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• Principal Component analysis PCA
• MULTIVARIATE CORRELATIONS
• [geometric data analysis/dimensional reduction / classification/clustering)]
• The introductory material can be found in a Chapter 3 of the textbook by 
• Higgs and Attwood Bioinformatics and Molecular Evolution
• Together with basic ideas of reference frame, geometric idea of a vector and 
• numerical representation



The discussion has been mainly elaborated at the white-board in the classroom
see the recording of this lecture.

INTRODUCTION TO PRINCIPAL COMPONENT 
ANALYSIS
Search for multivariate correlations in an 
object-descriptor data table
The language of linear mathematics: symbolic 
operators and numerical representatives
What is a vector? What is a linear 
transformations of a vector?
What is a change of reference frame (basis)?
The eigenvalue problem
Z-transform of an object-descriptor table
Find eigenvalues and eigenvectors of the 
covariance matrix such as to maximize 
variance
The (ordered) eigenvalues of the covariance 
matrix encode the variance contained in the 
original data.
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• Given N data vectors from d-dimensions, find k ≤ d orthogonal 
vectors (principal components) that can be best used to represent data 

• Steps
– Normalize input data
– Compute k orthonormal (unit) vectors, i.e., principal components
– The principal components are sorted in order of decreasing 
“significance” or strength

– Since the components are sorted, the size of the data can be 
reduced by eliminating the weak components, i.e., those with low 
variance.  (i.e., using the strongest principal components, it is 
possible to reconstruct a good approximation of the original data

• Used when the number of dimensions is large

Dimensionality Reduction: Principal 
Component Analysis (PCA)
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PCA Method
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From Higgs and Attwood, Bioinformatics and Molecular Evolution chap.2
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Principal component analysis (PCA)

• Purpose of PCA
• Covariance and correlation matrices
• PCA using eigenvalues
• PCA using singular value decompositions
• Selection of variables
• Biplots
• References
• Exercises



Purpose of PCA

The main idea behind the principal component analysis is to represent
multidimensional data with fewer number of variables retaining main features
of the data. It is inevitable that by reducing dimensionality some features of
the data will be lost. It is hoped that these lost features are comparable with
the “noise” and they do not tell much about underlying population.

The method PCA tries to project multidimensional data to a lower dimensional
space retaining as much as possible variability of the data.

This technique is widely used in many areas of applied statistics. It is natural since
interpretation and visualisation in a fewer dimensional space is easier than in
many dimensional space. Especially if we can reduce dimensionality to two or
three then we can use various plots and try to find structure in the data.

Principal components can also be used as a part of other analysis.
Its simplicity makes it very popular. But care should be taken in applications. First it

should be analysed if this technique can be applied. For example if data are
circular then it might not be wise to use PCA. Then transformation of the data
might be necessary before applying PCA.

PCA is one of the techniques used for dimension reductions.



Covariance and Correlation matrices
Suppose we have nxp data matrix X:

Where rows represent observations and columns represent variables. Without loss of generality
we will assume that column totals are 0. If it would not be the case then we could
calculate column averages and subtract then from each column. Covariance matrix is
calculated using (when column averages are 0):

Correlation matrix is calculated using:

I.e. by normalisation of covariance matrix by its diagonals. Both these matrices are symmetric
and non-negative.
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Principal components as linear combination of 
original parameters

Let us assume that we have a random vector x with p elements (variables). We want to 
find a linear combination of these variables so that variance of the new variable is 
large. I.e. we want to find new vector y:

so that it has maximum possible variance. It means that this variable contains
maximum possible variability of the original variables. Without loss of generality
we can assume that mean values of the original variables are 0. Then for variance
of y we can write:

Thus the problem reduces to finding maximum of this quadratic form.
If found this new variable will be the first principal component.
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PCA using eigenvalues

We can write the above problem in a matrix-vector form:

But by multiplying to a scalar value this expression (quadratic form) can be made as
large as desired. Then we require that length of the vector is unit. I.e. desired
vector is on the unit sphere (p-dimensional) that satisfies the condition:

Now if we use Lagrange multipliers technique then it reduces to unconditional
maximisation of:

If we get derivative of the left side and equate to 0 we have:

Thus the problem of finding unit length vector with largest variance reduces to finding
the largest eigenvalue and corresponding eogenvector. If we have largest
eigenvalue and corresponding eigenvector then we can find second largest
eigenvalue and so on. Finding principal components reduces to finding all
egienvalues and eigenvectors of the matrix S.
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PCA and eigenvalues/eigenvectors
Note that since matrix S is symmetric and non-negative definite all eigenvalues are

non-negative and eigenvectors are orthonormal (v-s are the eigenvectors). I.e.:

vi-s contain coefficient of principal components. They are known as factor loadings.
The var(vix)=lI holds, I.e. variance of the i-th component is i-th eigenvector. First
principal component accounts the largest amount of the variance in the data. Xvi
gives scores of the n individuals (observation vectors) on this principal
component. Relation:

shows that sum of the eigenvalues is equal to the total variance in the data. Where L
is the diagonal formed by eigenvalues and V is the matrix formed by the
eigenvectors of the covariance (correlation) matrix. Columns of this matrix is
called loadings of principal components that is the amount of each variables
contribution to the principal component.

When the correlation matrix is used then the total variance is equal to the dimension
of the original variables, that is p. Variance of i-th principal component is li. It is
often said that this components accounts li/Sjlj proportion of the total variance.

Plotting the first few principal components together with observations may show
some structure in the data.
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PCA using SVD
Since we know that principal component analysis is related with eigenvalue analysis we can use

similar techniques available in linear algebra. Suppose that X is mean centered data
matrix. Then we can avoid calculating covariance matrix by using singular value
decomposition. If we have the matrix nxp we can use SVD:

where U is nxn V is pxp orthogonal matrices. D is nxp matrix. p diagonal elements contains
square root of the eigenvalues of XTX and all other elements are 0. Rows of V contains
coefficients of the principal components. UD contains scores of the principal components
that is amount of each observations contribution to the principal components.

Some statistical packages use eigenvalues for principal component analysis and some use SVD.
Another way of applying SVD is using decomposition:

Where U is nxp matrix D is pxp diagonal singular values matrix containing square roots of the
eigenvalues of XTX and V is pxp orthogonal matrix that contains coeffcicients of principal
components. This decomposition is used for bi-plots to visualise data in an attempt to
find structure in them.
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Scaling
It is often the case that different variables have completely different scaling. For examples one

of the variables may have been measured in meters and another one in centimeters (by
design or accident). Eigenvalues of the matrix is scale dependent. If we would multiply
one column of the data matrix X by some scale factor (say s) then variance of this variable
would increase by s2 and this variable can dominate whole covariance matrix and hence
whole eigenvalue and eigenvectors. It is necessary to take precautions when dealing with
the data. If it is possible to bring all data to the same scale using some underlying physical
properties then it should be done. If scale of the data is unknown then it is better to use
correlation matrix instead of the covariance matrix. It is in general recommended option
in many statistical packages.

It should be noted that since scale affects eigenvalues and eigenvectors then interpretation of
the principal components derived by these two methods can be completely different. In
real life application care should be taken when using correlation matrix. Outliers in the
observation can affect covariance and hence correlation matrix. It is recommended to use
robust estimation for covariances (in a simple case by rejecting of outliers). When using
robust estimates covariance matrix may not be non-negative and some eigenvalues might
be negative. In many applications it is not important since we are interested in the
principal components corresponding to the largest eigenvalues.

Standard packages allow using covariance as well as correlation matrices. R allows input the
data, the correlation or the coavariance matrices.



Screeplot
Scree plot is the plot of the eigenvalues (or variances of principal components) against their

indices. For example plot given by R.
When you see this type of plot with one dominant eigenvalue (variance) then you should

consider
scaling.
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Dimension selection
There are many recommendations for the selection of dimension. Few of them are:
1. The proportion of variances. If the first two components account for 70%-90% or more of

the total variance then further components might be irrelevant (Problem with scaling)
2. Components below certain level can be rejected. If components have been calculated

using correlation matrix often those components with variance less than 1 are rejected. It
might be dangerous. Especially if one variable is independent of the others then it might
give rise the component with variance less than 1. It does not mean that it is
uninformative.

3. If accuracy of the observations is known, then components with variances less than that,
certainly can be rejected.

4. Scree plot. If scree plots show elbow then components with variances less than this
elbow can be rejected.

5. There is cross-validation technique. One value of the observation is removed (xij) then
using principal components this value is predicted and it is done for all data points. If
adding the component does not improve prediction power then this component can be
rejected. This technique is computer intensive.

Prediction error calculated using:

It is PREdiction Sum of Squares and is calculated using first m principal components.

If this value is 1 (some authors recommend 0.9) then only m-1 components are selected.
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Biplots
Biplots are useful way of displaying whole data in a fewer dimensional space. It is the

projection of observation vectors and variables to k<p dimensional space. How does it
work? Let us consider PCA with SVD

If we want 2 dimensional biplot then we equate all elements of the D to 0 but the first two.
Denote it by D*. Now we have the reduced rank representation of X:

Now we want to find GHT representation of data matrix where the rows of G and the columns
of HT are scores of the rows and the columns of the data matrix. We can choose them
using:

The rows of G and H are then plotted in biplot. It is usual to take a=1. In this case G and H are
scores of observations on and contribution of variables to principal components. It is
considered to be most natural biplot. When a=0 then vector lengths corresponding to
the original variables are approximately equal to their standard deviations.
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R commands for PCA
First decide what data matrix we have and prepare data matrix. Necessary

commands for principal component analysis are in the package called mva (in
newer version it is in stats package). This package contains many functions for
multivariate analysis. First load this package using

library(mva) – loads the library mva
data(USArrests) – loads data
pc1 = princomp(data,cor=TRUE) - It does actual calculations. if cor is absent then

PCA is done with covariance matrix.
summary(pc1) - gives standard deviations and proportion of variances
pc1$scores -gives scores of the observation vectors on principal components
pc1$loadings
screeplot(pc1) - gives scree plot. It plots the values of eigenvectors vs their number
biplot(pc1) – gives biplot.
It would be recommended to use correlation and for quick decision use biplot
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Exercises 4
a) Take data USArrests in R. Use principal component analysis with covariance and

correlation matrices. Then try to give interpretation.


