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Outline L 20

[geometric data analysis/dimensional reduction / classification/clustering)]
PCA and PROTEIN MD

ESSENTIAL DYNAMICS

OUTLINE OF A MD PROJECT

FURTHER LINKS:

PROTEOPEDIA eg: GTD_TS metric
https://proteopedia.org/wiki/index.php/Calculating GDT TS



https://proteopedia.org/wiki/index.php/Calculating_GDT_TS
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Table 2.2 Physico-chemical properties of the amino acids.

From Higgs and Attwood, Bioinformatics and Molecular Evolution chap.2
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Essential Dynamics Simulation

Collective coordinates, as obtained by a principal component analysis of atomic fluctuations,
are commonly used to predict a low-dimensional subspace in which essential protein motion

is expected to take place.

Conformational transitions in proteins are essential for their function, such as substrate
binding and product release, allosteric regulation, and many others.

The two most widely used computational methods to identify collective motions are normal
mode analysis (NMA) and principal component analysis (PCA)
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Essential Dynamics Simulation

PCA is a multivariate statistical analysis that involves diag- onalization of a correlation matrix
for a set of observables to yield collective variables.

PROTEINS: Structure, Function, and Genetics 17:412-425 (1993)

Essential Dynamics of Proteins

Andrea Amadei, Antonius B.M. Linssen, and Herman J.C. Berendsen
Department of Biophysical Chemistry and BIOSON Research Institute, the University of Groningen, 9747 AG
Groningen, The Netherlands



Essential Dynamics Simulation

PCA is a multivariate statistical analysis that involves diag- onalization of a correlation matrix
for a set of observables to yield collective variables.

THEORETICAL FOUNDATION

- We consider the dynamics of a protein in equilibrium in a given environment at a temperature T

- We first eliminate the overall translational and rotational motion be- cause these are irrelevant for the internal
motion we wish to analyze

- The internal motion is now described by a trajectory x(t), where x is a 3N-dimensional vector of all atomic
coordinates, represented by a column vector.

- The correlation between atomic motions can be expressed in the covariance matrix C of the positional deviations:
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Essential Dynamics Simulation

PCA is a multivariate statistical analysis that involves diag- onalization of a correlation matrix
for a set of observables to yield collective variables.

THEORETICAL FOUNDATION

The total positional fluctuation can be thought to be built up from the contributions of the eigenvectors:

TAx; = (x)% = (x —- X)) "(x - (x))) =
Q' T'Tq) = (q'q) = gD = A,

We choose to sort A; in order of decreasing value. Thus the first eigenvectors represent the largest positional
deviation, and most of the positional fluctuations reside in a limited subset of the first n eigenvalues, where n is small
compared to a total of 3N.

We now divide the total g-space in an essential subspace:

q(1),...q(n),

and there remaining space

q(n+l) ... q(3N)

We denote coordinates in the essential subspace by n and coordinates in the remaining subspace by s.




It is possible to separate the configurational space into two subspaces:

(1) an “essential”’subspace containing only a few degrees of freedom in which anharmonic motion occurs that
comprises most of the positional fluctuations; (€)

(2) the remaining spacein which the motion has a narrow Gaussian distribution and which can be considered as
“physically constrained.” (S)

The s-coordinates behave effectively as constraints: they have narrow Gaussian distributions with zero mean and
do not contribute significantly to the positional fluctuations. Thus they behave as harmonic oscillators with a large
force constant.

Thus they behave as harmonic oscillators with a large force constant.

This means that the mechanics in the essential subspace can be approximated by setting all s = 0, the
approximation becoming exact if the force constants of the s-coordinates tend to infinity.

The forces in s-space then vanish since the basically independent Gaussian distributions found for the s-
coordinates imply that V can be approximated as
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Principal component analysis (PCA)

Purpose of PCA

Covariance and correlation matrices
PCA using eigenvalues

PCA using singular value decompositions
Selection of variables

Biplots

References

Exercises



Purpose of PCA

The main idea behind the principal component analysis is to represent
multidimensional data with fewer number of variables retaining main features
of the data. It is inevitable that by reducing dimensionality some features of
the data will be lost. It is hoped that these lost features are comparable with
the “noise” and they do not tell much about underlying population.

The method PCA tries to project multidimensional data to a lower dimensional
space retaining as much as possible variability of the data.

This technique is widely used in many areas of applied statistics. It is natural since
interpretation and visualisation in a fewer dimensional space is easier than in
many dimensional space. Especially if we can reduce dimensionality to two or
three then we can use various plots and try to find structure in the data.

Principal components can also be used as a part of other analysis.

Its simplicity makes it very popular. But care should be taken in applications. First it
should be analysed if this technique can be applied. For example if data are
circular then it might not be wise to use PCA. Then transformation of the data
might be necessary before applying PCA.

PCA is one of the techniques used for dimension reductions.



Covariance and Correlation matrices
Suppose we have nxp data matrix X:

xll eo e xlp

X, .. X

nl np

Where rows represent observations and columns represent variables. Without loss of generality
we will assume that column totals are 0. If it would not be the case then we could
calculate column averages and subtract then from each column. Covariance matrix is

calculated using (when column averages are 0):

DI I Si| e S
i=1 i=1

X'Xx= . = ...

n n
inpxl.l le.pxl.p Sy e S,
i=1 i=1

S =

Correlation matrix is calculated using:

Slp

v Sllspp
R= = diag(S)™"*S(diag(S)™""*

Sp1 |

vV Si 1Spp

1

l.e. by normalisation of covariance matrix by its diagonals. Both these matrices are symmetric
and non-negative.



Principal components as linear combination of
original parameters

Let us assume that we have a random vector x with p elements (variables). We want to
find a linear combination of these variables so that variance of the new variable is

large. l.e. we want to find new vector y:
p
:Zaixi
so that it has maximum possible variance. It means that this variable contains

maximum possible variability of the original variables. Without loss of generality
we can assume that mean values of the original variables are 0. Then for variance

of y we can write:
var(y) = Var(Za ) = E(Zalxl) = Zaa var(x;x;) = Za
Thus the problem reduces to fmdlng maX|mum of this quadrat|c form
If found this new variable will be the first principal component.



PCA using eigenvalues

We can write the above problem in a matrix-vector form:
p,p
Zsijaiaj =a'Sa — max
But by multiplying to a scalar'value this expression (quadratic form) can be made as

large as desired. Then we require that length of the vector is unit. l.e. desired
vector is on the unit sphere (p-dimensional) that satisfies the condition:
V4

Zaiai:aTa:I
Now if we use Lagrange multipliers technique then it reduces to unconditional
maximisation of:
a'Sa+A(l-a'a) > max

If we get derivative of the left side and equate to 0 we have:
di(aTSa+i(l —a'a))=Sa-Jla=0<Sa=/a
a

Thus the problem of finding unit length vector with largest variance reduces to finding
the largest eigenvalue and corresponding eogenvector. If we have largest
eigenvalue and corresponding eigenvector then we can find second largest
eigenvalue and so on. Finding principal components reduces to finding all
egienvalues and eigenvectors of the matrix S.



PCA and eigenvalues/eigenvectors

Note that since matrix S is symmetric and non-negative definite all eigenvalues are
non-negative and eigenvectors are orthonormal (v-s are the eigenvectors). l.e.:

0 i#j

. - o 1 i=j .

v-s contain coefficient of principal components. They are known as factor loadings.
The var(vx)=1,holds, l.e. variance of the i-th component is i-th eigenvector. First
principal component accounts the largest amount of the variance in the data. Xv;

gives scores of the n individuals (observation vectors) on this principal

component. Relati(gn: )

Y A=tr(A)=tr(VAV")=1r(S)=> s,

shows that sum of the eiizlgenvalues is equal to the total variance in the data. Where A
is the diagonal formed by eigenvalues and V is the matrix formed by the
eigenvectors of the covariance (correlation) matrix. Columns of this matrix is
called loadings of principal components that is the amount of each variables
contribution to the principal component.

When the correlation matrix is used then the total variance is equal to the dimension
of the original variables, that is p. Variance of i-th principal component is A. It is
often said that this components accounts 4/%;A; proportion of the total variance.

Plotting the first few principal components together with observations may show
some structure in the data.

T
ViVj:



PCA using SVD

Since we know that principal component analysis is related with eigenvalue analysis we can use
similar techniques available in linear algebra. Suppose that X is mean centered data
matrix. Then we can avoid calculating covariance matrix by using singular value
decomposition. If we have the matrix nxp we can use SVD:

X =UDV'

where U is nxn V is pxp orthogonal matrices. D is nxp matrix. p diagonal elements contains
square root of the eigenvalues of X™X and all other elements are 0. Rows of V contains
coefficients of the principal components. UD contains scores of the principal components
that is amount of each observations contribution to the principal components.

Some statistical packages use eigenvalues for principal component analysis and some use SVD.
Another way of applying SVD is using decomposition:

X =UDV’

Where U is nxp matrix D is pxp diagonal singular values matrix containing square roots of the
eigenvalues of X™X and V is pxp orthogonal matrix that contains coeffcicients of principal
components. This decomposition is used for bi-plots to visualise data in an attempt to
find structure in them.



Scaling

It is often the case that different variables have completely different scaling. For examples one
of the variables may have been measured in meters and another one in centimeters (by
design or accident). Eigenvalues of the matrix is scale dependent. If we would multiply
one column of the data matrix X by some scale factor (say s) then variance of this variable
would increase by s and this variable can dominate whole covariance matrix and hence
whole eigenvalue and eigenvectors. It is necessary to take precautions when dealing with
the data. If it is possible to bring all data to the same scale using some underlying physical
properties then it should be done. If scale of the data is unknown then it is better to use

correlation matrix instead of the covariance matrix. It is in general recommended option
in many statistical packages.

It should be noted that since scale affects eigenvalues and eigenvectors then interpretation of
the principal components derived by these two methods can be completely different. In
real life application care should be taken when using correlation matrix. Outliers in the
observation can affect covariance and hence correlation matrix. It is recommended to use
robust estimation for covariances (in a simple case by rejecting of outliers). When using
robust estimates covariance matrix may not be non-negative and some eigenvalues might
be negative. In many applications it is not important since we are interested in the
principal components corresponding to the largest eigenvalues.

Standard packages allow using covariance as well as correlation matrices. R allows input the
data, the correlation or the coavariance matrices.



Screeplot

Scree plot is the plot of the eigenvalues (or variances of principal components) against their
indices. For example plot given by R.

When you see this type of plot with one dominant eigenvalue (variance) then you should

consider
pci

scaling.
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Dimension selection

There are many recommendations for the selection of dimension. Few of them are:

1.

The proportion of variances. If the first two components account for 70%-90% or more of
the total variance then further components might be irrelevant (Problem with scaling)

Components below certain level can be rejected. If components have been calculated
using correlation matrix often those components with variance less than 1 are rejected. It
might be dangerous. Especially if one variable is independent of the others then it might
give rise the component with variance less than 1. It does not mean that it is
uninformative.

If accuracy of the observations is known, then components with variances less than that,
certainly can be rejected.

Scree plot. If scree plots show elbow then components with variances less than this
elbow can be rejected.

There is cross-validation technique. One value of the observation is removed (x;) then
using principal components this value is predicted and it is done for all data points. If
adding the component does not improve prediction power then this component can be
rejected. This technique is computer intensive

Prediction error calculated using: PRESS(m)— Z(X ~x,)’

11]1

It is PREdiction Sum of Squares and is calculated using first m principal components.

_ PRESS(m—1)— PRESS(m) p(n—1)
" PRESS(m) n+p-2m

If this value is 1 (some authors recommend 0.9) then only m-1 components are selected.



Biplots

Biplots are useful way of displaying whole data in a fewer dimensional space. It is the
projection of observation vectors and variables to k<p dimensional space. How does it
work? Let us consider PCA with SVD

X =UDV'

If we want 2 dimensional biplot then we equate all elements of the D to 0 but the first two.
Denote it by D*. Now we have the reduced rank representation of X:

X =UDV'

Now we want to find GHT representation of data matrix where the rows of G and the columns
of HT are scores of the rows and the columns of the data matrix. We can choose them
using:

G=UD)* and H' =(D) V"

The rows of G and H are then plotted in biplot. It is usual to take a=1. In this case G and H are
scores of observations on and contribution of variables to principal components. It is
considered to be most natural biplot. When a=0 then vector lengths corresponding to
the original variables are approximately equal to their standard deviations.



R commands for PCA

First decide what data matrix we have and prepare data matrix. Necessary
commands for principal component analysis are in the package called mva (in
newer version it is in stats package). This package contains many functions for
multivariate analysis. First load this package using

library(mva) — loads the library mva
data(USArrests) — loads data

pcl = princomp(data,cor=TRUE) - It does actual calculations. if cor is absent then
PCA is done with covariance matrix.

summary(pcl) - gives standard deviations and proportion of variances

pclSscores -gives scores of the observation vectors on principal components
pclSloadings

screeplot(pcl) - gives scree plot. It plots the values of eigenvectors vs their number
biplot(pcl) — gives biplot.

It would be recommended to use correlation and for quick decision use biplot



1)

2)
3)
4)
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Exercises 4

a)  Take data USArrests in R. Use principal component analysis with covariance and
correlation matrices. Then try to give interpretation.



