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A dimensionality reduction method for high-dimensional circular data is developed, which is based on
a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA,
various distance measures on a torus are introduced and the associated problem of projecting data
onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection
error can be minimized by transforming the data such that the maximal gap of the sampling is shifted
to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be
computed in a standard manner. Adopting molecular dynamics simulations of two well-established
biomolecular systems (Aib9 and villin headpiece), the potential of the method to analyze the dynamics
of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined
construction of metastable states and provides low-dimensional reaction coordinates that accurately
describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and
principal components in terms of the angular variables. Apart from its application to PCA, the method
of maximal gap shifting is general and can be applied to any other dimensionality reduction method
for circular data. Published by AIP Publishing. https://doi.org/10.1063/1.4998259

I. INTRODUCTION

The past years have witnessed an explosion of data. To
a large part, this trend is driven by advances in computa-
tional algorithms and hardware, which have led to a rapidly
rising amount of data in fields such as quantum chemistry,
fluid mechanics, or molecular dynamics simulation. The inter-
pretation of these computational results usually requires effi-
cient and systematic strategies to reduce the dimensionality
of the problem.1–6 Although to this end various nonlinear
methods have been suggested,5,7 it is often most convenient
to use a linear transformation. This includes, for example,
various versions of independent component analysis1,8,9 as
well as the commonly used principal component analysis
(PCA).2,10,11 While these methods typically assume linear
input data, in many applications, the motion of the sys-
tem is best described using circular coordinates. Examples
include rotating actors in tracking and control applications12

or backbone dihedral angles in proteins.13 Due to the period-
icity of circular data, however, it is not as straightforward to
define means, covariances, or linear projections as in standard
PCA.14

To overcome this problem, several approaches have
been proposed,15–22 including dihedral angle principal com-
ponent analysis (dPCA)16,17 which applies PCA on the
sine- and cosine-transformed dihedral angles of proteins or
GeoPCA18,19 which invokes hyperdimensional spheres to
describe the circular motion. However, both methods have
their limitations. While dPCA has been shown to represent

a)Author to whom correspondence should be addressed: stock@physik.uni-
freiburg.de

the energy landscape of biomolecules in high resolution,23–30

the inherent duplication of coordinates and the nonlinearity of
the sine and cosine transformations render it difficult to inter-
pret the results in terms of the underlying observables. In the
case of GeoPCA, the description of circular motion as grand
circles on hyperdimensional spheres renders it equally difficult
to interpret the identified principal components. Given that the
locus of a set of circular observables is the torus, moreover,
it is in general not adequate to limit the dynamics to grand
circles on the embedding hypersphere.

To avoid problems associated with transformations of
input data, it appears natural to perform a PCA directly on
the torus. This requires a generalization of the standard PCA
of data points distributed on a vector space to data points
distributed on a Riemannian manifold. Such a generalization
was developed (termed principal geodesic analysis20) and was
also applied to protein dynamics.21 Moreover, the so-called
torus PCA was proposed,22 which is based on “deforming”
the torus into a sphere. As discussed below in Secs. II and III,
which briefly review general theory and previous approaches,
the existing methods in practice are plagued by various prob-
lems, in particular, the problem of projecting the data onto the
principal subspaces.

As a main result of this work, Sec. III presents an alter-
native way to perform a PCA on the torus. To circumvent
the inherent projection problem, a specific data structure is
assumed, which allows us to introduce a cut of the angular
data at some maximal gap. Although this assumption in general
may represent a limitation, it is shown to be well fulfilled for the
description of backbone dihedral angles of proteins,13 which
is the main application under consideration. The proposed
transformation of the data is linear; hence, no artificial extra
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dimensions or deformations of the underlying probability dis-
tribution occur. To demonstrate the virtues and shortcomings
of the new method termed “dPCA+,” it is applied in Sec. IV
to two well-established model problems, namely, conforma-
tional transitions of a Aib peptide helix31 and the folding of
villin headpiece protein.32 In particular, we show that dPCA+
leads to an accurate characterization of the free energy land-
scape and the underlying metastable conformational states of
the system.

II. THEORY

In this section, we first describe the general idea of PCA in
terms of geometrical concepts which can then be generalized to
Riemannian manifolds. We then focus on the torus by describ-
ing several ways to represent a torus geometrically and how
these ways can be used to derive different distance measures
for data points distributed on a torus. Moreover, we discuss the
problem of projecting data onto the principal subspaces.

A. Geometrical interpretation of PCA
on a Euclidean space

Given a set of data {x (n)} (n = 1, . . . , N) of N points in
RD, the usual procedure for a PCA on these data points is the
following:

1. Determine the arithmetic mean value of the observables,

〈x〉 =
1
N

N∑
n=1

x(n). (1)

2. Obtain the principal axes. To this end, one determines the
covariance matrix

Cij =
1

N−1

N∑
n=1

(x(n)−〈x〉)i · (x(n)−〈x〉)j , (2)

which is a symmetric matrix and can be diagonalized.
Solving the eigensystem

Ce(k) = λke(k) (3)

yields the directions e(k ) and variances λk of principal
motion ordered by decreasing variance.

3. Projection of the data onto the principal subspace. Each
data point x is projected orthogonally onto the princi-
pal subspace which, based on the eigenvalues, has been
chosen to be relevant. Let e(k ) (k = 1, . . . , d) be the nor-
malized eigenvectors of Cij corresponding to the d largest
eigenvalues, then the kth principal component V k , i.e., the
projection of x onto the kth eigenvector, is given by

Vk(n) = (x(n) − 〈x〉) · e(k) . (4)

This procedure requires that the data points are elements
of a vector space with a scalar product: The mean value [Eq.
(1)] is obtained by a particular linear combination of the data
points, the formula for the covariance matrix [Eq. (2)] requires
the definition of a scalar product, and the projection [Eq. (4)]
requires both.

Geometrically, this procedure can also be interpreted in
the following way:

1. First, one determines the point in RD for which the sum
of the squared distances to all data points is minimal (this
is the mean value).

2. In a second step, one constructs a linear subspace (a
straight line) passing through this point such that the sum
of the orthogonal squared distances of all data points to
this line is minimized. Successively one can add further
orthogonal subspaces such that the sum of the squared
orthogonal distances of the data points to these linear sub-
spaces is minimal, etc. The orthogonal variances, which
are minimized, correspond to the variances of the data
points which remain unexplained by the dimensions of
the leading PCA subspaces.

3. The point on the linear subspace which is closest to the
data point corresponds to the projection of the data point
onto this linear subspace.

This geometrical formulation, which was actually the original
approach,33 requires different concepts: the distance between
two points and a proper generalization of the notion of a linear
subspace.

B. PCA on a Riemannian manifold

The method of PCA on a Euclidean space has been gen-
eralized to Riemannian manifolds (principal geodesic anal-
ysis).20 In principle, the method can even be generalized to
arbitrary metric spaces. However, some of the uniqueness the-
orems with respect to the construction will only hold under
suitable restrictions. This also refers to Riemannian manifolds:
Some of the following constructions may only be well-defined
locally, i.e., in an open neighborhood of particular points.
We will not always emphasize this explicitly, however, we
will come back to this point in the context of a PCA on a
torus.

The important structure, which allows us to translate the
geometrical ideas of a PCA to Riemannian manifolds, is the
metric, i.e., a local definition of a distance between two points.
Using the metric, one can assign a length to any path on the
manifold. The distance d(x0, x1) between two points is equal
to the length of the shortest path joining these two points.
A geodesic is a (locally) minimal path, i.e., a path that is a
shortest connection between any two sufficiently close points
on the path. It can be obtained as the solution of a differential
equation: Given a point x0 on a Riemannian manifold and a
tangent vector v at this point, we can construct the geodesic
through x0 which has the vector v as its tangent vector at x0

(i.e., a constant “velocity”). The solution is a path x(t) such
that x(t0) = x0 and ẋ(t0) = v. In particular, in the context of
Lie groups, this path x(t) is sometimes called the “exponential
mapping” of v.20

For the following, we also will need the notion of a dis-
tance d(x, MS) of a point x ∈ M from a submanifold MS ⊂ M
of the Riemannian manifold M,

d(x, MS) = min
y∈MS

d(x, y) . (5)

That is, d(x, MS) is the minimal length of a geodesic from x to
a point in MS (if x ∈MS , this distance is zero). One can easily
show that this minimal geodesic from x to the submanifold
MS is orthogonal to MS in the point where it meets MS .
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Given the set of data points {x(n)} which can be rep-
resented as points of a D-dimensional Riemannian mani-
fold, the general idea of a principal geodesic analysis is the
following:20

1. Calculate the mean value x̄ ∈ M as the point on the
manifold M for which the sum of the squared distances to
all data points becomes minimal. Note that this definition
of the mean is in general different to the arithmetic mean
〈x〉 as defined in Eq. (1). Let

D0(x) =
N∑

n=1

d(x, x(n))2 (6)

be the sum of the squared distances from an arbitrary
point x ∈ M to all data points, then x̄ is the point in M
which minimizes this function. Generically, this point
is unique; however, there are notable exceptions: An
example is given by data points that are homogeneously
distributed on a circle; in this case, any point on the circle
is a mean value.

2. Given x̄ and a tangent vector v at this point, one can
construct the geodesic x(x̄, v; t) with x(x̄, v; t = 0) = x̄
and ẋ(x̄, v; t = 0) = v. Each such geodesic defines a
one-dimensional submanifold M1(x̄, v) of the Rieman-
nian space. Now one determines the sum of the squared
distances from all data points to this submanifold,

D1(x̄, v) =
N∑

n=1

d(x(n), M1(x̄, v))2 . (7)

For x̄ fixed, this is a function of v (and, thereby, a function
of the geodesic through x̄). The tangent vector v for which
this function becomes minimal defines the first “principal
geodesic.”
One can now add further principal geodesics using the
following procedure (which will only be explained for
the second principal geodesic because the generalization
is straightforward): In addition to v (the tangent vector
for the first principal geodesic), one takes a second tan-
gent vector v′ that can be chosen to be orthogonal to the
first one. v and v′ define a tangent plane at x̄. This tangent
plane can be geodesically extended (i.e., one considers
the plane spanned by all geodesics defined by the tangent
vectors in this tangent plane) to a two-dimensional sub-
manifold. Next, one calculates the sum of the squared
distances of data points to this submanifold and mini-
mizes this sum with respect to the vector v′. The result
is the second principal geodesic.

3. For the projection, we map each data point x on the Rie-
mannian manifold onto the closest point V ∈ MS on the
submanifold, i.e., the point that minimizes d(x, MS). As
we shall see, it is mainly this projection that becomes
problematic globally.

Several comments are in order. First, the description
of the principal geodesic analysis for a Riemannian mani-
fold uses only local concepts. It does not take the global
shape of the manifold into account, in particular whether
geodesics can be arbitrarily extended on the manifold or

whether these geodesics “wind around” parts of the manifold.
In the case of a sphere, the geodesics are great circles. (If the
D-dimensional sphere is embedded into RD+1, these great cir-
cles are the intersections of the sphere with a plane through the
origin.)

Second, we wish to point out a peculiar fact concerning
the application of these concepts to a PCA on a torus.22 That is,
on a torus, one can always find an infinite number of geodesics
such that the squared orthogonal distances of the data points
to this single geodesic are essentially zero. The reason is that a
geodesic with a tangent vector with incommensurable compo-
nents winds around the torus an infinite number of times and
covers the torus densely. This is a special feature of the topo-
logical properties of a torus: One single geodesic can be dense
on the whole surface due to an infinite winding number. As a
consequence, there is no gain in information from such a prin-
cipal geodesic, even though the orthogonal (or unexplained)
variances of the data points from such a single geodesic
may be zero and therefore all variances are explained.34

These considerations clearly indicate that a nontrivial PCA
on a torus should make strong restrictions on the winding
number.

Applying the theory outlined above to the case of a torus,
in the following, we consider the definition of suitable distance
measures and mean as well as the projection problem.

C. Distance measures on the torus

A point on a D-dimensional torus TD can be described by
D independent angles ϕ = (ϕ1, ϕ2, . . . , ϕD) that take values
in [�π, π). Being periodic in nature (i.e., ϕi ≡ ϕi + 2π), the
D-torus is often defined as the manifoldRD/(2πZ)D, i.e., as the
quotient space of the Euclidean space RD modulo translations
by integer multiples of 2π in each variable. This representa-
tion shows that the torus differs from (flat) Euclidean space
only in its topological properties [Fig. 1(a)] and is therefore
also referred to as “flat torus.” The commonly used doughnut-
shaped illustration of a two-dimensional torus in R3, on the
other hand, is not well suited to define distances because this
representation of the torus is intrinsically not flat and the dis-
tance in one angular variable depends on the value of the other
angular variable.

FIG. 1. (a) A two-dimensional flat torus can be visualized as a square with
opposite sites topologically identified (i.e., �π is identified with +π). The
diagonal lines represent an example for a geodesic that winds around the torus
in each direction once. The intrinsic distance between the two indicated points
ϕA and ϕB on the torus is directly given by the length of the connecting line.
(b) Comparison of the intrinsic distance on the one-dimensional torus (i.e.,
a circle) [Eq. (13), upper triangular shape] and the corresponding Euclidean
distance of the embedding of the circle into a two-dimensional plane [Eq. (15),
lower sinus-shaped curve].



244101-4 Sittel, Filk, and Stock J. Chem. Phys. 147, 244101 (2017)

Let us now briefly describe two commonly used embed-
dings of a torus into larger spaces. First, there exists an embed-
ding of the D-dimensional torus into the 2D-dimensional real
vector space R2D (Ref. 17)

(ϕ1, ϕ2, . . . ϕD) 7→

x(ϕ) = (sin ϕ1, cos ϕ1, sin ϕ2, . . . sin ϕD, cos ϕD) . (8)

For this embedding, the norm of the image vector is

|x(ϕ)| = *
,

∑
i

(sin2 ϕi + cos2 ϕi)+
-

1/2

=
√

D . (9)

As this norm is independent of the angles, all points lie on a
(2D � 1)-dimensional sphere S2D�1 of radius

√
D, which itself

is embedded into R2D. Topologically we have

TD ⊂ S2D−1 ⊂ R2D . (10)

Given two points ϕA and ϕB on the torus, we obtain for
the scalar product of their images in R2D,

x(ϕA) · x(ϕB) =
∑

i

(sin ϕAi sin ϕBi + cos ϕAi cos ϕBi)

=
∑

i

cos(ϕBi − ϕAi)

=
∑

i

cos∆ϕi (11)

with

∆ϕi = minT |ϕBi − ϕAi |

= min{|ϕBi − ϕAi |, 2π − |ϕBi − ϕAi |} , (12)

where “minT” means that one has to take the minimal angular
distance between two angles (on the torus). This value can
always be chosen to be in the interval [0, π]. The embedding of
the D-dimensional torus intoR2D is isometric (i.e., the intrinsic
metric on the torus is the same as the induced metric of the
embedding or, in other words, the lengths of all paths on the
torus are the same as the lengths of the corresponding paths in
R2D).

The different embeddings as given in Eq. (10) give rise
to three different notions of distance between two configura-
tions:

• The intrinsic distance on the torus TD [see Fig. 1(a)] is
given by

d T(ϕA, ϕB) =

√∑
i

(min
T
|ϕAi − ϕBi |)2

=

√∑
i

∆ϕ2
i . (13)

Again, “minT” and ∆ϕi refer to taking the minimal
angular distance on the circle, i.e., a value in the interval
[0, π]. This distance measure assigns the same weight
to all angles.

• The geodesic distance on the sphere S2D�1 defined by
the arcus cosine of the scalar product between two
normalized vectors is

d S(ϕA, ϕB) =
√

D arccos

(
x(ϕA) · x(ϕB)
|x(ϕA)| |x(ϕB)|

)
=
√

D arccos *
,

1
D

∑
i

cos∆ϕi
+
-

. (14)

Note that we are dealing with a sphere of radius
√

D,
i.e., the intrinsic circular distance on a unit sphere has
to be multiplied by the radius.

• The Euclidean distance in R2D is

d E(ϕA, ϕB)

= |x(ϕA) − x(ϕB)|

= minT

√
|x(ϕA)|2 + |x(ϕB)|2 − 2x(ϕA) · x(ϕB)

= 2

√√∑
i

(
sin
∆ϕi

2

)2

. (15)

Due to the embeddings [Eq. (10)], we have dE ≤ dS ≤ dT.
In particular, for two data points that are far away from each
other, these notions of distance can differ significantly. In any
case, taking the Euclidean distance [Eq. (15)] or the spherical
distance [Eq. (14)] as compared to the torus distance [Eq. (13)]
leads to slight deformations of the distance functionals. As a
simple illustration, Fig. 1(b) compares the Euclidean distance
with the toroidal distance for the case D = 1. Note that geodesic
and toroidal distances are the same in this case but differ in
general for D > 1.

D. Circular mean

To compute the mean value ϕ̄ of a circular observable
ϕ, we express every observation ϕ(n) as a complex number
exp(iϕ(n)) and compute its average in the complex plane.14

The associated angle in polar form

ϕ̄ = arg *
,

1
N

N∑
n=1

exp(iϕ(n))+
-

≡ arg (x + iy) (16)

is the angle with minimal squared distances on the unit circle
[Eq. (12)], which is a convenient choice for a mean value.
This approach is computationally equal to averaging the sine
and cosine projections of the observations, x = 〈cos ϕ〉 and
y = 〈sin ϕ〉, and computing the resulting mean angle via

ϕ̄ = atan2(y, x) =




arctan y
x x > 0

arctan y
x ± π x < 0,±y > 0

± π2 x = 0,±y > 0

undefined x = 0, y = 0

. (17)

Based on the relation tan ϕ = y/x, the atan2 function uses the
correct signs of y and x, corresponding to the given projection
on the full circle.

Adopting a double peak distribution of angles on a unit
circle as a simple illustration, Fig. S1 of the supplementary
material displays the circular mean ϕ̄ of the data together with
the averages 〈cos ϕ〉 and 〈sin ϕ〉. While the circular mean by
definition lies on the unit circle (or one-dimensional torus), the
mean constructed from the two-dimensional embedding [Eq.
(8)] does not because in general 〈cos ϕ〉2 + 〈sin ϕ〉2 , 1.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004747
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004747
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E. Projection problem on the torus

In the case of periodic data, a fundamental problem exists
concerning the projection of data points onto the chosen prin-
cipal axes. In general, it is not possible to find a projection
of the torus onto a geodesic which preserves neighborhoods
in the sense that any two points, which are close to each
other on the torus, will remain to be close to each other
when being projected onto the geodesic. The problem occurs
for geodesics with non-vanishing winding numbers in more
than one direction and it increases with increasing winding
numbers.

To demonstrate the origin of the problem, Fig. 2(a) shows a
geodesic on a two-dimensional torus (the diagonal line) which
winds around each direction once. The dashed lines indicate
points that are diametrical to this geodesic, in the sense that for
each point on this line, there exist two different shortest paths
of the same length to points on the geodesic. Obviously, the
projection problem does not occur if the data are distributed
within the region defined by the dashed lines. However, when

FIG. 2. Illustration of (top) the projection problem and (bottom) the max-
imal gap approach, using two samplings (orange and blue points) of two-
dimensional Gaussian distributions in periodic space. (a) Two-dimensional
torus with a geodesic (the red line) onto which we want to project the data
as well as two dashed lines which are diametrical to this geodesic. The blue
data points lie near the geodesic; hence, their projection is straightforward.
Located near the dashed line, on the other hand, the orange data are projected
onto different regions on the geodesic, depending on whether they are located
on the right-hand side of the dashed line (these points give rise to the peak
in the center) or on the left-hand side (these data points give rise to the other
peak)”. (b) Projection of the two data sets onto the geodesic. The centered
data yield a single-peaked distribution (blue), the data points from the vicinity
of the dashed line are spuriously splitted into two maxima (orange). (c) A
two-component model, consisting of a Gaussian centered at the origin and a
second Gaussian located at the periodic boundaries of circular space (orange
points). Although the data are centered with respect to their mean, the pro-
jection of the data onto the principal axis ignoring the periodic nature of the
underlying space (d) erroneously splits up the second Gaussian at the periodic
boundaries. On the other hand, by cutting the data along their maximal gap,
the resulting data (blue points) correctly exhibit two clusters in (c) and two
maxima in (d).

the data are also distributed in the vicinity of a dashed line, they
are projected onto different regions on the geodesic, depending
on whether they are located on the left- or right-hand side of the
dashed line. As an illustrative example, two samplings of two-
dimensional Gaussian distributions are shown in Fig. 2(a). The
blue data points lie near the geodesic; hence, their projection
shown in Fig. 2(b) yields a single-peaked distribution. The
orange data points in the vicinity of the dashed line, on the
other hand, spuriously yield a distribution with two smaller
maxima.

When all data points in the sample are projected according
to their embedding in the plane (i.e., neglecting the periodic-
ity), neighborhoods in the orange data sample are preserved.
The projection error induced by this procedure cannot be
avoided but is small as long as the data points are mainly
distributed within the region defined by the dashed line. The
latter can be achieved, if we shift the circular mean value [Eq.
(17)] of the data to the origin of the square representation of
the torus. (Of course, this implies choosing a new geodesic
onto which the data are to be projected.) This procedure has
been suggested in Refs. 21 and 24.

Doing so, however, we may have introduced a second
source for a splitting of nearby data points: Data which are dis-
tributed at the boundary of the square might be close to each
other due to the periodicity but get projected onto different
parts of the geodesic because of the choice of the boundary.
This might even occur for data points that are mainly dis-
tributed around a geodesic. We will refer to this problem as
“residual projection error.”

As a demonstration of this effect, Fig. 2(c) shows the sam-
pling of a two-component model (orange points) that consists
of a Gaussian centered at the origin and a second Gaussian
located at the periodic boundaries of circular space. Although
the data are centered with respect to their mean, the projec-
tion of the data onto the principal axis in Fig. 2(d) erroneously
splits up the second Gaussian at the periodic boundaries.

To minimize this residual projection error, we may deter-
mine the optimal position of the origin of the square (or, in
general, of the hypercube). This can be achieved by choos-
ing the origin such that the boundary of the hypercube cuts
the data along some maximal gap,22 i.e., a minimum of the
point density. Proceeding this way, the blue points in Fig. 2(c)
show a correct representation of the two Gaussians by two
clusters, which also yields a correct projection of the data on
the principal axis showing two maxima [Fig. 2(d)]. That is,
in cases where the data structure allows one to shift the data
such that the boundaries are not crossed, the procedure com-
pletely eliminates the residual projection error. In general (i.e.,
in cases where the data exhibit few crossings over the bound-
aries), the cut at the maximal gap does not completely eliminate
the problem but at least minimizes the projection error and can
therefore be considered as an optimal solution to the projection
problem.

III. APPROACHES TO CIRCULAR PCA

Before we introduce a new method to construct a PCA on
circular data (circular PCA), it is instructive to briefly review
previous formulations.
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A. Angular PCA

Maybe the simplest way to treat periodic data is to first
shift the circular mean of the sampled distribution to the center
of the space (under consideration of periodic boundaries). Sub-
sequently, one simply ignores the circular nature of the data
and performs a standard PCA [Eqs. (1)–(3)] on the shifted data.
This approach was introduced in the analysis of dihedral angles
of RNA24 and termed “angular PCA.” If the mean-centered
data still crosses the periodic boundaries [cf. Fig. 2(c)],
however, fast fluctuations of the data (due to jumps from �π to
π and vice versa) may occur, which can lead to serious errors
in the calculation of the covariance matrix.

B. Dihedral angle PCA

The dihedral-angle PCA (dPCA) has been proposed to
analyze circular data in the context of protein dynamics.16,17

In this case, a data point ϕ = (ϕ1, ϕ2, . . . , ϕD) is mapped into
R2D according to Eq. (8). Essentially, dPCA consists of a stan-
dard PCA, where the data points are now treated as elements
of R2D. One first determines the mean value of the data (which
does not necessarily lie on the torus, see Fig. S1 of the supple-
mentary material) and then calculates the covariance matrix
with respect to the Euclidean distance [Eq. (15)] of points as
part of the higher dimensional Euclidean space. Finally, one
projects the data points onto the linear subspaces (or, to be
more precise, the affine subspaces) which, according to the
PCA, contain the most relevant variances.

This procedure has been successfully applied to the mod-
eling of biomolecular free energy landscapes.23–30 There are
several cases in which it can be shown that this method yields
good results: (1) when the data points are located in the vicinity
of some mean value (in which case the approximating affine
space will be close to a tangent space of the torus), (2) if the
data points are localized in a region which winds around the
torus once. In this case, a linear space that cuts the torus can be
a good approximation. The disadvantage is that the actual data
points are projected onto linear spaces in R2D but may still be
distributed on a lower dimensional submanifold of the torus, so
the dimensional reduction may not be optimal. Furthermore,
for large angular variations in the data points, the usage of the
Euclidean distance (instead of the toroidal distance) can lead
to deformations in the projections of data points to the PCA
space35,36 (Fig. S1 of the supplementary material). Simply put,
the sine and cosine of the same sampled region may show a
high and a low gradient, e.g., close to 0◦ or 180◦ where the
cosine has a small slope, while the sine is close to the point of
steepest descent. This effect puts different weights on the trans-
formed coordinates, which effectively increase and decrease
their covariances. Depending on the given sampling (e.g., the
chosen origin of the angular data), it is thus difficult to inter-
pret the resulting covariances with respect to the underlying
dihedral angles. Representative examples of this effect will be
discussed in Sec. IV (Fig. 5 and Fig. S9 of the supplementary
material).

C. GeoPCA

The authors of Refs. 18 and 19 claim that the D angu-
lar variables of a torus are essentially the angular variables

of a sphere. While this is true when the torus is embedded in
R2D [Eq. (10)], the sphere considered in Ref. 18 has dimen-
sion 2D � 1. The authors then propose to use the geometry
of the sphere and apply the geodesic PCA which essentially
leads to great circles as geodesics. However, the proposed algo-
rithm (“GeoPCA”) seems to deal with a D-dimensional sphere
embedded in RD+1 instead of a D-dimensional torus. Judging
from the article, the authors of Ref. 18 are not aware of the
change in topology and the deformation of distances close to
the poles of the sphere.37 Already the two-dimensional case
shows that for the sphere, only one angular variable (which
usually parametrizes the equator) is periodic, while the other
angular variable parametrizes a half-circle (from north- to
south pole). To illustrate the projection problem for this case,
we consider data points that are mainly distributed around the
equator of this sphere in R3 so that the equator becomes the
principal component. For the two poles (north and south pole),
the projection onto the equator is not unique because any point
on the equator would be a satisfactory solution. As a conse-
quence, points in the immediate vicinity of the poles (and very
close to each other on the sphere) may be projected onto points
on the equator which are far away.

D. Torus PCA

In Ref. 22, it is proposed to “deform” the D-dimensional
torus to a D-dimensional sphere by cutting the torus along a
(D�1)-dimensional hyperplane and contracting the two result-
ing hyperplanes to the poles of a sphere. This D-dimensional
sphere can be parametrized by generalized Euler angles. For
the D-dimensional sphere, a nested PCA is performed, i.e., a
successive reduction of dimensions according to SD ⊃ SD�1

⊃ SD�2 · · · ⊃ S1. For data points lying on a sphere Sk (1 < k
≤D), a subsphere Sk�1 is chosen in such a way that the orthog-
onal squared distance of the data points is minimized. The data
points are then projected onto the subsphere along great circles
orthogonal to the subsphere and passing through the data point.
Sk�1 is not necessarily of maximal radius, i.e., it is not neces-
sarily a “geodesic” subsphere. This is one essential difference
as compared to GeoPCA. Furthermore, for the determination
of this subsphere as a “best approximation” to the data points
of the larger sphere, they use “projected toroidal distances,”
i.e., not the metrical structure of the sphere but a distance mea-
sure that essentially assigns to the points a distance identical
to the one on the torus.

Adopting a practical point of view, we note that the
approach cannot be applied to high-dimensional data (in the
examples below, D ≈ 102) because it requires clustering in D-
dimensional space. Moreover, the interpretation of covariances
and principal components is not straightforward.

E. New approach

The discussion above has shown that it is mainly the pro-
jection problem (and not the definition of distance and mean)
that undermines previous approaches to a PCA on the torus.
As worked out in Sec. II E, however, there is an optimal solu-
tion to this problem. That is, the residual projection error is
minimized by transforming the data such that the maximal
gap of the sampling is shifted to the periodic boundary. In

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004747
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004747
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004747
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004747
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004747
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cases where the structure of the data allows us to clearly iden-
tify this maximal gap, the problem is basically solved: Once
the data are successfully transformed, we can treat the data
as linear and compute the covariance matrix and its eigende-
composition in the standard way [Eqs. (1)–(3)]. In this way,
we also minimize spurious crossings of the periodic bound-
aries which may corrupt the calculation of the covariance
matrix. Using the transformed data, moreover, the final pro-
jection step [Eq. (4)] is well-defined and does not cause any
problems.

In practice, there are numerous ways to choose the opti-
mal cut which maximizes the gap between data points. For
example, one can (1) maximize the squared distance of the
cut to the nearest data points, (2) minimize the data point
density in a corridor (with a suitably chosen width) around
the cut, or (3) use MD trajectories and choose the cut such
that the number of crossings of the cut is minimized. Here
we have chosen a procedure based on the second approach:
By computing a histogram with a bin width of five degrees,
we select the center of the bin with lowest population as the
maximal gap. In case of multiple bins of equally low popula-
tion, we sum over their respective neighboring bins and select
the one with lowest overall population in the neighborhood.
For the description of maximal gaps in the dihedral distribu-
tions of proteins, this approach has proven to be efficient and
robust.

Let us discuss virtues and shortcomings of the new
approach, henceforth referred to as dPCA+. First, we note
that the method is in its practical realization quite similar to
the angular PCA24 discussed in Sec. III A. Unlike the latter,
however, dPCA+ respects the special topology of the torus
by preserving the correct neighborhoods of the data points
(and therefore avoids spurious crossings of the periodic bound-
aries). Second, the transformation of the data is linear; hence,
no artificial extra dimensions or deformations of the underlying
probability distribution occur (as, e.g., in dPCA). By avoid-
ing nonlinear transformations or deformations of the original
topology into spheres (as in Refs. 18–22), moreover, dPCA+ is
appealing in its conceptual simplicity and computational effi-
ciency. Finally, dPCA+ yields directly interpretable covariance
matrices and eigenvectors, which readily reveal the contribu-
tions of the various circular variables. The main assumption
underlying dPCA+ is that the data indeed show a significant
gap in their distribution. Although this may represent a lim-
itation in general, we note that the opposite case of nearly
uniformly sampled variables anyway is in contrast to the very
concept of finding a low-dimensional subspace for cluster
analysis. As the description of backbone dihedral angles of
proteins13 represents the main application considered here,
in the following, we study the validity of the maximal gap
assumption for this case.

To this end, Fig. 3 shows the Ramachandran (φ, ψ)
plots of several representative amino acids, as obtained from
the molecular dynamics trajectory of villin headpiece32 (see
below). Due to the steric hindrance of the side chains, these
(φ,ψ) distributions typically show two main regions that reflect
right-handed α-helical and β-extended structures, respec-
tively. Moreover, weak signatures of left-handed structures
(i.e., φ ≥ 0) may be found. Considering the Ramachandran

FIG. 3. Ramachandran plots for (from top to bottom) Ala16, Ser2, and Gly33
of HP-35, using (from left to right) original, mean-shifted, and gap-shifted
data, respectively. The red dashed lines indicate the maximum gap of the data.

plots as original data, we now consider the effect of (i)
shifting the circular mean value of the data to the origin of
(φ, ψ) space (“mean shifting”) and (ii) shifting the data such
that the maximal gap of the sampling is located at the periodic
boundary (“gap shifting”).

We first consider residue Ala16, which is part of the sec-
ond α-helix of villin headpiece and therefore mainly found in
αR conformation. In the unfolded basin, however, the helix
may be distorted, which gives rise to β-extended and even
some left-handed structures. The original Ramachandran plot
represents the data fairly well, with the exception of a few
points close toψ ≥ �180◦ which belong to the β-conformation
at ψ . 180◦. The mean-shifted data, however, are cut right
through the middle of the β-conformation. That is, in the case
of Ala16, mean-shifting actually leads to worse results than
using the original data. On the other hand, the gap-shifted
data correctly place the α-helical and β-extended structures
in the middle of the (φ, ψ) plane, which virtually eliminates
any residual projection error. The second example is Ser2
at the N-terminus, which is very flexible and samples most
of the sterically accessible conformational space. Again, we
find that the original Ramachandran plot represents the data
fairly well but artificially cuts the β-conformation at the peri-
odic boundary ψ = ±180◦. In this case, mean-shifting clearly
improves matters by cutting less of the β-conformation off.
The gap-shifted data again lead to the best representation of
the angular data, although we find residual periodic transitions
at ψ = ±180◦ for the rarely sampled left-handed structures. We
finally consider Gly33. Being a glycine (with little sterical hin-
drance) located at the C-terminus, Gly33 shows an atypical and
widely spread angular space that may be considered as a worst
case scenario for the distribution of protein backbone dihedral
angles. While mean-shifting does not improve the situation, the
gap-shifted data are seen to at least minimize the projection
error.



244101-8 Sittel, Filk, and Stock J. Chem. Phys. 147, 244101 (2017)

IV. APPLICATION TO PROTEIN DYNAMICS

To demonstrate the potential of the proposed dimensional-
ity reduction technique, we choose two well-established model
systems whose conformational dynamics are well described
by changes of backbone dihedral angles: Aib9, a 9-residue
achiral peptide showing left- to right-handed transitions of
the entire peptide helix,31 and villin headpiece (HP-35), a 35-
residue protein as a standard example of reversible folding.32

In previous molecular dynamics (MD) simulation work,31,38

dPCA studies of both systems have revealed complex free
energy landscapes. Comparing results from dPCA and dPCA+,
here we show that dPCA+ naturally provides a straightfor-
ward interpretation of the systems’ covariance and correlation
matrices as well as the composition of principal components.
Employing a recently developed density-based clustering tech-
nique,39 moreover, we find that dPCA+ also yields an unprece-
dented structural resolution of metastable states in reduced
dimensions.

A. Computational methods
1. MD simulations

Aib9 (H3C−CO− (NH −Cα(CH3)2 −CO)9 −CH3) was
recently studied by Buchenberg et al.,31 using the GROMACS
program suite40 with the GROMOS96 43a1 force field41 and
explicit chloroform solvent.42 Here we adopt eight MD tra-
jectories at 300 K of each 2 µs length, using a time step of
4 ps (4 · 106 frames). The simulation data of HP-35 were
kindly provided by the D. E. Shaw research group,32 who per-
formed equilibrium MD simulations at various temperatures
for wild-type HP-35 and various mutants, using the Amber
ff99SB*-ILDN force field43–45 and TIP3P explicit water.46

Here we adopt a 300 µs trajectory at 360 K that exhibits 61
folding-unfolding transitions, using a time step of 200 ps (1.5
· 106 frames).

2. Identification of metastable states

On the basis of the dimensionality reduction obtained by
dPCA or dPCA+, we used a recently developed density-based
clustering technique,39 combined with the most probable path
(MPP) algorithm by Jain et al.47 to identify the metastable
states of Aib9 and HP-35. In brief, the density-based geo-
metric clustering algorithm by Sittel et al.39 identifies high-
density regions in the given coordinate space, based on the
local density of structures measured as a population in a
D-dimensional hypersphere. The optimal hypersphere radius
is an input parameter that can be found for equilibrium systems
using the Boltzmann distribution as a heuristic. The approach
has been shown to yield well-defined microstates separated
by local free energy barriers. The MPP algorithm represents
a dynamic clustering technique that lumps microstates based
on their metastabilities and most probable transition path-
ways.47 As the projection on a low-dimensional space may
induce spurious transitions in the vicinity of energy barriers,
in a final step, we identify core regions of the microstates and
count transitions only if the core region of the other state is
reached.47

3. Ramacolor plots

To efficiently visualize secondary structure differences
between metastable states, we use the “Ramacolor” method,39

which assigns a unique color to every point in a (φ, ψ)
Ramachandran plot, see Fig. 4(b). To assign a color to residue
n of a protein in some structural ensemble (e.g., a metastable
state), we average over the colors pertaining to all (φn, ψn)
frames of the ensemble. As an example, Fig. 4(c) shows the
Ramacolor plot of the twenty highest populated metastable
states of Aib9 which assigns a specific color to the (φ, ψ)
conformations of the seven inner residues of Aib9. As a conse-
quence of the color code in Fig. 4(b), we find that right-handed
structures are drawn in green, left-handed structures are drawn
in blue, while right-handed and left-handed excited states are
shown in reddish and dark green/purple.

B. Chiral transitions of Aib9 peptide

Aib9 is a small helical peptide that nonetheless exhibits
complex structural dynamics.31 The complexity arises from a
hierarchical free energy landscape of the system,48–50 which
reflects coupled dynamical processes on several time scales.
They correspond to chiral left- to right-handed transitions of
the entire peptide helix that happen on a µs time scale, confor-
mational transitions of individual residues which take about

FIG. 4. (a) Ramachandran (φ, ψ) density of the inner residues of Aib9. (b)
(φ, ψ)-dependent definition of color space.39 [(c) and (d)] Ramacolor plots
obtained for the 20 highest populated metastable states of Aib9 comparing
results from (c) dPCA and (d) dPCA+.
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1 ns, and the opening and closing of structure-stabilizing
hydrogen bonds which occur within tens of ps and are
triggered by sub-ps structural fluctuations.31 Showing the
Ramachandran (φ, ψ) plot of Aib9 (averaged over the inner
residues), Fig. 4(a) reveals that the achiral peptide indeed
samples both left-handed (φ ≥ 0) and right-handed (φ ≤ 0)
conformations with similar probability. The main conforma-
tional states at≈(∓50◦,∓45◦) represent a right- and left-handed
helix, respectively. Moreover, for each chirality, we find (at
least) one excited conformational state at ≈(∓68◦, ±45◦).

Let us first consider the covariance matrix of Aib9, as
obtained directly from the dihedral angles (in the case of
dPCA+) and from their cosine and sine transforms (in the case
of dPCA). Representing the resulting matrices as color plots,
Fig. 5 portrays one of the most obvious advantages of the new
approach. In the case of dPCA [Figs. 5(a) and 5(c)], we see
a peculiar checker board pattern that hampers a straightfor-
ward interpretation in terms of the underlying dihedral angles.
The pattern is caused by the sine and cosine transformations
that put different weights on the transformed coordinates. (For
Aib9, we find 〈cos φ〉, 〈cosψ〉 ≈ 0 and 〈sin φ〉, 〈sinψ〉 ≥ 0.)
An additional problem occurs for dPCA when we consider
the correlation matrix of the transformed variables [Fig. 5(c)],
whose diagonal elements are equal to one by definition. This
normalization may amplify the effect of variables that have
only little contribution to the total variance, such as the cosine
projections in the case Aib9. As shown in Fig. S2 of the sup-
plementary material, this leads to a significant decrease in the
amount of variance explained by the first few principal compo-
nents. Including four principal components, for example, we
recover only 52% of the total fluctuations by dPCA (compared
to 85% in the case of dPCA+).

Since there are no such issues when we compute the
covariances directly from the dihedral angles, the resulting
covariance and correlation matrices in Figs. 5(b) and 5(d) are
straightforward to interpret. For simplicity, we focus on the
latter in the following. Overall, we notice higher correlations
of dihedral angles of inner residues, which may be expected

FIG. 5. Covariance (top) and correlation (bottom) matrices of Aib9 as
obtained directly from the dihedral angles (right) and from their cosine and
sine transforms (left).

because typically the outer residues have more freedom to
move than the inner ones. In particular, we find that the dihedral
angles φ1, ψ1 and ψ8, φ9, ψ9 of the terminal ends are largely
uncorrelated to the dynamics of the inner dihedral angles. In the
subsequent PCA, we discard these coordinates because they do
not yield any information on the correlated dynamics of Aib9.
(We note in passing that an uncorrelated coordinate adopting
two states results in a trivial doubling of all microstates and
therefore unnecessarily complicates the analysis.) Hence, in
total, 13 dihedral angles are considered in the PCA.

Another obvious thing to observe is the stripy pattern of
the correlation matrix, which shows that the φ dihedral angles
in general are higher correlated than the ψ dihedral angles.
To explain this finding, we recall from Fig. 4(a) that φ angles
discriminate left- and right-handed ground states, while ψ dis-
criminate ground- and excited states. While the excited states
represent short-lived intermediate states, the left- and right-
handed ground states are long-lived and define the chirality of
a residue. As the latter is important for the propensity of the
chirality of the adjacent residues, these residues are strongly
correlated via the φ angles. Finally we notice the tendency that
angles closer to the C-terminal generally show higher correla-
tion than angles closer to the N-terminal. This is caused by the
additional CO-group of the N-terminus (as compared to the
C-terminus), which facilitates stronger coupling to the solvent
due to hydrogen bonding.

Let us now discuss the eigenvectors and principal com-
ponents obtained from the various approaches. We first note
that due to the high symmetry in (φ, ψ)-space [Fig. 4(a)], the
maximal gap of the data is naturally at the periodic boundaries,
i.e., no additional shifting of the data is required to minimize
the residual projection error. By diagonalizing the respective
covariance matrix, we obtain the eigenvectors of dPCA and
dPCA+, the components of which are shown in Fig. S3 of the
supplementary material. In the case of the dPCA, the oscilla-
tory pattern of the eigenvector components again reflects the
above discussed disparity of sine and cosine transformed vari-
ables, which defies a straightforward interpretation. On the
other hand, the structure of the dPCA+ eigenvectors directly
reveals the contributions of the various dihedral angles. Sim-
ilar results are also found for the eigenvectors obtained from
the correlation matrices.

Figure 6 shows the resulting free energy landscapes F(V1,
V2) = �kBT ln P(V1, V2), obtained for the first two principal
components V1 and V2 of dPCA and dPCA+. As discussed in
Ref. 31, the landscape shows two main conformational states
R and L, where all residues are either right- or left-handed,
as well as numerous intermediate states accounting for the
transition between R and L. Using the covariance matrix, the
results obtained for dPCA and dPCA+ are quite similar [Figs.
6(a) and 6(b)]. In the case of dPCA+, we also obtain similar
results when we employ the correlation matrix [Fig. 6(d)].
As mentioned above, however, the dPCA using correlations
fails to reproduce the correct free energy landscape due to the
artificial overemphasis of cosine projections.

As a simple means to describe the dynamics of the princi-
pal components, Fig. S4 of the supplementary material shows
the time evolution of the autocorrelation functions Ci(t) =
〈δVi(t)δVi(0)〉/〈δV2

i 〉 with δV i(t) = V i(t) � 〈V i〉. As discussed
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FIG. 6. Projections of the MD data of Aib9 on the first two principal com-
ponents obtained from dPCA (left) and dPCA+ (right), based on covariances
(top) and on correlations (bottom).

elsewhere,31 the decay of the first component reflects chiral
left- to right-handed transitions of the entire peptide (the slow-
est process), while the next four components account for left- to
right-handed transitions of individual residues (the next slow-
est processes). Interestingly, the decay times of the first few
principal components are very similar for both methods.

As usual, we selected from the principal components the
first few (in this case five) components that show multipeaked,
clustered distributions, and a slow decay of the autocorrela-
tion function.23 Using these first five principal components,
we performed density-based clustering39 of the data obtained
from dPCA and dPCA+, which gave 53 and 105 geometrically
distinct microstates, respectively. In both cases, a hypersphere
radius of 0.2 was found to yield optimal results (see Sec. IV A).
Figures 4(c) and 4(d) show the resulting Ramacolor plots of
the highest populated microstates for both methods, where the
right- or left-handed residues are drawn in green and blue,
respectively. Somewhat surprisingly, in the case of dPCA+,
certain states seem to share the same geometry (compare,
e.g., all-blue states 1 and 4 or all-green states 2 and 5). A
closer analysis of the (φ, ψ)-distributions reveals, however,
that these states in fact correspond to either 310- or α-helical

structures, which are separated by about 10◦ in the Ramachan-
dran plot (Fig. S5 of the supplementary material). This small
angular difference, coupled with the overall variance of the
states makes them hard to distinguish in the color space of the
Ramacolor plots. Nonetheless, the dPCA+ based clustering
readily achieves the structural discrimination of the two kinds
of helices, which dPCA could not.

C. Folding dynamics of HP-35

As a second example, we choose a 300 µs trajectory32 of
the fast-folding HP-35 protein which was analyzed recently39

using a combination of dPCA and clustering techniques, in
order to construct a Markov state model6,51,52 of the folding
dynamics. In brief, dPCA was found to give 10 relevant princi-
pal components, for which density-based clustering obtained
543 microstates and MPP clustering generated 12 macrostates
(see Sec. IV A). Using the same protocol, we now perform
dPCA+ on the data. Based on the shape of one- and two-
dimensional projections of the free energy landscape (Figs. S6
and S7 of the supplementary material) showing several distin-
guishable clusters, we selected principal components 1-5 and
7 for further analysis. That is, dPCA+ requires only six compo-
nents, while dPCA required ten. Nonetheless, we find that the
autocorrelation functions of these components decay in a quite
similar way for both methods (Fig. S8 of the supplementary
material).

Employing density-based clustering with a hypersphere
radius of 0.3, we obtain 76 microstates, that is, less than
15% as obtained for dPCA. This discrepancy is, however,
not due to a higher resolution of dPCA but can be traced
back to spurious extrema in the dPCA free energy landscape,
which are caused by a combination of nonlinear trigonometric
transformations and incomplete sampling of the data. That
is, more than 500 of these microstates are only very little
populated and account for the many structures in the broad
unfolded basin. The remaining higher populated microstates,
on the other hand, are structurally close to the ones found by
dPCA+.

We next compare the 12 macrostates obtained for dPCA
and dPCA+, which were constructed using MPP dynamic
clustering. Displaying Ramacolor plots pertaining to these
states, Figs. 7(a) and 7(c) reveal that both methods exhibit

FIG. 7. Ramacolor plots of the 12 macrostates of HP-35 (ordered by decreasing population) as obtained for (a) dPCA and (c) dPCA+. (b) Matching wheel of
the correspondence of dPCA states (lower half circle) and dPCA+ states (upper half circle), revealing the different state assignment of the two methods.
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structurally similar states, which—roughly speaking—feature
the three α-helices of HP-35 connected by some short turn
structures. Remarkably, though, dPCA+ is able to provide a
clearer separation of metastable native and intermediate states
from states assigned to the entropic unfolded basin.39,47 To
highlight the sometimes subtle differences between the differ-
ent clusterings, we matched both state trajectories against each
other (i.e., by counting the number of times, a certain state i
found in dPCA was identified as a state j in dPCA+). Rep-
resented as a “matching wheel,” Fig. 7(b) reveals the mutual
correspondence of dPCA and dPCA+ macrostates. The maybe
most striking result is the obvious splitting of the first two states
in dPCA into four distinct states (1, 8 and 2, 6) in dPCA+.
The Ramacolor plots of the dPCA+ states show that residues
Ser-2 and Asp-3 make the difference, which separate native
and stable intermediate structures with compact and elongated
N-terminals. Studying the probability distributions of (φ, ψ)
and their sine and cosine transforms of Ser-2, Fig. S9 of the sup-
plementary material shows that the discrepancy is again caused
by artifacts due to the sine and cosine projections. On the other
hand, states 4, 7 and 9 of dPCA+, encoding entropic and inter-
mediate structures with partly folded and unfolded sections,
show a more or less direct correspondence to dPCA states III,
IV, and VIII. Overall, we find that dPCA+ is able to encode
higher structural resolution in less principal components.

We finally wish to demonstrate that the above featured
methodology also leads to a physically appealing represen-
tation of the free energy landscape of HP-35. To this end,
Fig. 8 compares the free energy landscape along the first two
principal components of dPCA+ to a Markov state model
constructed from the 12 macrostates. As discussed in detail

FIG. 8. (a) Two-dimensional representation of the free energy landscape of
HP-35 along the first two principal components of dPCA+. Numbers indicate
the location of the metastable conformational states of the system. (b) Markov
state model build from these states, showing states of the folded, intermedi-
ate, and unfolded basin sin blue, yellow, and purple, respectively. States are
annotated by their lifetime, their size indicates their population, the thickness
of the arrows indicates the number of transitions, and the colored bars show
the cumulative transition times between the basins.

in Refs. 39 and 47, the folding dynamics of HP-35 can be
well described by three main basins of the free energy which
comprise native, intermediate, and unfolded metastable con-
formational states, respectively. Quite remarkably, we find
that the location and the connectivity of these basins and
the underlying metastable states in the Markov state model
is directly reflected in the dPCA+ free energy landscape.
While, of course, the positions of the states in the Markov
state model are somewhat arbitrary, we note that the model—
especially with respect to the folded to unfolded transition—
was solemnly constructed based on transition probabilities and
structural similarity of the macrostates. This confirms the well-
established (but hardly achieved) promise that an energy land-
scape with well-chosen reaction coordinates directly reveals
the main states and barriers as well as reaction pathways of
the considered process.

V. CONCLUDING REMARKS

To develop a suitable dimensionality reduction method for
high-dimensional circular data, we have reconsidered PCA in
terms of geometrical concepts and focused on the geometrical
description of a flat torus comprising the circular data. This
led to the discussion of possible distance measures for data
points distributed on a torus as well as of the problem of pro-
jecting data onto the principal subspaces. By analyzing various
methods suggested so far,16–22 we have found that it is mainly
the projection problem (and not the definition of distance and
mean) that undermines previous approaches to a PCA on the
torus.

Considering the—in parts rather involved—underlying
mathematical formulation, we ended up with a surprisingly
simple solution of the problem. That is, we have shown that
the residual projection error can be minimized by transforming
the data such that the maximal gap of the sampling is shifted
to the periodic boundary. At the same time, the transforma-
tion was found to minimize the (periodicity-induced) error of
the estimation of the covariance matrix. Because the trans-
formed data can be treated as linear, we subsequently may
compute the covariance matrix and its eigendecomposition in
a standard manner. By avoiding nonlinear transformations or
deformations of the original topology (as in Refs. 16–22), the
new approach termed dPCA+ avoids artificial extra dimen-
sions or distortions of the underlying probability distribution
and is therefore appealing in its conceptual simplicity and
computational efficiency.

The main underlying assumption of a significant gap in
the data distribution has been tested by applying the method
to the description of backbone dihedral angles of proteins.
Adopting Aib9 and HP-35 as well-established model sys-
tems of complex conformational dynamics, we have found
that dPCA+ represents a significant improvement of the previ-
ously used dPCA (hence the name). That is, the new approach
offers a direct interpretation of covariances and principal
components in terms of the angular variables. It furthermore
allows for a robust and well-defined construction of metastable
states, which is essential for the successful construction of
Markov state models. For the two systems considered, the first
few principal components of dPCA+ can be considered as a
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low-dimensional reaction coordinate that accurately portrays
the folding free energy landscape and reveals main states,
barriers, and reaction pathways.

While in this work we have focused on aspects of the
PCA, we wish to stress that the main idea of the new approach
is much more general and can also be applied to other dimen-
sionality reduction methods for circular data. In particular, the
shifting according to the maximal gap should also cure an
essential part of the projection problem in other approaches,
including nonlinear methods,7 and various versions of inde-
pendent component analysis.8,9

SUPPLEMENTARY MATERIAL

See supplementary material for illustration of a double-
peak distribution on a unit circle (Fig. S1), details of the
PCAs on Aib9 including cumulative fluctuations (Fig. S2),
eigenvector contents (Fig. S3), autocorrelation functions (Fig.
S4), Ramachandran plots (Fig. S5), as well as details of the
PCAs on HP-35 including one-dimensional (Fig. S6) and two-
dimensional (Fig. S7) free energy landscapes, autocorrelation
functions (Fig. S8) and probability densities of residue 2 (Fig.
S9).
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APPENDIX: SOFTWARE AND DATA AVAILABILITY

The dPCA+ method was implemented in the open source
software FastPCA, freely available at https://github.com/lettis/
FastPCA. FastPCA has also been embedded in the prodyna R-
library, a toolkit for dimensionality reduction, clustering, and
visualization of protein dynamics data. prodyna is available at
https://github.com/lettis/prodyna.
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