tensor along a user-defined
axis.
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Class III colvar components: functions on many
atomic positions

The two components in this class, listed in the appendix (Ta-
ble A3), are designed to model the structure of a long poly-
mer, for example, a protein. The component alpha measures
the content of the a-helix structure in a certain structure,
using a scoring function for the angles between C, atoms
and another scoring function for «¢-helical hydrogen bonds.
The angle term is computed via a scoring function similar
in concept to the potential used by Alemani et al. [45]: the
angle w between three consecutive C,, atoms is used to eval-
uate a scoring function with respect to a reference value wy,
which is by default 88°. The hydrogen-bond term measures
the number of «-helical hydrogen bonds formed between
backbone groups four residues apart in the sequence. The
smooth scoring function is similar to that previously used
to measure atomic coordination numbers [46]. The value of
the alpha component is then

z <Xg0, xg‘] xg"H, xg"H, ... xﬁ‘”’s, ng's, .. )

_ 2

Cang NU+ZN: 21 ( n—>n+2 __ ref) ( )

 (N-2) S = (o2 — o)/ (Aot
Cis No+N—4 ( n—>n+4 dref)6

2 - 7)
e

(N —-4) = (dn—>'l+4/dref)

where X/, is the position of atom A within the amino acid
with sequence number N, """ is the angle formed by
the position of the three consecutive C, atoms of the amino
acids n,n + 1 and n + 2, d"_’"+4 is the distance be-
tween the backbone oxygen of the amino acid » and the
backbone nitrogen of the amino acid # + 4, and Cypg
and Cyp are two parameters whose sum is 1 (by default,
both 0.5).

The component dihedralPC can be used to model ar-
bitrary secondary structures of proteins, or small tertiary
structures. Its value represents the projection of backbone
dihedral angles within a protein segment on to a ‘dihe-
dral principal component’, which is the projection of the
protein’s backbone structure on to a predefined dihedral
‘eigenvector’. Such an eigenvector may be obtained follow-
ing the formalism of dihedral principal component analy-
sis (dPCA) proposed by Mu et al. [47] and documented
in detail by Altis et al. [48]. Given a peptide or pro-
tein segment of N residues, each with Ramachandran an-
gles ¢; and ;, dPCA consists of a variance/covariance
analysis of the 4(N — 1) variables cos (), sin(y),
cos (¢2), sin (¢2). . .cos (¢y), sin (¢y). For a dihedral eigen-
vector of coefficients (k)1 <;<aw-1), the projection of
the current backbone conformation on to such an eigenv-

ector is

N—-1
2X) = Y (kan-3cos(¥n) + kan_2sin(¥r,)
n=1

+ kgn—1 cos(@pq1) + kaypsin(@ui1)).  (8)

Class 1V colvar components: based on multiple
pairwise atomic distances

Class IV colvar components, listed in the appendix (Ta-
ble A4), are defined as non-linear combinations of many
distances between pairs of atoms, and allow to model more
complex structural changes within a group of atoms, with-
out assuming that they may be linked by covalent bonds.
The first of such components is distancelnv, which repre-
sents a generalised ‘mean distance’ between two groups of
atoms:

—1/n

2 2 (Ild”H) ’

atomi atom j
group A group B

d["] —
A,B NANB

)
where ||d¥ || is the distance between atoms i and j, and 7 is
an even integer. This definition yields an average distance
between two groups that behaves as 1/d".

Usage Case 1: nuclear Overhauser effect (NOE) re-
straints. A major application of distancelnv is to en-
force experimental distance restraints based on NOEs
measured in NMR experiments. The appropriate func-
tional form is obtained by setting the exponent n to 6
(default value). This has been used to optimise the bound
structure of a novel inhibitor with a viral proton channel
[49].

Another important variable to describe a set of interact-
ing atoms is the total number of contacts, or the coordination
number (coordNum) between two groups within a chosen
cutoff distance &°. In order to be used as a variable, the coor-
dination number must be approximated by a differentiable
function, such as [46]:

2. X

atomi atom j
group A group B

— (lld711/d°)"

CNpp = -
AP — (@i |l/do)"”

(10)

where A and B are the two groups, which share no atoms,
|/ || is the distance between atoms i and j, and n and m are
even integers. A variant of this component, selfCoordNum,
is used in the case where the two groups are identical.
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Usage Case 2: aggregation of solute molecules. Re-
straints on a selfCoordNum component may be used to
prevent, or to enforce, the aggregation of a set of solute
molecules or ions. One application is the computational
insertion of many hydrophobic molecules in an aqueous
solution, from where they are expected to partition into
different environments such as protein pockets or a lipid
bilayer, as was done to study binding of a general anaes-
thetic to a trans-membrane receptor channel [50]. A bias
to prevent aggregation is useful in the transient regime
where the local concentration in water is very high, to
prevent formation of long-lived clusters that could slow
down partitioning. This restraint may be lifted once par-
titioning has taken place and the tendency of the solute
to self-aggregate in water is reduced.

Class V colvar components: pseudo-rigid
orientations of a group of atoms

The components in this class, listed in the appendix (Ta-
ble AS5), are all derived from the optimal rotation between
a set of reference coordinates X’ and the set of coordi-
nates X. The algorithms to calculate such optimal rotation
are described in Section 3.1. The value of the component
orientation is the unit quaternion q (Equation (18)). Its
four real components (qo, 91, g2, q3) are linked by the con-
straint that their sum of squares is equal to 1: this constraint
is automatically enforced by all the implemented biasing
methods. Additionally, because a quaternion q and its op-
posite —q describe identical orientations, distances between
two quaternion values are computed by the minimal image
convention. Likewise, densities of states are measured ac-
counting for the same symmetry.

Usage Case 3: orientational restraint for a flexible
molecule. When one wishes to restrain the rotation of
a flexible molecule, defining its orientation is not triv-
ial. In such a case, defining and restraining an orien-
tation variable has the following two advantages: (i)
only the global rotation is restrained, without applying
any force to the molecule’s internal degrees of free-
dom; and (ii) this component is able to measure the
overall molecular orientation with a high tolerance for
conformational changes, which may cause the failure of
other approaches. For example, it is difficult to define the
principal axes of the inertia tensor of a nearly-spherical
molecule, but the orientation component yields a robust
value also in that case.

In many applications, the three effective degrees of
freedom of one orientation component can be sampled
efficiently. However, in cases where a strong anisotropy
is present in the rotational motions, separating one of the

degrees of freedom from the other two may be an efficient
strategy. The simplest choice for such one-dimensional vari-
able is the amplitude of the rotation measured by the angle 6
( orientationAngle component). Because of divergent gra-
dients Vx6 near 8 = 0, the component orientationAngle
is best used only during analysis, while the orientationProj
component defined as cos (8) may be used instead to apply
forces.

When a particular axis of interest exists, indicated by
the unit vector e, it can be used to decompose one complete
rotation in two subrotations [52,53]: these are the spin rota-
tion around e and the #lt rotation, i.e. rotation ‘away from
the direction e’. Of the three degrees of freedom describing
the full rotation, only two are represented by the tilt and spin
angles: the third is the orientation within the plane orthogo-
nal to e of the axis generating the tilt subrotation (Figure 1).
This decomposition has the advantage that the two angles
of subrotation ¢ (spin) and w (tilt) have the same values,
regardless of which subrotation is applied first. Because the
axis of the ‘tilt’ subrotation is not resolved with its sign,
only the absolute value of the tilt angle, |w|, is determined,
therefore, its atomic gradients Vy|w| are finite but discon-
tinuous at |w| = 0° and |w| = 180°, where w changes sign.
For this reason, we defined the #ilt component as ¢ = cos ()
to be used as a variable whose derivatives are continuous
everywhere.

The component spindngle calculates the value of the
spin angle ¢ within the interval [— 180°: 180°). However,
a ‘gimbal lock’ condition may arise if @ = 180° and if
the axis of the complete rotation (composition of tilt and
spin) is orthogonal to e [see the expression for Vx¢ in Ta-
ble A5 when go? = 0and(q - e)* = 0]. Inapplications where
it is possible that both conditions ¢o> = 0 and (q - €)*> = 0
occur simultaneously, rather than spinAngle we recommend
to use the complete quaternion provided by the orientation
component, and to only extract subrotation angles during
subsequent analysis of the results.

Class VI colvar components: deviations
firom a reference set of coordinates

Class VI components, listed in the appendix (Table A6),
measure changes in the internal structure of a group of
atoms, with respect to a set of reference coordinates. As
for Class V components, an optimal roto-translation is cal-
culated between the reference positions and the positions
during the simulation; however, this roto-translation is only
used to remove the effects of rigid-body motions such as
molecular tumbling.

The first component within Class VI is the widely
used minimum RMSD between the reference and the cur-
rent positions. The second component (eigenvector) rep-
resents the projection of the atomic displacements from a
set of reference positions on to a 3N-dimensional vector.
The 3N-dimensional vector is typically an eigenvector of
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(A) (B)
>

Figure 1.

“tilt”

Schematic representation of the tilt and spinAngle variables. Two identical peptides known to form a ‘leucine zipper’ structure

[51] are shown as cartoons in three successive configurations. (A) The two peptides are fully parallel. (B) The second peptide is rotated
by 20° around an axis orthogonal to z (‘tilt’ rotation): the Cartesian axes in the rotated frame attached to the second peptide are indicated
by x’, ' and Z’. This operation is similar to the nutation around the line of nodes (angle 0) in the Euler angles formalism, but in this case
no prior precession rotation is applied (angle ¢). (C) A second rotation by 180° around z’' (‘spin’ rotation) brings x’ and )’ into x”" into
", respectively. This second rotation effectively combines the effect of the precession (¢) and intrinsic () rotations in the Euler angles
formalism. See Usage Case 7 for details on how to use the spindngle variable to model interactions between membrane proteins.

the Hessian matrix from a previous normal mode analysis
calculation, or of the covariance matrix from an essential
dynamics calculation [42]. This component may also be
used as a first-order approximation of any coordinate, if
the 3N-dimensional vector is computed between two sets of
reference positions.

2. Applying collective variable based algorithms

Once colvars have been defined, several algorithms can be
used to analyse their properties, bias their dynamics towards
an empirical ensemble, or enhance the rate of sampling of
the phase space along them. In our software implementa-
tion, all algorithms are multidimensional, in the sense that
each can be applied on a set of one or more colvars. Con-
versely, each colvar can be accessed or biased by multiple
algorithms at the same time.

Different algorithms make use of different quantities:
analysis methods only use the value of a colvar £ or of its
velocity d&/dt. Biasing algorithms (harmonic restraints that
implement steered MD and umbrella sampling, metady-
namics) also require the calculation of the set of atomic gra-
dients 0&/0X. The free-energy calculation methods based
on the TI formalism, like ABF, require also the calculation
ofthe inverse gradient field 9X/0& and of the Jacobian term
dln |J)/0z.

2.1. Runtime analysis

MD simulations now are reaching the point where analysing
a long trajectory requires an amount of computer power
and storage exceeding the capacity of desktop computers.
The tremendous improvements in computing hardware

and software has made this possible. For colvars-related
properties, both issues can be circumvented through
runtime calculation. The value of a colvar &, its velocity
d&/dt, the external biasing force applied to it, and the total
force —aV/0& acting on the colvar from the system are all
recorded during the simulation, lifting the requirement to
save the complete set of positions of the system. Running
averages, standard deviations (SDs) and multidimensional
histograms of these quantities can also be computed at
runtime, and output as part of the colvars trajectory.

Time-correlation functions C%9(t) between a cho-
sen pair of variables &; and &;, or their velocities, can
also be calculated. Given the total simulation time fgy,
and a predefined highest correlation time #y,,,, C* /(1) is
defined as

C(k,l)(f) = (I (Sk(t)v &(r+ T)) >05f5(fsim*lmax) > (11)

where ()0 </ < (1yn—mms) indicates an average taken on all
time frames ¢ ranging from 0 to fsm — fmax, and I1(&x, &)
is a scalar product between the variables &; and &;. The
product is defined differently depending on their type: for
scalars and three-dimensional vectors, the real product and
dot product are used. For two unit quaternions ¢ and q,
the product IT1(Qy, ;) is best defined as the cosine of the
angle 0 between the two. This quantity can be shown to be
closely related to the standard four-dimensional dot product
of the two unit quaternions:

(g ) = 2(aq - ) — 1. (12)

For three-dimensional vectors and quaternions, the prod-
uct T1(&g, &) is the cosine cos(fy), which can also be
used to evaluate the second-order Legendre polynomial,
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(3cos2(By) — 1)/2:

1

) = Z(3cos?(Ou) — 1)

0 <t <(fsim—tmax) (13)

\S)]

The angular autocorrelation function Cék’k)(r) can then
be used to calculate experimental properties of macro-
molecules such as NMR relaxation rates [54], or other
measures of the magnitude of dipolar interactions.

2.2. Fixed and moving harmonic restraints

Harmonic restraints may be introduced on any vector of
colvars, using a single force constant K. To handle inhomo-
geneities in the values of different colvars, K is rescaled ac-
cording to a predefined width parameter A, of each colvar
&;, according to

1 n L 0 2
Ve =k Y (T0) . e
i=1

This is equivalent to expressing the force constant in units
ofkcal/mol/A& iz' Conversely, if A&; is taken to represent the
unit value of the colvar, this reverts to the classic expression
for the harmonic potential.

Usage Case 4: geometric restraints for alchemical
free-energy calculations. In alchemical free-energy
calculations of ligand-receptor interactions, excessive
motion of the quasi-decoupled ligand leads to large nu-
merical errors, which can be alleviated by positional and
orientational restraints. In the case of a flexible ligand,
conformational restraints may bring further convergence
improvements [55]. A combination of such restraints in
the colvars module has been successfully applied to the
calculation of the peptide—protein binding free energy
[56].

The time evolution of the restraints can be defined in
two forms: in the first form, the restraint centres Eio evolve
linearly over time towards target values; and, in the second
form of time-dependent restraints, the force constant X, is
scaled as a function of simulation time according to

K; = Ko+ A (K1 — Ko), (15)

where Ky, K, and K| are the initial, current and final values
of the force constant, respectively, and X, changes linearly
from 0 to 1 over a preset amount of simulation time. A value
of the exponent « larger than 1 results in a smoother initial
behaviour; for a more general definition of the A schedule,
a list of values of A; can be supplied as well.

The time evolution of the restraint centres or force con-
stant can be set to occur either continuously (slow growth)
or in discrete stages (perturbation). Continuous evolution
of the restraint centres implements a generalised, multidi-
mensional form of the steered MD method [57]. Discrete
perturbation of the restraint centres may be used in prepar-
ing stratified umbrella sampling calculations [1]. Discrete
perturbation of the force constant allows for computing free
energies of restraints via the free-energy perturbation [58]
or TI [22] estimators.

Usage Case 5: targeted MD. Applying a harmonic re-
straint on an RMSD variable with a moving restraint cen-
tre implements the targeted MD method [59]. A flexible
molecule may thus be driven at a chosen rate towards
any known conformation. The same colvar definition
may be applied towards a free-energy-profile calcula-
tion, in combination with fixed harmonic restraints (for
umbrella sampling), ABF or metadynamics.

2.3. Adaptive biasing force

The version of the ABF method [5,60] implemented in the
colvars module is an extension to multidimensional vari-
ables of the original NAMD implementation [61]. This im-
plementation was described in detail in a previous report
[25]. The limitations of our software correspond to the re-
quirements of unconstrained multidimensional TI [24,25].
These requirements are twofold: analytical second deriva-
tives of each variable in order to calculate a Jacobian term
and a form of mutual orthogonality condition that constrains
the way multidimensional calculations can be performed.

When an ABF calculation is performed in the pres-
ence of other, user-defined potentials and restraints that act
directly on the variable used for ABF, ensuring that one ob-
tains the intended result requires special precautions. Our
software implementation has the advantage that such ex-
ternal restraints are not included in the measured thermo-
dynamic forces, nor in the resulting PMF. For the purpose
of comparison with PMFs calculated by histogram-based
methods [1,3,4,7], the contribution of the external restraints
should be included a posteriori.

A more recent variant implemented in our software is
the extended-system ABF method (¢ABF) of Leliévre et al.
[62,63], where the adaptive bias is not applied directly to
the colvar &, but rather to an extended degree of freedom
&*, which obeys Hamiltonian dynamics and is harmonically
coupled to the actual collective coordinate of interest. The
method has also been independently developed by Yang and
coworkers [64] within a variant of their orthogonal space
random walk approach [65]. While akin to the extended-
system variant of metadynamics [46], eABF yields very
similar results to standard ABF, while lifting its require-
ments [24,25], thus being applicable to all types of colvars.
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The eABF algorithm also includes external biasing forces
in the computed PMFs, making it directly comparable to
histogram-based methods even when such external forces
are applied. Further characterisation of the eABF method
for conformational sampling is in progress, and beyond the
scope of this report.

2.4. Metadynamics

The metadynamics method [7] features a time-dependent
biasing potential, constructed along the trajectory of a set
of user-defined colvars, § = (&1, ..., &, ...&n, ). The bi-
asing potential is defined as a sum of repulsive Gaussian
functions, each created at regular time intervals of length
ot:

Vmeta(g (Z)) =
(1=81) Ney )
(1) — & (1)) >
w -, (16
m=0§:28t,... 1[[1 o < 255/3 (16

where W is a constant with the dimension of an energy,
&i(¢t) is the value of the ith colvar at the time ¢, £,(¢)) is
its value at the previous time 7y and §& is the user-defined
half-width of the Gaussian along the direction of &;. The
method generalises to arbitrary colvars the conformational
flooding [4] and local elevation [3] methods, which were
formulated specifically to use as colvars the principal com-
ponents of a covariance matrix or a set of dihedral angles,
respectively.

In our implementation, the biasing potential Vi (€)
can either be computed analytically at each step, or mapped
and accumulated on to a grid where the colvars & are dis-
cretised. A similar grid, holding vector values instead of
scalar numbers, is used to represent the potential’s gradi-
ents 0 Vineta(£)/0&. The most convenient choice of the ratio
between the width of a Gaussian and the spacing of the
grid, 8& /A&y, is /27 /2 ~ 1.25: by this choice, the integral
of one Gaussian function ([, exp(—(& — & (t0))*/28&2))
equals the volume of one grid element, ([ [xA&y). At each
simulation step, the forces that are applied to the colvars &,
are taken from the nearest bin in the grid.

We tested the magnitude of the errors from discretisa-
tion using an ensemble of simulations of a tiny system, a
K™* and a CI~ ion in an implicit solvent, modelled by the
generalised Born approach [66]. We defined the colvar &
as the distance between the two, and ran multiple PMF cal-
culations: for better comparison with realistic applications,
we ran all simulations for 10 ns, using Gaussian parameters
capable to reconstruct a PMF within that time. A confining
harmonic potential 1/2 Kya(£€ — £max)> Was applied for £ >
£max = 8 A. In Figure 2, we evaluate the systematic errors
of PMFs reconstructed by metadynamics with analytical
Gaussians, and by metadynamics with interpolating grids of
different spacings. For all the grid spacings tested, discreti-

= 10 T T T T T T T

g e )

< . | | | | |

N 0.3 (tl,) I I I I I b
2 oolf Mebiahitbiabepbabasbidbtpt i
; 03 { . . . . . T
Cosfle T T T
I~§ 00 [ Hyattittipssttsgatitiin sttt i
. -0.3 “. . . . . . L
R rEEE
3 00| | A
e
N 03 (el) I I I I I b
. —0.3i . . . . . . L

Figure 2. Influence of the grid spacing A& on PMF calculations
by metadynamics. (a) Shown are the exact PMF F(§) (solid line)
and the PMF reconstructed by metadynamics Fi.,(§) (dashed
line). The harmonic confining potential for £ > 8 A is visible in
Fea(§), but was removed in panels (b—e) to calculate differences
with F(€). (b,c and d) Differences between F(&) and F.E.0(&), the
PMF calculated using Gaussians interpolated on a grid. The red
points indicate the mean of (F,(,irtf)(S) — F(&)) and its SD over a
set of 10 independent runs, using grids of spacing A& = 0.2 A (b),
0.1 A (c) and 0.05 A (d), respectively. The light blue filled curves
indicate the mean £ 1 SD of the PMF calculated by analytical
Gaussians (Fye(§) — F(§)) over a set of 10 independent runs.
The width of the Gaussian functions was 26& = 0.25 A both for
analytical and for interpolated Gaussians. (e) Mean and SD of
(FE9 &) — F(£)) in a set of 10 runs with Gaussian width 28& =
0.01 A and grid spacing A£ = 0.0125 A.

sation errors are equal to or smaller than the sampling error
arising from the finite height of the Gaussian function itself.
Furthermore, the ‘low-pass’ systematic errors due to the
finite Gaussian width 26 in regions of high curvature oc-
cur both when the Gaussian functions are interpolated by a
grid and when they are analytically differentiated (Figure 2¢
-2d, at £ < 3 A). To eliminate such errors, the only pos-
sibility is to decrease the Gaussian width 2§¢ (Figure 2 e)
and the grid spacing A& in proportion. To handle appli-
cations where higher curvature than expected appears in a
PMF calculation, the code offers the possibility to adjust the
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Figure 3. Calculation of a PMF for an Na®—Cl~ pair in an
explicit solvent [35] with a 10 ns MD simulation with a metady-
namics biasing force. The PMF reconstructed by metadynamics
itself (red) is compared to the one accumulated by a concurrent
ABEF calculation with its biasing force disabled (blue). Both are
compared to the one calculated by a 10 ns ABF calculation (green).
All PMFs are plotted following the ‘statistical’ definition, with the
Jacobian term —2kg T1n (r) subtracted.

simulation parameters while preserving the accumulated in-
formation. The same flexibility applies to the boundaries of
the grid, & nin and &ax, along the direction of each colvar
&: these can be automatically changed by the software to
accommodate a wider grid as the simulation progresses, to
maintain a minimal distance of & from its boundaries of
68;.

Usage Case 6: calculation of a PMF with a mixed
approach. While using the biasing potential of one
algorithm, it is possible to calculate PMFs using the
free-energy estimator from another algorithm. Figure 3
shows the PMF calculated using an adaptive Gaussian
bias [3,4,7] with a free-energy estimator based on TI
[5,22-24,61]. This is implemented by defining a meta-
dynamics potential concurrently with an ABF calcula-
tion whose biasing force is disabled. Some advantages
of both methods are thus combined, such as accelerated
diffusion over flat regions of the PMF, together with an
alternative, asymptotically unbiased free-energy estima-
tor. This demonstrates how the present framework may
be used to develop and test new methods as combina-
tions of existing algorithms.

3. Design and implementation

Our software implementation can function within any MD
or molecular modelling program, augmenting it with inter-

acting high-level objects. These objects fall in two main
categories: colvars and algorithms acting on them (also re-
ferred to as ‘biases’) that enhance sampling, implement
restraints or user-defined potentials, and perform runtime
analysis and PMF calculations. Biases have access to the
values of colvars, and may apply external biasing forces on
them; such forces are then transparently distributed on to
the corresponding atoms.

Retrieval of the atomic coordinates and communication
of any biasing forces are performed by a ‘proxy’ object.
One of the functions of the proxy object is to combine all
operations that are performed on the same atoms. This is a
major advantage in the situation where multiple variables
are computed on the same set of atoms. The proxy object
is also the only section of the code that must be rewritten
when interfacing to a different program, while the remain-
der of the source code remains unchanged. A proxy object
for NAMD up to version 2.9 [18,19] was part of our initial
implementation, used to adapt the ABF method [25]. Re-
cently, a version of this object to interface LAMMPS [20]
was released for public usage, and the development of a
version for GROMACS [67] is underway.

Within the section of the code that does not depend on
the particular MD program, interaction between the proxy
object and the colvars is implemented by objects repre-
senting atom groups. As input, these objects collect the
Cartesian coordinates of the atoms and the forces orig-
inating from the system. Optionally, atom group objects
can also calculate and apply to their atomic positions roto-
translational transformations from the laboratory frame to-
wards a non-inertial frame where the analytical expression
of certain colvars is simpler. This a mandatory step for
colvars based on Class V and VI components, but is also
available to all types of colvars. The transformation between
the laboratory frame and the rotated frame is described in
more detail in the following (Section 3.1). During the cal-
culation of each colvar, atom groups are responsible for
storing the various derivatives of the colvar (gradients, in-
verse gradients and Jacobian term). Such derivatives can
then be used implicitly, to propagate a generalised force
acting on the colvar, or explicitly accessed by biasing and
analysis algorithms.

There are no restrictions on which atoms can be
included in the groups, other than limitations due to com-
putational efficiency. Two factors play a role in creating
these limitations: the first is the raw cost to calculate the
functional forms of the components involved. In the current
design of our software, we followed an approach that is
most efficient in a typical case, where the coordinates
of the atoms involved and their forces are collected and
cached in contiguous memory locations, to benefit from
the processor’s cache and compile-time optimisations.
However, certain functional forms such as those with an
O(N?) overhead may have a non-negligible impact on
performance. The second overhead is represented by the
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communication of the coordinates of the atoms involved,
as messages between different sections of the program
in serial runs, and between different computational nodes
in parallel runs. Although a parallelised design would be
beneficial for very expensive colvars by reducing the size of
the messages, most colvars are not additive (of those here
described, the only exception is distanceZ). To evaluate a
non-additive colvar and the corresponding biasing force,
two iterations of broadcast and reduction are required
between the master node and the other computational
nodes, thereby multiplying the total latency times. Because
the parallel performance of MD software is typically more
sensitive to latency times than to the transfer bandwidth, we
did not pursue so far a fully parallelised design, reserving
it to future applications with extreme numbers of atoms in-
volved. The impact on performance of both the raw cost and
the communication overhead is analysed in more detail in
Section 3.3.

3.1. Moving frames of reference

Atom group objects feature the ability to compute an opti-
mal roto-translation that best superimposes its atomic coor-
dinates X; to a set of reference coordinates xf"f. This trans-
formation is transparently applied at each step of the simu-
lation, before the atomic coordinates are used to calculate
the colvar components. Hence, the colvars are calculated

on the following set of roto-translated coordinates:

X, = R(x; — x°) + x", (17
where x© and x™' are the centres-of-geometry of the cur-
rent and reference coordinates, and R is the rotation matrix
that superimposes the two sets. Optionally, the atoms from
which the roto-translation is calculated can be different
from those from which the colvars are calculated. In that
case, the gradients of the colvar, 0&/0x;, are also propa-
gated to all the atoms defining the rotation, even though
their positions do not appear explicitly in the colvar’s math-
ematical expression.

Usage Case 7: permeation through a mobile chan-
nel. Thanks to custom reference frames, permeation of
a small molecule through a pore or channel may be
studied using a distanceZ component based on a spec-
ified axis, even if the channel’s position and orienta-
tion are not constant in time. Cancelling the rotation
of the channel ensures that the defined axis always de-
scribes the direction of permeation, while compensating
for overall translation keeps the reference position fixed
with respect to the channel. In such a setup, the rotation
contribution to the colvar gradient has non-zero terms
on the channel atoms. Thus, biasing forces on the so-
lute will automatically induce a counter-force on the

channel, even though only solute atoms are explicitly
part of the colvar definition.

Class IV components such as rmsd and eigenvector
are defined based on the distance between the current co-
ordinates and the reference coordinates: in most applica-
tions, a moving frame of reference is useful to remove
tumbling motions that are physically irrelevant. For situ-
ations where a physically relevant rotation is to be mea-
sured, Class V components such as orientation and its
derivatives are an appropriate choice of colvar. Such ro-
tations may in turn be expressed in a moving frame of
reference.

Usage Case 8: relative rotation of interacting mem-
brane proteins. The spinAngle coordinate describes
the rotation of an object around an axis. When ap-
plied to a trans-membrane protein or peptide, it is most
useful when expressed in a rotating frame of refer-
ence linked to another membrane-embedded protein:
it then describes relative rotation of one protein with
respect to the other. Combined with an in-plane dis-
tance (distanceXY), it provides a more detailed de-
scription of the mode of lateral interaction of the two
proteins. Internally, measuring such a relative rota-
tion implies two nested coordinate fits: first, fitting the
dimer to its reference positions to cancel global rotation
and, second, fitting one of the proteins on to its own
reference structure to measure its rotation within the
dimer.

The optimal translation is defined as the difference be-
tween the centres-of-geometry of the group of atoms and
of the reference coordinates. The optimal rotation, instead,
is computed via a quaternion-based procedure [28] that
uses the signalisation of a4 x 4 matrix constructed using
both the current and the reference coordinates. Given the
eigenvalues AV > 1@ > 1@ > 1 and the correspond-
ing four-dimensional eigenvectors (q“), q®, q®, q(4)) of
this matrix, the leading eigenvector q'") is a unit quater-
nion that describes a rotation that minimises the RMSD
between the current and the reference coordinates [28].
While giving identical results to the widely used Kabsch
approach [68], the quaternion-based approach provides a
simpler mathematical object, a unit quaternion, which is
more suitable to be used as a colvar than a 3 x 3 unitary
matrix. It also involves a linear loop over the set of coor-
dinates, which is easily optimised by taking advantage of
the cache memory of modern processors. The unit quater-
nion 9" computed via the procedure of Dill and coworkers
[28] is related to the unitary matrix of rotation R by the
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expression

90> + q1* — ¢2* — q3* 2(q192 — 9093)
2(qoq3 + q192)
2(q193 — 4092)

R@") =
2(qoq1 + q293)

where 9 = (g0, g1, 92, ¢3)-
The derivatives of A and " can be expressed on the
orthonormal basis in R* formed by (qV, q®, q®, q@):

qu u (1 a) (oz)

i > wiq (19)
a=1

where 9/0x; indicates the derivative with respect to the ith
Cartesian coordinate (i going from 1 to 3N). Differentiating
both sides of the eigenvalue equation Sq" = A(Mq™ and
solving for the coefficients w(1 ) , the following expressions
are obtained:

arm 3S
g =2 gD 20
3)Cl' q 8X,‘q ’ ( )
aqM 4 1 0S
— () , (1) () 21
i T D @ —am <q ox; >q - @D

where the matrix dS/dx; and all of the scalar products
(q(“> . (88/8)5,- q(ﬂ))) are known. If the two sets of atomic
coordinates X = (X1, X, ...Xy) and X' = (x|, X, ... Xy)
are different enough that the optimal transform is a roto-
inversion rather than a direct rotation, crossing can occur
between the eigenvalues A() and A®), leading to discon-
tinuous atomic derivatives [28]. The same phenomenon is
also well known to occur with the Kabsch method [68]. No
general algorithm exists to rigorously correct for the arising
discontinuities: in our software implementation, a message
is printed to warn if the inner product between eigenvectors
computed at two consecutive time steps, g’ - '+, differs
from 1 by more than a predefined threshold (0.01 by de-
fault).

3.2. Extending the set of variable components

The colvars module offers the possibility to create new
variables finely tuned to a specific system, by combining
existing components in a polynomial sum:

E(X) = Zc

where C, are real constants and p, non-negative integers.
Combinations at the source code level are also straight-
forward: for example, the alpha component is entirely
implemented as a combination of angle and coordNum

(zx))"™ (22)

90> — q1i* + ¢* — g5*

2(qoq2 + 9193)
2(q293 — qoq1) , (18)
90> — q1* — ¢* + q5*

with virtually no replicated code. Similarly, the dihedralPC
component is built internally as an array of dihedral com-
ponents with a small amount of added functionality.

Usage Case 9: mean and fluctuation of the dipole mo-
ment of a water cluster. The projection on to a chosen
axis e of the dipole moment d of a water molecule can be
calculated as a distanceZ function between the centre-of-
mass of the two hydrogen atoms and the oxygen atom. If
we define d, = d - e, it is possible to calculate the aver-
age dipole moment =N1>.d . « as a combination
using C, = N~! and pa = 1. The average square dipole
moment (d,?) = N~'>",d,.,* can then be defined as
a combination using C, = N~! and p, = 2; from that
quantity, a single distanceZ function deﬁned between all
hydrogens and all oxygens using C, = N2 and p, = 2
can be subtracted to obtain the variance, (d 2y — (d,)2.

3.3. Computational cost of colvars
and algorithms

We performed three groups of benchmark calculations with
our software, as implemented in NAMD version 2.9[18,19].
The first group of tests estimates the raw cost of computing
the basic quantities on the smallest test system (two atoms).
The second group of tests examines the computational cost
as a function of the number of atoms (up to several thou-
sands). The third group of tests shows the performance
of the colvar calculations in parallel clusters or super-
computers.

To evaluate the raw cost to compute one colvar, we
first tested a Na®—CIl~ pair in an implicit solvent, with
the same configuration as used for Figure 2. The average
time per MD step with no colvar calculation was 21.3 us.
If a distance colvar was defined, the average time per MD
step increased to 37.9 us. A PMF calculation with meta-
dynamics, interpolated by a grid with the same parameters
as Figure 2(b) yielded an average time per MD step of
40.6 us. A very similar timing (40.1 us) was obtained with
ABF [25] defined on an identical grid.

We then proceeded to examine the computational cost as
a function of the number of atoms (Figure 4). We simulated
three NaCl cubic lattices, with their unit cells composed of
128, 1024 or 4096 atoms. Electrostatic interactions were
treated by the particle mesh Ewald method [69] with a
grid spacing of 1 A, and van der Waals interactions were
cut off at 12 A. The colvars examined were: the distance
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Figure 4. Time per MD step to calculate colvars based on dif-
ferent components (distance, gyration, coordNum and rmsd), for
three different NaCl lattices of 128, 1024 and 8192 atoms. The
solid lines show the times per MD step, including the calculation
of each colvar and of its gradients, inverse gradients and Jacobian
term (only the colvar and its gradients for coordNum). The dashed
lines show the times per MD step when only the value of colvar is
computed. The dotted black lines show times per MD step when
no colvars are computed.

between the centres-of-mass of the Na® and Cl~ atoms
within the unit cell; the radius of gyration of the entire unit
cell; the coordination number between the Na™ and Cl~
atoms (computed including periodic boundary conditions);
and the RMSD with respect to the original configuration.
All colvars were computed on groups of atoms of different
size, ranging from two to the entire unit cell. The four
chosen colvars represent components of Classes I, II, IV
and VI: we did not test components of Classes III and V,
because their functional forms are analogous to Classes [V
and VI, respectively.

The measured times per MD step are plotted in Figure 4
as a function of the number of atoms in each colvar. Class |
and Class II colvars are virtually identical in computational
cost, due to the fact that they both involve linear loops
over the set of atomic positions. Class VI colvars such as
rmsd feature a linear cost as well, but also include a higher
overhead due to the calculation of the rotation matrix [28].
Class III colvars such as coordNum are the most expensive,
because they involve N(N — 1)/2 calculations of mutual
distances between two atoms. For all colvars except those
of Class III, the cost of computing the colvar and all of its
derivatives is marginally higher than that of computing only
the colvar.
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Figure 5. Benchmark results for ApoAl on three different su-
percomputers: the TACC InfiniBand Linux cluster ‘Lonestar’
(squares), the NICS Cray XTS5 supercomputer ‘Kraken’ (circles)
and the CINES SGI Altix supercomputer ‘Jade’ (triangles). The
empty symbols indicate the timings for MD simulations without
colvars defined, filled symbols the timings for the calculation of a
three-dimensional PMF along the position of the centre-of-mass
of the protein C, carbons (looping over 392 atoms, or 1176 indi-
vidual Cartesian components).

Finally, we tested a macromolecular system in a paral-
lel calculation, the protein—lipid apoA1l complex tradition-
ally used for NAMD scaling tests (Figure 5). We defined
three colvars, which are the X, Y and Z coordinates of the
centre-of-mass of the C, atoms of the two protein chains
(392 atoms, or 1176 individual Cartesian components), de-
fined as three separate distanceZ -based colvars. A meta-
dynamics bias was applied to the three variables (X, ¥, 2),
using a cubic grid of size 100 A and spacing 0.5 A (200
grid points in each direction, or 8 million in total). This
represents a relatively demanding example, aiming at de-
scribing conformations of large supramolecular assemblies
at high detail. We tested this calculation on three high-
performance computing resources: the InfiniBand Linux
cluster ‘Lonestar’ at the Texas Advanced Computing Cen-
ter (TACC), with two six-core ‘Westmere’ processors per
node; the Cray XTS5 ‘Kraken’ supercomputer at the National
Institute for Computational Sciences (NICS) with two six-
core AMD ‘Istanbul’ processors per node; and the SGI Altix
supercomputer ‘Jade’ at the Centre Informatique National
de I’Enseignement Supérieur (CINES) with two quad-core
Intel ‘Harpertown’ processors per node, connected by an
InfiniBand network.

Although measurable at node counts above 64, the over-
head raised above a few percentage points only when the
number of CPU cores used was well beyond the linear-
scaling regime for the ‘raw’ performance without colvars
(empty symbols in Figure 5). At the best configuration (768
cores of the ‘Lonestar’ supercomputer) and using a 2 fs in-
tegration time step, we measured a peak simulation speed
of 3 ns/hour.
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3.4. Multiple-replica parallelism

Due to the increase in the number of computing units in
modern simulation resources, the potential to accelerate
the simulation throughput is higher. However, communica-
tion between computational nodes occurs through hardware
whose transfer bandwidths do not increase proportionately:
the degree of parallelisation that can be achieved is therefore
limited. One popular approach to further increase sampling
is to combine colvar-based algorithms with a parallelism
between many communicating replicas of the system [10—
12,70-72]. In the case where all replicas share the same
macroscopic parameters (temperature, pressure, etc.) and
only differ in their microscopic degrees of freedom, inter-
pretation of the results is especially straightforward. One
of these algorithms is the ‘multiple-walker’ approach to the
metadynamics algorithm [70]: by this approach, the poten-
tial Vipeta(€) is constructed from multiple equivalent replicas
that concurrently explore the configurational space:

N rep

Vinea(€) = Y Voo ®). (23)

r=1

Unlike ‘embarrassingly parallel” approaches such as free-
energy perturbation [58] or umbrella sampling [1], the adap-
tive nature of the metadynamics algorithm is preserved.

Our implementation of the multiple-walker algorithm
relies on a flexible communication system, wherein the
individual biasing potentials Vn(]re)ta(é ) and their gradients
8Vn(12ta(§ )/9& are shared by all replicas through an asyn-
chronous communication. The communication is based on
temporary files, with a network communication under de-
velopment. This effectively allows us to exploit the full
computational power of the largest supercomputers. It is
often observed that the performance of an MD simulation
fluctuates with time, depending on many factors (bursts in
the network traffic, operating system jitter, time spent on
input/output, etc.). Therefore, enforcing strict synchronisa-
tion between replicas may damage the parallel performance
of the entire set. The approach chosen here eliminates this
problem without making use of auxiliary parameterisation
of the density of states to achieve asynchronous coupling
when using distributed computing resources [73-75].

To test the performance as a function of the num-
ber of replicas, we used the apoAl system simulated by
NAMD version 2.9 [18,19]. We tested a metadynamics
run with the same configuration as in Figure 5, reduced,
however, to two variables (X and Y) for comparison with
the version of Hamiltonian exchange [11] recently im-
plemented in NAMD with MPI communication between
replicas. Each replica was run on 1536 CPU cores of the
Cray XK6 ‘Jaguar’ supercomputer. The performance of a
single replica did not differ significantly between the two
approaches, except for the difference in the build of the

number of CPU cores

[e] Al © < AN o < 8
(o] (V) < [eo] ™ N~ O ~ o <
[sp] ~ < () < w0 0 A ™ N~
w o — [aV) o < [{e e @ <
~— [s2) © — — QN ™ < ~N o —
T T T T T T T T T T T
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o quasi-synchronous exchange +——e—
o 08| o
§ ° [ e °
= . °
: k] L J
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02 1 1 1 1 1 1 1 1 1 1 1
single 2 4 8 1216 2432 4864 96

number of replicas (Nrep)

Figure 6. Performance of the multiple-replica communication
scheme for colvar biases. Shown are the average single-replica
performance p(single) (solid black line) and its 95th percentile
(dashed line). The blue lines delimit the 95% interval of the in-
stantaneous performance of an individual replica. The red points
indicate p(Nyp), the median performance of each set of replicas:
error bars indicate the 95% interval of the individual performances
around p(Nrp). The blue points indicate the performance of the
Hamiltonian exchange approach: error bars are absent due to syn-
chronisation between replicas. The line indicates a least-squares
fit with the formula p(Nyp) = p(single)(1 — y(Nrp — 1)), with
y =~ 0.0028. The total number of CPU cores used for each test
calculation is shown on the top axis.

Charm++ communication library used by NAMD. In the
metadynamics run, each replica inserted a new Gaussian
hill every 1000 MD steps and communicated it to the other
replicas at the same frequency. In the Hamiltonian exchange
run, synchronisation and exchange of the harmonic centres
between replicas was also performed every 1000 steps.

In Figure 6 we plot the performance as a function of
the number of replicas. Due to the fluctuations over time
of the single-replica performance p(single), synchronisa-
tion causes the entire set to run at the speed of the slow-
est replicas. Therefore, the combined performance p(Nrep)
may degrade depending on the distribution of p(single). In
our test, p(Nrp) Was roughly equal to the 95th percentile
of p(single) when Ny, approaches 20 (Figure 6). In the
metadynamics run, loss of ideal scaling occurred instead
at higher Ny, suggesting that only the latencies involved
in file access added to the cost of communication. With
the current file-based communication, the simulation re-
tains good scaling up to ~150,000 computing cores of the
Jaguar supercomputer, equalling 1.6 petaflops of peak per-
formance and roughly half of the entire machine. At this
configuration, a multiple-walker metadynamics calculation
on apoAl can sample up to 3.7 us of aggregated sim-
ulation data per day. By performing communication be-
tween replicas with the same loose synchronisation as de-
scribed so far but over the network, N, could be increased
up to several hundreds, proportionally increasing the
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aggregated simulation data sampled per day up to hundreds
of microseconds.

Conclusions

We have presented a highly efficient and general implemen-
tation of colvar-based MD calculations. Classic as well as
recent numerical methods are implemented. The wide and
easily extensible sets of variables allow for modelling di-
verse phenomena. The software framework is designed to
allow method developers to rapidly gain access to a com-
putationally efficient implementation, embedded in popular
community programs. Single-replica and multiple-replica
versions of the implemented algorithms are tuned to exploit
the massively parallel design of current supercomputing re-
sources. The software architecture framework is designed
to enable new applications of advanced MD simulations
in the biological, chemical and materials sciences, whose
increasing predictive power allows one to target problems
inaccessible to experimental investigation.
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Appendix: Tables of colvar components

In the following, for each implemented colvar component z(X),
we list its range of values, its atomic gradients Vxz(X) and, when
available analytically, the inverse gradients %—x and the Jacobian
term 220 In a few cases, the infinity symbol oo is used to
indicate that the range of values of a function is not limited by the
functional form, but only by the dimensions of the system and by
its boundary conditions.
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Table Al. Class I colvar components, based on distances between the centres-of-mass X,C, xg, ...of several atomic groups. The vectors

Ax"/ are the differences (x{ — x{), and the symbol x indicates an outer product. The axis e can be defined as a fixed unit vector, or
based on the distance vector between x5 and the centre-of-mass of a third group x§, as in e = (x§ — x§)/[Ix$ — x§||. Gradients Vxz(X)
are written as derivatives with respect to x{, x5, . . .in curly braces, {fo (z(X)), ng (z(X)), ...}; individual atomic gradients consist of
one of these terms multiplied by dx{ /dx;. Analytical expressions for 3X/dz and dln |J|/dz are currently not available for distanceDir.
K is a normalisation constant analytically computed to obey Equation (4). Well-known, yet lengthy expressions for the gradients of the
angle and of the dihedral (torsional angle) components are omitted for brevity. The computational overhead to compute these variables
is O(N).

X dln|J
Definition of z(X) Gradient Vxz(X) Inverse gradient m Jacobian term ni/l
z
distance [0: 00) [|AX] = ch —x¢ H ; {—Ax, Ax} ; {—Ax, Ax} 2
> Il Ax]| 2 || ax]| lAx]|
Ax Ax; Ax; Ax 100
distanceDir (S?) —m Axy; Axy Axy | + W 010 {—Ax, Ax}
| Ax]| Ax3 Axy Axs 001
distanceZ (— 00: 00) (AXx) - e {—e, €} 3 {—e, e} 0
1 1
distanceXY [0: co lAX, || = [|Ax — (Ax - e)e]| {—Ax,, Ax;} ——{—Axy, Ax }
10::00) N laxc s T T 2gaxg s T IAX |
Ax>1 . Ax?3 20 20
le [0: 180° cos M| —————— K{—F,0,— cot(6
angle [ ] (” Ax2! H H Ax23 H ) { x| ax§ } @
Ax"? x AXP3) - AP | AXP| dw dw
dihedral [ — 180°: 180°)  tan™" ( K{—,0,0, —= 0
hedral [ ) tan (Ax12 x Ax23) . (Ax23 x Ax34) {Bxl axf}

Table A2. Analytical expressions for Class II components, describing internal structure. The gradient Vxz(X) and inverse gradient ‘;—X
are expressed in terms of the individual atom’s position x;. When atomic masses m; are included in the expression, x° is the centre-of-mass
(3", mi)™' Y, x;m;; otherwise, it is the centre-of-geometry, N~! 3", x;. Analytical expressions for the inverse gradient and Jacobian terms
are currently available only for quantities that are not mass-weighted. The computational overhead for these components is O(N).

dln|J|

ox; .
Definition of z(X) Gradient V,,z(X) Inverse gradient 37 Jacobian term
Z z

1/2
; . i 02 (v _+C 1 _C 3N —4
gyration [0: 00) (N Z (x1 X ) ) Y (x, X ) (x, X )

Z Z

i

1/2
<2:]1m, Xi:mi (Xi - XC)Z) szﬁ (X,- - XC)

inertia [0: 00) Zm,- (xi — XC)2 2m; (x; — x°)

inertiaZ [0: 00) Z’m, ((X[ - XC) : e)z 2m,; ((x,- - XC) ’ e) €

Table A3. Analytical expressions for Class III colvar components, based on the distances between many pairs of atoms of one macro-
molecule. Atomic pairs are selected based on the chemical structure of the macromolecule (in the cases listed, a polypeptide chain). The
computational overhead to compute these variables is O(N).

Definition of z(X) Gradient Vxz(X)

alpha (0: 1) Angle term + H-bond term (Equation (7)) Equation (7)
dihedralPC (0: 1) Backbone dihedral terms (Equation (8)) Equation (8)
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Table A4. Analytical expressions for Class IV colvar components, based on multiple pairs of distances; d”/ is x, — X, the distance vector
between atom i and atom j; d° is the user-defined isotropic ‘cutoff’ distance, whereas .(do)‘1 denotes a triplet of inverse cutoff distances
in the three directions, defined as (1/d?, 1 /a';?, 1/d?). Expressions such as {—d”, dv } indicate the two derivatives with respect to the

positions of atoms i and j, respectively. The computational overhead for these components is O(N?). In the expressions of the gradients of
coordNum (isotropic and anisotropic versions), (||d"/||/d°) and (dif . (do)fl) are shortened to ( - ). The self-coordination number of one

group of atoms (selfCoordNum) uses the same function as coordNum, but excludes the terms between each atom and itself with d* = 0.

Definition of z(X) Gradient Vxz(X)
—(n+1)/n
o 0 ! ()
istancelnv (0: 0o — —d’, d"
NANB IId” || nNasNp \ NaNp [ lldi ||+2
1 -1 "
coordNum (0: NANg) . (”dj ” do ) ( - n()y ! - - m (~)"’_1> ! {—di-/ d[-f}
i 1= (Ild” I1(a°) 1)m =0 L= lld'F |1 ’
selfCoordNum (0: N?)
1 n
dl_] n
1 1—( _ _
coordNum (anis.) (0: NoNg) ( 1)”‘ (1 —n () — 1 ()m m (')m_l> {— (%) ' (a%) 1}
) 1 (d’/ (d()) ) - () - ()

Table A5. Analytical expressions for Class V colvar components (those based on pseudo-rigid orientations of a group of atoms).
Analytical expressions for X/dz and dln |J]/dz are currently not available. All components are expressed as a function of the quaternion
aX) = (go(X), ¢1(X), ¢2(X), ¢3(X)) and its derivatives (Equations (18) and (21)). q(X) describes the optimal rotation that, once applied
to a set of reference coordinates X°, minimises their distance from the current coordinates X. X° and X are centred around zero prior
computing g, by subtracting their geometric centres. ¢ = (g1, g2, ¢3) is the vector portion of g, and e is a user-defined unit vector. The
computational overhead of these components is O(N).

Definition of z(X) Gradient Vxz(X)
orientation (S°) q = (g0, 915 925 43) Vxd = (Vxqo, Vxqi, ZXQL Vxq3) (Equation (21))
: : . o _ -1 _
orientationAngle [0: 180°] 0 = 2 cos™ (qo) 7\/@ Vxqo
orientationProj [—1: 1] p = cos(0) = 2¢qy°> —1 4 Vxqo
3
) i [q-e 2
spinAngle [—180°: 180°) ¢ = 2tan"! (—) —— | (q - e) Vxqo — €xq0Vxqq
90 g’ +(q-e) ;
4q0(q-e) :
4q0Vxqo — % (q-€)Vxqo — ZeaqOVan
, q0* +(q-e) o
tilt [—1: 1] t = cos(w)

(=(5)
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Table A6. Analytical expressions for Class VI components, describing changes in the internal structure. The gradient Vxz(X) and inverse
gradient %—X are expressed in terms of the individual atom’s position x;. x© is the centre of the group of atoms: if masses appear in the
expression, x© is the centre-of-mass & m;)~! > xim;; otherwise, it is the centre-of-geometry, N -1 X X is the set of reference
coordinates (centred on the origin) and X are the instantaneous centred coordinates. R(X) (also indicated as simply R) is the optimal
rotation matrix that minimises the RMSD between R(X)X™ and X. The computational overhead for these components is typically O(N).
In the Jacobian term of RMSD, Vy - (R(X)X™") expands to Z,N=1 Zi:l ZZ=1 R/ Bx[axfgf, where the subscripts « and B, varying
between 1 and 3, indicate respectively Cartesian components of vectors x; and x?, and the corresponding elements of the rotation matrix
R. Partial derivatives of R, are obtained by differentiating Equation (18) with respect to the four components of the quaternion ¢, then
substituting Equation (21). In the Jacobian term of the eigenvector, the term (Vx R(X))V - X = Y| 22:1 Via Z;ZI(VX,. Rqp)x;p averages
to zero in real-life cases, can be omitted from the gradient in numerical applications without noticeable changes in the results, except
for the fact that the simplified expression is more stable in situations where the optimal rotation becomes ill-defined (poor structural
alignment). Accordingly, the simplified expression is used by default in the implementation.

IX; ) dln|J
Definition of z(X) Gradient Vy,z(X) Inverse gradient al Jacobian term nlJl
z b4
1 2 1 1 1
rmsd [0: 00) (N Z (xi — Rxl‘,ef)2> Ff(xf ~ Rx™) ?(Xi — Rx™) + (3N —4— vy (R(X)Xref))

eigenvector (—00: 00) Z Rv; - (x, — Rx?f) Rv; — ((inR)V) -X Rv; Vx - RX)V






