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To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduc-
tion methods such as principal component analysis (PCA) represent a well-established and popular
approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or
various kinds of distances, may be used as input data in a PCA. Adopting two well-known model
problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of
PCA using distance-based measures is presented which employs distances between Cα-atoms as
well as distances between inter-residue contacts including side chains. While this approach seems
prohibitive for larger systems due to the quadratic scaling of the number of distances with the
size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only
relatively few selected distances in the analysis. The quality of the PCA is assessed by considering
the resolution of the resulting free energy landscape (to identify metastable conformational states
and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time
scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and
Cartesian coordinates, the study shows that the choice of input variables may drastically influence the
outcome of a PCA. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938249]

I. INTRODUCTION

Classical molecular dynamics (MD) simulations facilitate
a microscopic study of the structure, dynamics and
function of biomolecular systems. To deal with the ever-
growing amount of simulation data and obtain a concise
but correct interpretation of simulation results, one often
wants to systematically reduce the dimensionality by
introducing a transformation from high-dimensional MD data
r = (r1, . . . ,rN) to a low-dimensional reaction coordinate
x = (x1, . . . , xd). While numerous methods have been
suggested to this end,1–8 probably the most simple and
widely used technique is principal component analysis (PCA),
which represents a linear transformation that diagonalizes the
covariance matrix of r and thus removes instantaneous linear
correlations among the coordinates.9 Ordering the eigenvalues
decreasingly, it has been shown that a large part of the system’s
fluctuations in the high-dimensional vector space {rn} can be
represented by the first few PCA eigenvectors or principal
components (PCs) {xi} of the system.10–16

Since the eigenvectors form a complete basis, the PC
representation of the conformational space becomes exact
when d = N . Providing a systematic means to approximate
data by including only a few components, PCA is often
used as a general preprocessing tool for high-dimensional
data. When we find a time scale separation between the
slow motion of the first few components (i.e., the “system”)
and the fast motion of the remaining components (i.e., the
“bath”), the first PCs may serve as a multidimensional reaction
coordinate. In this way, the collective variables {xi} may be

a)Electronic address: stock@physik.uni-freiburg.de

used to construct Langevin17–21 or Markov state models22–27

of the dynamics. Last but not least, PCs are often used to
construct a free energy surface ∆G(x) = −kBT ln P(x), where
P is the probability distribution of the MD data along x.
Characterized by its minima (which represent the metastable
conformational states of the system) and its barriers (which
connect these states), the free energy landscape allows us to
account for the pathways and their kinetics occurring in a
biomolecular process.28–32

In a first step, we need to decide on suitable coordinates
{rn} to represent the MD trajectory. Cartesian coordinates
are convenient, because they are directly provided by the MD
simulation, their kinetic energy is diagonal, and they allow us
to calculate and easily illustrate any quantity of interest (e.g.,
the PCA eigenvectors). Commonly, either backbone atoms
or Cα-atoms are employed in a Cartesian coordinate PCA
(cPCA). However, cPCA may yield spurious results in the
case of large-amplitude motion (as occurring, e.g., in folding
processes), since structural dynamics of flexible molecules
necessarily results in a mixing of overall and internal motion.33

To circumvent this problem, internal coordinates such as
(φ,ψ) backbone dihedral angles34–36 may be used. Dihedral
angles PCA (dPCA) has indeed proven useful, as it allows
for a high resolution of metastable states in the dPCA free
energy landscape.36–39 However, dPCA may require many
components, resulting in a relatively high dimensionality of
the reaction coordinate.

Including only backbone atoms or backbone dihedral
angles, standard cPCA and dPCA do not provide direct
information on the side chains of a biomolecule. By
considering distances or contacts between specific atoms,
on the other hand, also structure and dynamics of side

0021-9606/2015/143(24)/244114/8/$30.00 143, 244114-1 © 2015 AIP Publishing LLC

http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
http://dx.doi.org/10.1063/1.4938249
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
mailto:stock@physik.uni-freiburg.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4938249&domain=pdf&date_stamp=2015-12-28


244114-2 Ernst, Sittel, and Stock J. Chem. Phys. 143, 244114 (2015)

chains may be taken into account. To this end, several
authors have considered PCAs based on distances between
closest lying atoms of each residue, hydrogen bonds or
Cα-atoms.40–45 Since the dimensionality of distance-based
PCA scales quadratically with the number of considered
atoms, however, this approach is numerically expensive and
thus prohibitive for larger systems. Moreover, the inclusion
of a large number of distances may result in highly
correlated coordinates, while it is advantageous for a PCA if
relatively few and only weakly correlated input coordinates are
used.39

In this work, we want to explore the virtues and
shortcomings of distances as basis for a PCA description of
protein dynamics. To this end, we employ distances between
Cα-atoms as well as distances between inter-residue contacts
of the protein. To reduce the number of degrees of freedom,
we focus on contacts that are present in the native state
of a protein. While native contacts are obviously important
to describe small-amplitude motions of a folded protein, they
have been recently shown to also largely determine the folding
pathways.46 Moreover, several groups have successfully used
the fraction of native contacts as one-dimensional reaction
coordinate.46–48 In a similar vain, we only include Cα-distances
that are shorter than a certain threshold in the native state.
Adopting two well-known model proteins, villin headpiece
(HP35) and bovine pancreatic trypsin inhibitor (BPTI), for
which long (up to ms) all-atom MD trajectories are available
from D. E. Shaw research,49,50 we compare the performance of
various versions of a contact-based PCA (henceforth, termed
“conPCA”) and Cα-distance-based PCA (termed “CαPCA”)
to the more established methods cPCA and dPCA.

II. THEORY AND METHODS

A. MD details

1. Villin headpiece

HP35 is a 35-residues protein fragment that represents
a standard model of ultrafast protein folding.51–55 It consists
of a hydrophobic core with three helices (residues 3-10,
14-19 and 22-32) that are connected via two unstructured
loops (Fig. 1(a)). To study the folding of HP35, extensive
all-atom equilibrium MD simulations of wild-type HP35 and
its mutants were carried out by Piana et al.49 at various
temperatures, employing the Amber ff99SB*-ILDN force
field56–58 and the TIP3P explicit water model.59 Here, a
≈300 µs segment of the fast folding double mutant (HP35
NleNle) at 360 K was adopted. According to our definition
below, we identified 53 native contacts from the crystal
structure (pdb 2F4K),54 which are depicted in Fig. 1(b).

2. Bovine pancreatic trypsin inhibitor

BPTI is a well-studied 58-residue protein that exhibits
small-amplitude functional motion. According to DSSP
analysis60 of the crystal structure (pdb 5PTI),61 it contains
a 310 helix (residues 3-6), two β-sheets (residues 18-24
and 29-35) connected by a turn (residue 25-28) and an

FIG. 1. Left: Structures of (a) HP35 and (b) BPTI, where secondary structure
elements are color coded as helix (red), β-sheet (yellow), turn (cyan), loop
(green) and termini (gray). Disulfide bridges are shown as sticks. Right:
Contact maps of the reference structures for (c) HP35 and (d) BPTI. The
upper triangle shows Cα-contacts, the lower triangle heavy-atom contacts,
using a distance threshold of 8.0 Å and 4.5 Å, respectively. Contacts indicated
by white fields are found too close in sequence, gray fields too far away in
distance. The type of contact is color coded as Cα (black), helical (green),
hydrogen bond (red), hydrophobic (blue), β-sheet (yellow), weak H-Bond
(purple), and disulfide bridge (brown).

α-helix (residues 48-55), see Fig. 1(c). Three short bends
and an isolated β-bridge can also be identified, but we
consider them as part of the two long loop regions connecting
the helices with the β-strands (spanning residues 7-17 and
36-47, respectively). The whole structure is stabilized by three
disulfide bonds. To study the functional dynamics of BPTI,
Shaw et al.50 performed a ≈1 ms long all-atom equilibrium
MD simulation at 300 K, using the AMBER ff99SB force
field56 and the TIP4P-Ew62 water model. Using the reference
structure of Shaw et al.50 based on the crystal structure (pdb
5PTI),61 we identified 108 native contacts for the present
analysis (Fig. 1(d)).

B. PCA

The correlated internal motion of a system with N degrees
of freedom can be described by the covariance matrix,

σmn = ⟨(rm − ⟨rm⟩) (rn − ⟨rn⟩)⟩ , (1)

where r1, . . . ,rN denote the input coordinates and ⟨· · · ⟩
represents the average over all sampled conformations.
Diagonalization of this covariance matrix results in N
eigenvectors (v(i)) and eigenvalues (λi) which describe the
modes of the collective motion and their respective amplitudes.
The PCs

xi = v(i) · r (2)
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are the projections of the coordinates r onto the eigenvectors
and may be used to construct a reaction coordinate.

Instead of commonly employed Cartesian coordinates,
one may also use (φ,ψ) dihedral angles of the protein backbone
as input coordinates {rn}. Being circular variables, however,
the angles first need to be transformed to a coordinate space
with linear metric (e.g., a vector space with the usual Euclidean
distance). This can be achieved by the transformation63

q2n−1 = cos ϕn, q2n = sin ϕn, (3)

where n = 1, . . . ,M with M being the total number of dihedral
angles considered. The doubling of variables in dPCA can
be explained by considering a complex-valued version (i.e.,
qn = zn = eiϕn), which also showed that dPCA amounts to a
one-to-one representation of the original angle distribution.36

Details of the cPCA and dPCA on HP35 and BPTI are given
in Refs. 64 and 33, respectively.

C. Contact- and distance-based PCA

There are numerous definitions of protein residue-residue
contacts, which differ in the choice of atoms (e.g., Cα atoms
or closest lying atoms of each residue), the distance cutoff
up to which a contact is considered to be formed (typically
between 4 and 8 Å), and what type of contacts are included
(e.g., all possible contacts, all hydrogen bonds, or tertiary
contacts only).40–45 As explained in the Introduction, we find
it advantageous to restrict the PCA to the native contacts of
the protein.46 We consider a contact as formed if the distance
between the closest lying heavy atoms of each residue is less
than 4.5 Å (Ref. 65)

Dν = min(|r⃗i,k − r⃗ j,l |) ≤ 4.5 Å, (4)

where the indices k and l run over all heavy atoms of
the selected residue pair (i, j). Moreover, we discard contacts
between residues that are less than four residues apart, thereby
omitting short-range contacts as, e.g., in helical structure
elements. We note that distances according to (4) can be
calculated for the reference structure (i.e., only once), or for
every frame of the MD trajectory. As both methods give quite
similar results for the considered systems, the former approach
seems sufficient. All contact and distance calculations were
done using the MDAnalysis framework.66

Adopting above definitions, Fig. 1 shows the contact
maps of (c) HP35 and (d) BPTI, where we color-coded the
type of the respective contact. HP35 clearly shows secondary
structure contacts along the diagonal, which reflects the three
α-helices (residues 4-10, 15-19, and 23-32). Moreover, we
find several tertiary contacts which are either contacts of the
hydrophobic core or hydrogen bonds. The contact map of
BPTI shows secondary structure contacts due to the β-sheets
and the two short helices as well as tertiary contacts between
both the region of clearly defined secondary structure and the
less structured loop regions.

Alternatively, we also considered distances between Cα

atoms of the crystal structure, including all Cα-distances that
are shorter than 8 Å. Figure 1 reveals that the resulting contact
maps based on Cα-distances and heavy-atom contacts are
very similar. This is especially the case for BPTI with its

rather stable and closely packed structure, where we find
more Cα-contacts than heavy-atom contacts. For HP35, on
the other hand, some of the side-chain contacts forming the
hydrophobic core are not found when we use our criteria for
Cα-contacts.

Using the distances defined by Eq. (4), we calculate the
covariance matrix,

σµ,ν =

�

Dµ −


Dµ

�� (Dν − ⟨Dν⟩)� , (5)

which defines the contact-based PCA (conPCA). Similarly,
we employ Cα-distances to calculate the corresponding
covariance matrix that defines the Cα-based PCA (CαPCA).
We also tried various other variants. For example, we per-
formed a Cα-based PCA including all existing Cα-distances
(see supplementary material70). Moreover, we calculated
the covariance matrix using reciprocal distances (termed
iconPCA), which shifts the focus from the large-scale
motions (preferably seen by conPCA) to small motions
around the native contact distances.67 Instead of directly
using the distances Dν to calculate the covariance matrix,
one may also discretize the distances used for conPCA by
employing the same criterion as in (4) and setting Dν ≡ 1
if |r⃗i,k − r⃗ j,l | ≤ 4.5 Å and Dν ≡ 0 otherwise.45 As we found
that the resulting jumps of the discretized trajectory typically
introduce additional noise to the observables and result in
a reduced resolution of the free energy surfaces (data not
shown), we discarded this option.

III. RESULTS

In the following, we adopt two well-established model
problems, the folding of HP35 and the functional dynamics
of BPTI, to study the performance of the various versions of
PCA introduced above.

A. HP35

We begin with considering the (normalized) cumulative
fluctuations Vd =

d
i=1 λi/(


j λ j) covered by a PCA using

d PCs, where λi denotes the ith eigenvalue of the PCA.
Since a reaction coordinate x = (x1, . . . , xd) should represent
a sufficiently large part of the motion of the system, the
variance Vd of the {xi} should contain a large fraction of the
collective variance of the {rn}. Figure 2(a) shows that the
cumulative fluctuations obtained by dPCA converge relatively
slowly with the number of PCs included, e.g., it takes about
20 PCs to cover 60% of the overall variance. This might
be caused by residual nonlinear correlations of the PCs,39 as
well as by the fact that dihedral angles contain very detailed
structured information which may be difficult to cover by
a small number of PCs. The cumulative fluctuations of the
distance-based PCAs are found to increase much more rapidly
with the number of included PCs. To cover 60% of the overall
variance, it only takes four PCs for CαPCA and iconPCA, and
only two for conPCA. We note that no results are shown for
the Cartesian coordinate PCA, since cPCA breaks down in the
case of large-amplitude folding processes due to the mixing
of overall and internal motion.33
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FIG. 2. Relative cumulative fluctuations of the first 50 PCs, obtained for (a)
HP35 and (b) BPTI, using various versions of PCA.

The folding dynamics of a protein is typically associated
with rare transitions between conformational states, which are
separated by energy barriers that are significantly larger than
the thermal energy kBT . Hence, the free energy landscape
of the folding of HP35 should discriminate several minima
corresponding to these metastable states. To get an overview
of the conformational distribution associated with the folding
of HP35, Fig. 3 (top) shows two-dimensional free energy
surfaces obtained by the different PCA variants, using the
two PCs that yield the best structural resolution of the energy
landscape. As discussed in Ref. 64, the energy landscape
of HP35 consists of the entropic unfolded basin U where
the restructuring of the protein takes place, the intermediate
basin I which is connected to U via the rate-limiting U → I
transition state reflecting the formation of helix-1, and the
native basin N containing a state close to the NMR structure.
Employing recently developed clustering methods68,69 Fig. 3
(bottom) demonstrates that all considered PCA methods

are able to discriminate the unfolded state (U) from the
folded state (comprising N and I). Remarkably, the overall
folding/unfolding is always mediated by the first PC, while
higher PCs describe further substates in the folded state.

A closer examination of the resulting clusters reveals,
however, that the underlying molecular structure of the
conformational states may be different for the various PCAs.
For example, the intermediate state I differs from the native
state N mainly in residue 3, which hardly changes the
distances of HP35 but results in a somewhat larger flexibility
of this residue.64 As a consequence, native and intermediate
conformations are found to partially overlap in the energy
landscapes of the distance-based PCAs, which therefore
exhibit less details than the dPCA landscape. This finding is
supported by the one-dimensional free energy profiles ∆G(xi)
of the PCs shown in Fig. S1.70 While the distance-based PCAs
result in about three PCs with several minima, dPCA yields
seven structured energy profiles. ConPCA and iconPCA are
found to give quite similar results, although the reciprocal
distances used by the latter method appears to somewhat
enhance the overall resolution. Finally, we also considered
a Cα-based PCA, where all (not only the preselected)
Cα-distances are taken into account. Interestingly, Fig. S370

shows that the state resolution of the resulting energy
landscapes is clearly minor compared to the results of CαPCA
in Fig. 3(d). Hence, a reasonable preselection of the degrees
of freedom may reduce the “noise” of the data, leading to an
improved resolution of the PCA.

To get an intuitive picture of the motion described by a
PC, it is instructive to draw molecular structures along this
motion. This is straightforward when Cartesian coordinates
are used (since the PCA eigenvector is expressed in terms
of atomic coordinates) but more involved in the case of
internal coordinates (which do not necessarily account for
the position of all atoms). In the case of conPCA, the
structural evolution along some PC can be easily illustrated
by considering the contacts that mainly change during this
motion. As an example, Fig. 4(a) shows the squared elements

FIG. 3. Top: Two-dimensional representations of the free energy landscapes ∆G(xi, x j) (in units of kBT ) of HP35, as obtained from (a) dPCA, (b) conPCA,
(c) iconPCA and (d) CαPCA, respectively. Bottom: Corresponding results of a dynamical clustering method based on dPCA of the folding trajectory of HP35,
showing the entropic unfolded basin (U) in black, the intermediate state (I) in blue and the native state (N) in red color.
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FIG. 4. (a) Squared elements of the normalized first eigenvector {vi} of
conPCA, with index i labeling the considered contacts of HP35. Ordered
decreasingly, only components that constitute up to 80% of the norm are
shown. (b) Representative structures of HP35 discriminated by PC1, showing
the intermediate state I (left) and the unfolded state U (right). The four most
important contacts that change along the first PC are highlighted in blue.

of the normalized eigenvector {vi} of the first PC, where the
index i labels the contacts considered in the conPCA. While
numerous contacts vary slightly, the main changes occur
for the contacts between helix-1 and helix-3 and between
helix-1 and helix-2, that is, the tertiary contacts that keep the
hydrophobic core of the protein together. This confirms that
the first PC indeed describes the overall folding/unfolding
transition of HP35. As the sign of all elements {vi} is
the same, all contacts are simultaneously formed or broken
along this motion. (Opposite signs of the {vi} indicate the
formation of one contact while another one is broken.) As a
further illustration, Fig. 4(b) shows representative molecular
structures of folded and unfolded HP35 and indicates the most
important contacts that change along the first PC.

While the quantities studied so far are concerned
with statistical properties of the MD data (such as the
conformational distribution), we now wish to consider
observables that describe the dynamics of the considered
system. As explained in the Introduction, a desired property
of a set of suitable reaction coordinates generated by PCA is a
time scale separation between the slow dynamics of the system
coordinates {xi} and the fast dynamics of the remaining bath
coordinates. This property can be tested via the decay times
of the position autocorrelation function,

Ci(t) = ⟨δxi(t)δxi(0)⟩/⟨δx2
i ⟩, (6)

where δxi = xi − ⟨xi⟩. That is, the first few PCs representing
the system coordinates should decay much slower than the
remaining PCs representing the bath coordinates. To assess the
ability of the various PCA variants to achieve such a time scale
separation, Fig. 5 shows the autocorrelation function of the
first seven PCs. In all cases, we find that the first PC reflecting
the folding and unfolding of HP35 decays on a time scale of
about 2.5 µs. This decay is at least an order of magnitude

FIG. 5. Autocorrelation functions of the first seven PCs of HP35, as obtained
from (a) dPCA, (b) conPCA, (c) iconPCA, and (d) CαPCA, respectively.

slower than the decay of the next few PCs, which account for
transitions between native and intermediate conformational
states in the folding of HP35.64 While the decay times of
these PCs are roughly the same for conPCA, iconPCA and
CαPCA, the dPCA reveals a few somewhat slower PCs which
are associated with structured free energy profiles shown in
Fig. S1.70 The autocorrelation functions Ci(t) of higher (i & 6)
PCs are found to decay on a much faster (ns) time scale.

Fig. 5 shows that various PCAs of the folding of HP35
yield quite similar autocorrelation decay times for the first
PC. Moreover, the corresponding free energy curves (Figs. 3
and S170) are roughly similar along this component, which
also contains most of the variance of the system (Fig. 2(a)).
This is remarkable in the light of the fact that dPCA is based
on “local” coordinates (i.e., backbone dihedral angles) while
the distance-based PCAs are based on “global” coordinates
(i.e., residue-residue contacts). To highlight this similarity,
Fig. 6 shows the time trace of the first PC as obtained for the
various methods. Interestingly, we find that the time evolution
is almost identical in all cases and, moreover, also matches the
time evolution of the root mean square deviation (RMSD) of
the system. Obviously, the overall folding/unfolding motion
largely dominates the structural dynamics of HP35, such that
it is recovered by any reasonable one-dimensional reaction
coordinate. We note that this only holds for PC1, i.e., no
comparable similarity is found for higher PCs.

B. BPTI

While HP35 serves as a standard example of protein
folding, BPTI is a well-established model to study functional
dynamics. To investigate how this type of dynamics can be
described by PCA, we again compare the above defined
observables obtained from dPCA (using dihedral angles),
conPCA (using native contacts), and CαPCA (using selected
Cα-distances). Since the small-amplitude motion of the
functional dynamics of BPTI should allow for valid separation
of overall and internal motion,33 we also performed a cPCA
(using Cartesian coordinates of backbone atoms). On the other
hand, we did not include iconPCA (using reciprocal distances)
in the discussion, since it again yields very similar results as
conPCA (data not shown).
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FIG. 6. Time evolution of the first PC obtained for (a) HP35 and (b) BPTI. Shown are results from dPCA (red), conPCA (green), iconPCA (orange), cPCA
(purple), and CαPCA (blue). The gray line displays the RMSD with respect to the native structure of the system.

Beginning the discussion with the cumulative fluctuations
shown in Fig. 2(b), we find that again dPCA converges
relatively slowly with the number of PCs, i.e., 10 PCs are
needed to cover 60% of the overall variance. To this goal,
CαPCA needs 6 PCs, while conPCA and cPCA require only
4 PCs. While the overall trend is similar to the case of HP35,
we note that for BPTI the difference between dPCA and the
distance-based PCA variants is not as large.

We next consider one-dimensional free energy profiles
obtained for the various methods, in order to test which PCs
show an energy landscape with several minima. Figure S270

reveals that dPCA yields ten, CαPCA four, conPCA five, and
cPCA three PCs with structured free energy profiles. Choosing
from Fig. S270 the two most important PCs for each method,
Fig. 7 shows two-dimensional free energy surfaces which

reflect the conformational distribution of the 1 ms trajectory
of BPTI. Judged by the number of well distinguishable states,
dPCA provides the highest resolution. Employing again
our clustering methodology68,69 on the dPCA data set, we
are able to discriminate twelve metastable conformational
states. The two distance-based methods, conPCA and, in
particular, CαPCA, discriminate most of the states monitored
by dPCA but cannot resolve all details of the conformational
distribution. We also considered again a PCA that includes all
Cα-distances (Fig. S4),70 which for BPTI gave quite similar
results as CαPCA including only selected Cα-distances.
Finally, cPCA discriminates only two out of twelve states,
which is presumably due to residual mixing of overall and
internal motion.33 As discussed previously,33 the metastable
states of BPTI differ mostly in the conformations of the

FIG. 7. Top: Two-dimensional representations of the free energy landscape (in units of kBT ) of BPTI, as obtained from (a) dPCA, (b) conPCA, (c) CαPCA,
and (d) cPCA, respectively. Bottom: dPCA-based clustering of the BPTI trajectory yields twelve metastable conformational states which are drawn in different
colors in the respective PC spaces.
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FIG. 8. (a) Squared elements of the normalized first eigenvector {vi} of
conPCA, including components up to 90% of total norm. The index i labels
the considered contacts of BPTI. (b) Representative molecular structures
before and after a jump in this PC, indicating the four most important contacts
by blue lines.

first and second flexible loop, while the two β-sheets and
the α-helix remain relatively stable. Indeed, Fig. 8 nicely
demonstrates that the first PC of conPCA describes the making
and breaking of contacts between these two loops.

As seen in Fig. S2,70 the metastable states of BPTI may
be separated by large barriers, which render the transitions
between these states a rare event. In fact, rare events exist
which are not well sampled by the 1 ms trajectory of BPTI,
e.g., the change of the RMSD at ∼820 µs in Fig. 6(b) reflects
a singular conformational transition. This nonstationarity
requires some caution in the interpretation of the dynamics of
slow PCs. Considering the autocorrelation functions, Fig. 9
indeed shows that the first few PCs of all considered PCAs
decay only within several microseconds. The time scale
separation achieved by the various methods, though, is found
to differ significantly. While conPCA and cPCA show a single
slowly decaying PC, dPCA, and CαPCA identify several slow
PCs. In particular, CαPCA clearly shows four slow PCs which
are well separated from the remaining degrees of freedom.
In all cases, autocorrelation functions of higher (&7) PCs are
found to decay on a much faster (ns) time scale.

We finally compare again the time evolution of the first
PC as obtained by the various methods. Figure 6(b) shows that
the time traces of the distance-based PCAs are very similar and
also match the RMSD of the system (except for minor details,
e.g., at 420 µs). While most features are also observed by
dPCA, this method additionally shows a prominent transition
at 190 and 720 µs. A closer analysis reveals that this transition

FIG. 9. Normalized autocorrelation functions of first 7 PCs of BPTI, as ob-
tained from (a) dPCA, (b) conPCA, (c) CαPCA, and (d) cPCA, respectively.

is caused by a flipping of the Cβ
14–S14–S38–Cβ

38 dihedral angle
of the disulfide bridge between residues 14 and 38, which
hardly affects the considered distances of BPTI.

IV. CONCLUDING REMARKS

Adopting two well-established biomolecular model
problems, it has been demonstrated that the choice of
input coordinates may drastically influence the outcome
of a PCA. As an alternative to Cartesian coordinate PCA
and backbone dihedral angle PCA considered previously, we
have performed a systematic study of PCAs using distance-
based measures. While this approach seems prohibitive for
larger systems due to the quadratic scaling of the number
of distances with the size of the molecule, we have shown
that it is sufficient to include only relatively few selected
distances as input data. In particular, we have chosen to
consider distances associated with native contacts (conPCA)
or, alternatively, Cα-distances that are less than 8 Å apart in
the native structure (CαPCA). Besides considerably reducing
the numerical effort, this preselection of the degrees of
freedom reduces the “noise” of the MD data, which typically
results in better resolved conformational distributions obtained
from the PCA. Moreover, this reduction avoids the apparent
overrepresentation of the system (by using ∼N2 rather than
∼N variables), which may result in a “double counting” of
the underlying degrees of freedom and affects the physical
interpretation of the resulting free energy landscape.

To compare the various PCA methods, we have
considered the number of PCs needed to cover a substantial
amount of the overall variance (Fig. 2), two-dimensional
free energy landscapes (Figs. 3 and 7) to identify metastable
conformational states and barriers, and the PC autocorrelation
function (Figs. 5 and 9), which reflects the time scale
separation achieved by the PCA. For the considered systems
HP35 and BPTI, we have generally found that the free energy
landscapes of the distance-based PCAs give a somewhat
minor state resolution than obtained for dPCA. This can be
explained by the fact that certain important conformation
rearrangements (e.g., residue 3 in HP35 or the disulfide bridge
between residues 14 and 38 in BPTI) result in substantial
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changes of some dihedral angles but hardly affect the distances
of the system. On the other hand, the distance-based PCAs
show a significantly better convergence of the cumulative
fluctuations that necessitate less PCs. A further appealing
feature is that the structural evolution along some PC can be
easily illustrated by considering the main contacts that change
during this motion (Figs. 4 and 8). Interestingly, the generally
better performance of the CαPCA compared to the conPCA
suggests that the structure of the backbone (in particular,
the considerable restriction of possible conformations in a
Ramachandran plot) is more important for a PCA description
of the overall motion than the structure of the side-chains.
Finally, it is important to note that in all considered cases the
PCA (which sorts the PCs according to variance) also results
in a suitable separation of time scale, that is, the first few PCs
representing the system coordinates decay much slower than
the remaining PCs representing the bath coordinates. While
the optimal choice of internal coordinates certainly depends
on the specific molecule and the process considered, our study
has shown that distance-based PCAs, particularly CαPCA,
represent a versatile approach towards this end.
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