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The following is taken from [Jol86].

1 Preliminaries

1.1 Linear Algebra

The following can be found in any standard linear algebra book.

Definition 1.1 For a matrix A € R™*", we define the trace(A) to be the sum of elements in
the diagonal of A. That is

min(m,n

)
trace(A4) = Z Q.

=1

In particular, if A is a squared matrix, then its trace is just the sum of its eigenvalues, and
furthermore, if X is an invertible matrix, then

trace (X AX 1) = trace (A).

Corollary 1.2 Given a matriz A € R™" and B € R"*P, then M = AB can be written as
M =Y A.B;,
k=1

where AL is the k-th column of A (written as a column vector), and By, is the k-th row of B (in
row format).

Proof: Let C) be the matrix A',ch’. Let Ckli,j] = aiby; denote the entry (i,j) of Cy. Let
D =3"7_, Cy. Clearly,

Dli,j] =Y Cili,j] = > awbs;.
k=1 1

k=



On the other hand, by definition, we have:

i,j] = Zaikbkj = D[i, j].
k=1

2 PCA Properties

2.1 Algebraic Properties of PCA

Let A = [, ... ,q,] be the matrix of orthonormal vectors computed in the PCA process (where
; is a column vector). We can map the regular vector x into the new variables, by z = ATx
(i.e., we compute for each PC its value for the given sample x). Let A = diag(\y,...,A,) be the
principal values computed by the PCA of the covariance matrix S. Clearly, S = AAAT (since
SA = AAN).

Lemma 2.1 For any integer 1 < q < p, consider the orthonormal linear transformation
y=B"z,

where y is a g-element vector and BT is a ¢ x p matriz and let S, = BTSB be the covariance
matriz for y. Then the trace of S,, denoted by trace(S,) is maximized by taking B = A,, where
A, consists of the first q columns of A.

Proof: Let §i be the k-th column of B. Now, [, = 2521 cjreyj, where cjp, 7 = 1,... ,p,k =
., q are appropriate constants. Let C' = {c¢j;} € R*?, and then B = AC'" Then,

p
B'SB = CTATSAC = CTAC =) Nl ¢j,
j=1

by the mind boggling and totally amazing Corollary 1.2, where ¢; is the j-th row of C'. Therefore

§ = trace(BTSB) = Z)\ trace( c ¢;) Z)\ cjc J Z)\ chk
j=1

Furthermore, C = ATAC = ATB and CTC = BTAATB = BT B = I, since B is orthogonal, and
hence

q p p q
_ 2 _ 2
(=D G=D)
k=1 j=1 j=1 k=1

Thus, C' is also orthogonal, and let D be an extension of C' to a p x p orthogonal matrix (by
adding p — ¢ columns to the matrix). The rows of D are orthogonal (since DT = D!, and
DDT = DD~! = I). In particular, for j = 1,... ,p, we have

q p
Y <Y diy=

k=1 k=1
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since D is an extension of D and the rows of D are orthonormal.
Thus, since A\; > Ay > ... to maximize § we need to set > 1_ ¢, =1,for k=1,...,¢, and
cjk =0 for k=q+1,...,p. Which is achieved if we set B = AT. n
Note, that in the above, the only fact that we used is that S, the correlation matrix, is
symmetric. From S we extracted the normalized eigenvectors, and the eigenvalues.

3 Fitting A Point-Set with Least Square Error

Let xi,...,X, be n measurements of p random variables; that is x; = (%;1,...,%;). Let
M; = (1/n)> ", x;; denote the averages of the j-th variable. Note, that M; is the sample
approximation to the mean of the j-th variable X;. Similarly, we can approximate the variance
and covariance of the variables Xi,..., X;. Indeed, let

X; = (Tig, ..., Tip) =X — (My, ..., My) = (x; — My, ... x5 — M)
be the sampled normalized, so that the origin is their average. In particular, we can not compute
cov (X, X,) = B (X, = B(X,)) (X, - B(X,)]

but we can approximate it:

n

Wuv — Z (@; - Mu) (1/7\1;1 - Mv) - Xn:xwxw
; =1

=1

The question is of course, by what do we need to divide W, to get a good approximation to
cov(Xy, Xy)?
Well,

E [Wuu} = (n —1)cov (X, X,)

skipping a long and not so interesting sequence of  arguments  (see
http://www.math.uah.edu/stat/sample/sample9.html). Thus, we set our estimation to the
covariance of X,, X, to be W,,/(n — 1). This is known as the sample covariance. In particular,
let X be the matrix having x; as it i-th line. Then,

1
n—1

S =

n
T _E

XX = TiuLiv,
i=1

is the sample covariance matriz. As above, let A be the orthogonal matrix formed by the PCA
algorithm applied to S.

Let B an orthogonal p x ¢ matrix, and let y; = BTx;, for i = 1,... ,n. The y;s are the
projection of the x; into a subspace spanned by the columns of B. Note, that the location of y;
in the original space of B is

PB(Xi) = B(BTXZ)



Is it possible to find the best possible projection? A projection is intuitively good, if the
distance between a point and its projection is small. In particular, let

2

LSB(X) == LSB(XI, e, X

PBXz

be the sum of the squared distances between the points and their projections.

Theorem 3.1 The least-square distance LSp is minimized when B = Ag; that is, the matriz
formed by taking the first q columns of the matriz A.

Proof: Let m; = Pg(x;). Let r; = x; — m;. Clearly,

LSg( Z TTTl

Also, r’m; = 0. Now,
T T T T
x; X; = (m; + ;)" (m; +r;) = m; m; +7; r;,
T, _ T T
and r; r; = x; x; — m; m;. Thus,

n n

LSB(X) = Z?"iTT'i = Z (XZTXZ' — mZTm,) .

=1 =1

However, > | x7 x; is a given quantity. Thus minimizing LS(X) is equivalent to maximizing

2": miTmi = Zyl Y = ZXTBBTXZ zn:trace ((BTxi) (xlTB))
i=1 i=1

= trace (BT (Z XiXZT> B) = trace (BTXTXB)
i=1

= (n—1)trace (B"SB).

yill, where y = Bx;. In

>, m!/m;. However, B is orthogonal, which means that Hml

particular,

However, by Lemma 2.1. we know that the above trace is maximized when B = A,. And we
had proved the theorem. [ ]
The above theorem state that the best strategy for optimizing fitting a point-set with a
g dimensional linear subspace, when using the least squared measure, is by doing PCA, and
projecting the the space spanned by the first j-coordinates.
The PCA has the properties that minimizes the distortion of the embedding (in some sense).
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