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The dynamics of proteins in aqueous solution has been investi-
gated through a massive approach based on ‘‘state of the art’’
molecular dynamics simulations performed for all protein
metafolds using the four most popular force fields (OPLS,
CHARMM, AMBER, and GROMOS). A detailed analysis of the
massive database of trajectories (>1.5 terabytes of data obtained
using �50 years of CPU) allowed us to obtain a robust-consensus
picture of protein dynamics in aqueous solution.

force field � molecular dynamics � molecular modeling � protein structure

F lexibility is a key determinant of the biological functionality of
proteins. A significant percentage of proteins are unfolded in

the absence of ligand, and many others change their conformation
as a result of the presence of other molecules or changes in the
environment (1–4). Experimental representation of flexibility,
even a priori possible, is in general difficult, which makes atomistic
simulation the only viable alternative to study this important
phenomenon for many proteins. Among the different theoretical
methods available for description of protein flexibility, molecular
dynamics is probably the most powerful (5–13). Since it was first
applied to proteins in the late 1970s, molecular dynamics (MD) has
been largely used to study the dynamics of proteins (14, 15).
Unfortunately, due to the cost of simulations and the diversity of
force fields, a consensus view of protein dynamics has not been yet
obtained using this technique. In this paper, we present a systematic
study of the most populated protein metafolds [see supporting
information (SI) Data Set] using state of the art atomistic MD
simulation conditions and the four most widely used force fields
[OPLS (O), CHARMM (C), AMBER (A), and GROMOS (G)]
(16–25). The result of this massive supercomputer effort (�1.5
terabytes of data and a computational equivalent to 50 CPU years)
is a consensus picture of protein dynamics under conditions close
to the physiological ones.

Results and Discussion
Supporting Information. For further details, see SI Data Set and
SI Figs. 5–17

Force Field Convergence. Previous to any dynamic study, we need to
determine whether force fields are providing a similar picture of
protein structure and whether such a picture is similar to that
derived experimentally. Analysis of collected samplings indicates an
average divergence (� in Eq. 1) of �2 Å between force fields
(slightly larger deviations are found in G simulations), which,
considering the thermal noise of the simulations (� in Eq. 2),
suggests a similarity of �70% between the four samplings and an
average ‘‘effective distance (��1) between them of only 1.4 Å
(slightly larger values are always obtained for G-simulations; see
Table 2). This finding indicates that all simulations are, in fact,
sampling a similar region of the conformational space. This sug-
gestion is supported by the analysis of the radii of gyration and
solvent accessible surface (differences of �1% in radii of gyration
and 2% in solvent-accessible surface between the four force fields;
see Fig. 1).

Not only are the structures sampled in the four simulations
similar, but they are also close to the experimental conformations

(see Fig. 1). Thus, differences in radii of gyration between MD
samplings and experimental structures are �1%, and average
differences in solvent accessible surface are �5%. The average
backbone rmsds between simulated and experimental structures
are �2.0 Å (A, 1.9; C, 2.0; O, 1.9; G, 2.5 Å), close to the thermal
noise of MD simulations. Quite surprisingly, the presence or
absence of disulfide bridges does not modify the deviation of our
samplings from experimental structures, which is, however, depen-
dent on the origin of the experimental structure. Thus, proteins
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Table 1. Structures representative of protein metafolds

PDB ID code
Exp

structure
No. of

disulfide bridges
Atoms in

simulation

1AGI X-ray 3 23,403�22,734
1BFG X-ray 0 25,212�24,509
1BJ7 X-ray 2 19,371�18,518
1BSN NMR 0 33,753�32,948
1CHN X-ray 0 18,022�17,282
1CQY X-ray 0 28,856�28,310
1CSP X-ray 0 13,293�12,949
1CZT X-ray 1 31,072�30,167
1EMR X-ray 0 32,808�31,885
1FAS X-ray 4 15,709�15,398
1FVQ NMR 0 16,322�15,921
1GND X-ray 0 68,647�66,213
1I6F NMR 4 15,837�15,552
1IL6 NMR 4 27,464�26,486
1J5D NMR 0 23,184�22,682
1JLI NMR 1 36,307�35,615
1K40 X-ray 0 37,686�36,883
1KTE X-ray 1 19,490�18,869
1KXA X-ray 0 24,969�24,113
1LIT X-ray 3 26,289�25,651
1LKI X-ray 3 33,388�32,403
1NSO NMR 0 31,774�31,134
1OOI X-ray 3 21,754�21,057
1OPC X-ray 0 22,833�22,245
1PDO X-ray 0 30,947�30,199
1PHT X-ray 0 19,995�19,554
1SDF NMR 2 32,579�32,168
1SP2 NMR 0 17,093�16,930
1SUR X-ray 0 35,945�34,691
2HVM X-ray 3 32,956�31,550

For each protein, we quote the number of disulfide bridges, the origin of
experimental structure, and the number of atoms in the simulation box (A, C,
O�G). PDB, Protein Data Bank.
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showing the largest displacements with experiment correspond
always to structures solved by NMR spectroscopy (see Fig. 1 and
Table 1). The deviations in these cases are due to displacements in
regions of large flexibility, where NMR structures are in general
poorly defined. This is clear when calculations are repeated using
the TM-score, a more robust measure that reduces the weight of
flexible entities in the rms-fit. In this case, no system is found for
which deviation from experimental data are �2.5 Å (see Fig. 1).
Moderate deviations between MD trajectories and experimental
model might then reflect either lack of quality in some parts of the
experimental model, or just the intrinsic differences between
simulation and experimental conditions. Clearly, the commonly
made assumption that any deviation from experimental structure of
MD simulations is always due to simulation errors is not correct and
can ignore important physical characteristics of proteins.

Native protein–protein contacts are well preserved during sim-
ulations (in average, 90% correct predictions). The total number of

intramolecular hydrogen bonds found in experimental structures is
very well preserved (see Fig. 2), but obviously, hydrogen bond
donor and acceptors are more promiscuous in MD than inferred
from single experimental structures (see below). All MD simula-
tions preserve very well (90%; see Fig. 2) secondary structure
(�-helices and �-sheets). In summary: (i) different force fields
provide similar picture of protein structure, and (ii) MD simulations
sample regions close to experimental structures. Divergences be-
tween simulations and experimental structure signal proteins with
very flexible moieties whose exact conformation is often not well
defined. The two prerequisites noted above are then fulfilled, and
we can then safely analyze the dynamics properties of proteins.

B-factors are the simplest method to analyze local deformability
and have the advantage to be accessible from x-ray data, which
provides us with an additional test on the quality of MD-
trajectories. As noted in Fig. 3, there is a very good agreement
between experimental and MD-derived B-factors (see Fig. 3).
Detailed analysis (see SI Fig. 5) show that such an agreement is
especially good for A, C, and O simulations, whereas B-factor
distribution is slightly displaced to higher values in G trajectories. In
all of the cases, �-sheet segments are the most rigid, whereas turns
are in general the most flexible ones, in good agreement to what is
deduced from experimental data. In fact, the only significant
difference between MD and x-ray B-factors is that, although
experimental B-factors above 60 Å2 are rare, they are not so
uncommon in MD simulations. Inspection of B-factor distribution
in the different proteins (see example in Fig. 3 and SI Fig. 10) show
a good correlation (average Spearman’s rank correlation of 0.7
between experimental and MD distributions). This means that
proteins residues that appear as the most flexible ones in MD-

Table 2. Similarity indexes

AMBER CHARMM OPLS GROMOS

AMBER 1.0 0.7 0.7 0.6
1.0 1.0 0.8 0.8

CHARMM 1.0 0.7 0.6
1.0 0.8 0.9

OPLS 1.0 0.6
1.0 0.8

GROMOS 1.0
1.0

� (upper) and � (lower) between trajectories.

Fig. 1. Average values for rmsd (Upper Left), rRMSD (based on TM-score; Upper Right) with respect to experimental structures, radii of gyration (Lower Left),
and solvent accessible surface (Lower Right) for A, C, O, and G force fields.
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simulations are those with the largest mobility in the x-ray struc-
tures. It seems that MD-simulation is just allowing the movement
of flexible residues that were ‘‘frozen’’ by the crystal lattice. This
hypothesis can be tested by computation of crystal effective tem-
peratures (see Eq. 3). Considering harmonic residue oscillations as
those with B-factors below 60 Å2 (see Fig. 3) we obtain an ‘‘effective
temperature’’ of 290 K for the crystal. This demonstrates that the
effect of crystal lattice is not, as often assumed, a general ‘‘effective
cooling’’ of the general protein. The reduction in kinetic energy
(i.e., the reduction of ‘‘effective temperature’’) induced by the
lattice is localized in a few very flexible residues, whose mobility is
severely reduced with respect to the situation found in diluted
aqueous solution.

Lindemann’s disorder index (see Eq. 4) provides a global picture
of the flexibility of proteins compared with that of macroscopic
solid or liquids (26). Quite independent of the force field and on the
presence or absence of disulfide bridges MD simulations suggest
that proteins as a whole behave like dense liquids (�L�0.28 	 0.06).
However, this is the combination of the ‘‘solid-like’’ properties of
the buried interior �L�0.18 	 0.04 (0.16 	 0.04 if only buried
backbones are considered) and of pure liquid properties of the
exposed side-chains �L�0.38 	 0.07. In summary, as suggested by
experimental studies in particular systems (26, 27), proteins are
‘‘melted-solids’’ with strong differences between the near-solid
interior and the full-liquid exterior.

Essential dynamics provides and additional test of the global
flexibility of proteins. Interestingly, all of the force fields provide a
similar picture of the type of movements that are more important
in describing protein similarity (� � 85% see Table 2 and SI Figs.
6–15). Space dimensionality (i.e., the number of relevant deforma-

tion nodes, ref. 28) depends linearly with the number of residues of
the protein (r2 � 0.94; see Fig. 4), with no clear changes induced by
the presence of disulfide bridges. Given A, C, and O simulations, we
can derive a consensus regression equation (dim � 32.5 
 0.58 �
Nres; r2 � 0.93), which indicates that each residue adds only 0.6
dimensions to the conformational space, indicating that the global
structure of the protein strongly limits, in a noncooperative manner,
the number of accessible conformations of the constituting
peptides.

The first essential deformation movements have associated very
low frequencies (�70 cm�1 for the first 25 essential modes in the C�

space) indicating that significant deformations are expected at
room temperature along these modes. Entropies derived from these
frequencies (see Materials and Methods) depend in all cases linearly
with the number of residues (r2 � 0.98; see Fig. 4), confirming the
lack of cooperative effects in determining the accessible confor-
mational space of mono-domain proteins. Perfect match is found
between A, O, and C simulations, whereas G trajectories lead to
more disordered structures. Interestingly, the presence of disulfide
bridges does not introduce any sizeable effect in determining the
entropy of the folded protein. Thus, we can conclude that, in
contrast with the general believe, disulfide bridges do not especially
restrict the conformational space of native proteins.

A single experimental structure presents a clearly defined pattern
of stabilizing interactions (salt bridges, hydrogen bonds, and hy-
drophobic interactions). Obviously, when flexibility is allowed, such
a pattern becomes more diffuse and interacting groups are more
promiscuous. Thus, despite the total number of stabilizing inter-
actions preserved in MD, there is, in all cases, a reduction in the
number of ‘‘permanent’’ interactions (defined as those occurring

Fig. 2. Coverage of contacts (Upper Left), conservation of secondary structure for �-helix (Upper Right), �-sheet (Lower Left), and relation between
experimental and MD hydrogen bonds (intra; Lower Right) for A, C, O, and G force fields.

798 � www.pnas.org�cgi�doi�10.1073�pnas.0605534104 Rueda et al.
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for �80% of the trajectory) with respect to those in the experi-
mental structure. Thus, the number of permanent hydrogen bonds
and hydrophobic interactions are �68 and 81% of those existing in
experimental structures. The number of ‘‘permanent’’ salt bridges
is �77% the experimental ones for A, C, and O simulations,
whereas a bigger loss of salt bridges is found in G simulations (see
Table 3). Once ‘‘permanent’’ interactions are located, we can
determine their contribution to the global stiffness of the protein by
deriving the associated force-constant (see Eq. 6). Results in Table
2 show that, in agreement with chemical intuition and irrespective
of the force field used, hydrogen bonds are individually stiffer (force

constants in the range 22–29 kcal/mol Å2) than hydrophobic
contacts (force constants in the range 3–6 kcal/mol Å2). More
surprising is the soft nature of salt bridges (29), especially of those
involving lysine, which in fact behave similarly (in terms of stiffness)
to hydrophobic contacts. MD strongly suggests that individually,
hydrogen bonds are the main responsible of protein stiffness,
whereas salt bridges (especially with Lys as donor) are quite labile
and promiscuous. It is then clear that none of the theoretically more
stabilizing interactions disulfide and salt bridges are controlling
protein dynamics.

Protein dynamics is complex; even in the hydrophobic core, side

Fig. 4. Dimensionality versus the number of residues (Left) and Schlitter’s entropy in kcal/mol�1�K�1 (Right) for A, C, O, and G force fields.

Fig. 3. B-factor distribution for x-ray structures and from MD simulations (Upper), and per residue B-factors for two proteins: 1CZT and 1LKI (Lower).
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chains may undergo rotameric changes on a time scale longer than
that studied in the present work, which is limited to study short time
scale dynamics. Furthermore, classic force fields are rough approx-
imations to the real potential energy function. However, our
massive dynamic analysis provides strong evidence that most of the
behavior detected during MD simulations is force field independent
and that deviations from experimental structures, when they exist,
are not spurious, but signal a physically meaningful process. Pro-
teins behave like biphasic systems, with a solid core surrounded by
external liquid layer, whose flexibility is mostly restricted by hydro-
gen bonds, not by disulfide or salt bridges. At the monodomain
level, the complexity of the accessible conformational space in-
creases slowly, but linearly with the size of the protein, with no
obvious cooperativity effects. Finally, and quite surprisingly, crystal
lattice does not reduce the kinetic energy of all atoms of the protein,
but just of a small set of otherwise too-flexible atoms, those that,
when the lattice is released, lead to the largest conformational
changes.

Materials and Methods
Model Selection. We built a list of proteins to simulate the 30 most
populated folds according to SCOP (30, 31), CATH (32), Dali (33,
34), and Dagget’s databases (35) (see SI Data Set). When several
good three-dimensional models exist in a class, we favor structures
without bound ligands.

System Setup. As in our MODEL database (http://mmb.pcb.ub.es/
MODEL), we used a common, automatic setup procedure designed
to guarantee reasonable ionization states, no electrostatic unbal-
ances, and a good hydration before simulation starts. Thus, in all
cases, experimental structures (for NMR, the first one deposited in
the Protein Data Bank) were titrated to define the major ionic state
a neutral pH, neutralized by ions, minimized, heated, and hydrated
(with special care in introducing structural waters). These systems
were then preequilibrated for 0.5 ns with parm99-AMBER force
field, and then equilibrated (0.5 ns) with each force field (see
below).

Simulation Details. Equilibrated structures were used as starting
points for 10-ns production trajectories, performed at constant
pressure (1 atm) and temperature (300 K) using standard coupling
schemes (the same in all cases). Trajectories for three (Protein Data
Bank ID codes 1CQY, 1OPC, and 1KTE) ultrarepresentative
structures of �, �, and �/� folds (28) were extended to 100 (A, C,
and O) or 50 (G) ns to evaluate the reliability of 10 ns trajectories.
Results in SI Fig. 16 strongly suggest that 10 ns is long enough for
simulations for many analysis purposes. Particle Mesh Ewald ap-
proaches were used to deal with long-range effects (36). Integration
of motion equations was performed every 1 fs, the vibrations of

bonds involving hydrogen being removed by SHAKE/RATTLE
algorithm (37, 38). Four force fields were used in production runs:
AMBER (17) (A), CHARMM (18, 19) (C), OPLS/AA (20–23)
(O), and GROMOS (24, 25) (G). TIP3P (39, 40) was used as water
model for A, C, and O simulations, whereas G calculations were
done using the SPC model (41) for coherence with the force field.
Simulations were done using parallel versions of AMBER8 (42)
(A-simulations), NAMD (43, 44) (C and O simulations), and single
processor version of GROMACS (45, 46) (G simulations).

Control simulations were performed to determine whether force
fields were able to recognize unfolding conditions and lead to the
destabilization of the folded form. For this purpose, 30-ns simula-
tions of 1CQY, 1OPC, and 1KTE were performed using 8 M urea
and a temperature of 368 K. OPLS (47) parameters for urea were
used for O and A simulations, whereas specific CHARMM pa-
rameters (48) were used in C simulations. Due to the lack of specific
parameters, these control simulations were not performed using
GROMOS force field. Results in SI Fig. 16 confirm that force fields
are able to recognize strong denaturing conditions starting the
unfolding of the proteins (which might take micro- to millisecond
to complete) in the 0- to 30-ns simulation window. The final set with
control simulations (10 ns; A, O, C, and G trajectories) was
performed for three proteins (Protein Data Bank ID codes 2GB1,
1LYS, and 1UBQ) for which residual dipolar couplings and S2

distributions have been reported (see references in the legend of
SI Fig. 17) from NMR experiments. Comparison of MD- and
NMR-derived measures of flexibility is quite satisfactory (see SI
Fig. 17) giving confidence in the quality of our theoretical estimates
of flexibility (it is not possible to perform this comparison for
representative proteins in SI Table 4 due to the lack of experimental
data).

Analysis of Trajectories. Trajectories were analyzed to obtain struc-
tural and dynamic properties. Structural descriptors include back-
bone rmsd, TM score (49), radii of gyration, solvent accessible
surface for all heavy atoms (50), secondary structure (51), intramo-
lecular hydrogen bonds, contact maps, Ramachandran plots (52,
53), solvent contact profiles, and others. The global similarity
between the structures collected with the different force fields was
obtained by computing the pair-cross rmsd (i.e., the rmsd between
all of the snapshots collected in the two trajectories; see Eq. 1), and
a related similarity index (see Eq. 2).

�AB �
1

MAMB
�

k�1

MA �
k�1

MB � 1
N �

t�1

3N

�xAl � xBl

2�1�2

, [1]

where N is the number of atoms and M is the number of frames

�AB �
�AA � �BB

2�AB
. [2]

Local dynamic properties are represented by the B factors, which
are compared with x-ray values to obtain a measure of ‘‘crystal
effective’’ temperatures (see Eq. 3). Global flexibility was repre-
sented by Lindemann’s indexes (26) (see Eq. 4) and by essential
dynamics protocols considering either Cartesian or mass-weighted
covariance matrices (54), which provided us with measures as
protein entropy (55–57) or the dimensionality of the conforma-
tional space (28). The similarity between the nature of the essential
deformation patterns of two trajectories (of the same protein) was
determined by � index (see Eq. 5; ref. 58), considering a small set
of 25 eigenvectors (which represent �80–85% of protein variance).

Tcrys � TMD �Bfactors
crys

Bfactors
MD � [3]

Table 3. Force constants (in kcal�mol A2) associated with
different types of protein interactions

Interaction AMBER CHARMM OPLS GROMOS

Salt bridge Total 11 15 17 —
R�D 14 21 28 —
R�E 15 20 21 —
K�D 7 10 10 —
K�E 5 8 8 —

H bonds Total 29 26 26 22
Back-back 27 24 24 22
Others 35 31 33 23

Hydrophobic Total 5 5 6 3
Arom 7 7 7 4
Aliphat 5 5 5 3
Cross 6 5 6 3

GROMOS does not lead to a harmonic representation of salt bridges, and
accordingly, was not considered for this particular analysis.

800 � www.pnas.org�cgi�doi�10.1073�pnas.0605534104 Rueda et al.
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�L �

��
i

��ri
2��N�1�2

a�
, [4]

where a� is the most probable nonbonded near-neighbor distance,
N is the number of atoms, and �ri stands for the fluctuation of atom
i from its average position.

�AB � 2

�
j�1

n �
i�1

n

�vi
A�vj

B
2

��
j�1

n �
i�1

n

�vi
A�vj

A
2 � �
j�1

n �
i�1

n

�vi
B�vj

B
2�, [5]

where n is the number of size of the important space (n � 25 here)
and � stands for one unitary eigenvector. Note that � � 1 indicates
that both trajectories are sampling the same type of essential
movements, whereas � � 0 means that they are orthogonal.

The flexibility related to key interactions (hydrogen bonds,
hydrophobic contacts, and salt bridges) was computed by assuming

the harmonic oscillator model (see Eq. 6). Because the use of
harmonic model implies a Gaussian distribution of distances, we
computed force constant (K in Eq. 6) for ‘‘stable’’ interactions
considered as those found in �80% of the trajectory. A salt bridge
was defined when the distance N�(K)/C� (R) � C�(D)/C	(E) was
�6.5 Å, hydrogen bonds were annotated by using standard PTRAJ
criteria (42), and hydrophobic contacts were counted when two
hydrophobic groups (A, V, P, F, M, I, L, W), which are not neighbors
in the sequence, have their C� atoms separated by �10 Å.

K � kbT���X2�, [6]

where kb is the Boltzmann constant, T is the absolute temperature,
and �X is the oscillation in the interaction distance from average
values.
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connected processors.
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