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The following is taken from [Jol86].

1 Preliminaries

1.1 Probability

The ezxpectation of a random variable X is:
E[X]=)_ pia,

where a; are the possible values of X, and p; is the probability of X to have the value a;.
Expectation is linear transformation; that is E[aX + b] = b+ aF[z]. The variance of X is:

var(X) = E {(X . E[X])Q] .
The covariance of two variables X, Y is
cov(X,Y) = E [(X ~ BIX]) (Y - E[Y])} -5 [XY] — E[X]E[Y] = cov(Y, X).

In particular, cov(X, X) = var(X), cov(aX + b0Y, Z) = acov(X, Z) + beov(Y, Z). In particular,
for random variables X1,..., X,, we have:

var [z”: az-XZ-] = z”: zn:aiajcov(Xi, X;).
i=1 i=1 j=1

In particular, let S be the n x n matrix, where the 4, j entry, is s;; = cov(X;, X;). The matrix S
is the covariance matrix, and in particular, if x = (a1 X4, ... ,a,X},), then

var [Z aiXZ-] = x!'Sx.
i=1



1.2 Lagrange Multipliers

The following can be found in standard books about calculus. Let f,¢g : R — R be two given
functions, and we wish to solve the following optimization problem:

max (x) 1)
s.t. g(x) = ¢, (2)

where ¢ is a prescribed constant. Observe, that the set of points that comply with the constraint
g(x) = cis a d — 1-dimensional surface C in R?. In particular, let x, be the point that realizes
the above maximum, and let y(¢) = (y'(¢),... ,7"(t)) be a curve on the surface C that passes
through the point xg = v(tp). In particular, the function g(y(t)) = ¢ for every value of ¢. Namely,
(g(~(t)))" = 0. Using the chain rule, we know:

(o) = 30 2D,

=1

dg(x)
ox;

denote the i-th variable derivative of g, and % = ~i(t). In particular, let

~ (9g(x) Og(x) dg(x)
Vg(x) = ( ox; ' Oxy ' Oz, )

denote the gradient vector of g at the x, and let 7/ (¢) = (71(t), v5(t), ... ,7.(t)). In particular,

Vg(1(to)) - 7' (to) = 0.

Note, that v was a completely arbitrary curve along C that passes through x,. We thus conclude,
that Vg(xp) is the normal to C at x,.

On the other side, we know that f(x) is being maximized at xo. In particular, f(y(t)) is
maximized at ¢, which implies that (f(v(¢p)))’ = 0. Arguing, as above, we conclude that

Vf(v(to)) - ¥'(to) = 0.

where

Which implies that

VI(v(to)) - 7' (te) = Vg(v(to)) - 7' (to)-

Namely, as v was arbitrary, it implies that V f(xq) is parallel to Vg(xo); namely, there exists
a constant A\ (called the Lagrange multiplier) such that V f(xo) = AVg(xp). Thus, to solve the
optimization problem Equation (2), it is enough to solve the following system of equations:

- 0f(x) _ 99(x)
fori=1,...,n o, =\ o, (3)
g9(x) =c (4)

Note, that the solution to Equation (4) involves one additional variable (i.e., A), and the solutions
to Equation (4) are a superset of the solutions to Equation (2).
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2 PCA - Principal Component Analysis

Given a covariance matrix S of n random variables Xy, ... , X, find the combination of variables
Y = 3" a;X; that mazimizes variance. Namely, var(}") is maximum. Of course, we need to
normalize the coefficients a;. In particular, let a = (ay,...,a,), we require that ||a|]| = 1, or

alternatively, a’a = 1. So, we have to solve the following optimization problem:

f(a) = maxvar(a’x) = maxa’Sa= Z a;ajcov(X;, X;)
Y]
s.t. g(a) =a’a = Za? =1,

where x = (X7, ..., X,). By the Lagrange multipliers technique, this can be solved by solving:

0f(a) _ ,99(a)
8ai N 8ai
s.t. gla) =1

fori=1,...,p

or equivalently,

9%, j aiajeov (X, Xj) o>, a?
P — )\ 1 1
oa; da;

s.t. Za? = 1.

fori=1,...,p

Which is
p
fori=1,...,p QZCLJ'COV(XZ',X]') = \2aq; s.t. Za? =1.
J=1 i
Alternatively,
fori=1,...,p Sia:Zajcov(Xi,Xj)—Aai:O s.t. Za?zl.
j=1 i

where S; is the i-th line of the matrix S. Namely, we can rewrite this as,
(S—A)a=0 s.t. Za?zl.
i
Namely, A is an eigenvalue of S. But what eigenvalue? Observe, that the solution vector oy to
the above system is an eigenvector, and in particular, the quantity we try to maximize is

alf'Say = Aala; = A

Thus, in choosing the A, we should pick the largest eigenvalue.
Thus, by computing the largest eigenvalue, we had computed the combination of variables that
maximizes the variation. Next, we want to find a combination of variables that is uncorrelated



with a’x that maximizes the variation. Arguing as above, it must be an eigenvector, and it
must be perpendicular to the previous eigenvector. Namely, the second combination of variables
that maximizes the correlation is the second eigenvector of S corresponding to the second largest
eigenvalue of S.

Let aq,. .., a, denotes those (normalized!) eigenvectors. Those vectors are called the prin-
cipal components (PC) of S. Furthermore,

var(af x) = ol Sa; = \;,

which is the i-th largest eigenvalue of S.
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