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Collective coordinates, as obtained by a principal component analysis of atomic
fluctuations, are commonly used to predict a low-dimensional subspace in which
essential protein motion is expected to take place. The definition of such an
essential subspace allows to characterize protein functional, and folding, motion,
to provide insightinto the (free) energy landscape, and to enhance conformational
sampling in molecular dynamics simulations. Here, we provide an overview on
the topic, giving particular attention to some methodological aspects, such as the
problem of convergence, and mentioning possible new developments. © 2012 John

Wiley & Sons, Ltd.
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INTRODUCTION

C onformational transitions in proteins are essen-
tial for their function, such as substrate binding
and product release, allosteric regulation, and many
others. Nevertheless, accessing the underlying atomic
motions in solution is very challenging. Molecular
dynamics (MD) simulations have been used with in-
creasing success to study at the atomic detail con-
formational dynamics in proteins, for example, sec-
ondary structure fluctuations or hydrogen-bonding
network dynamical behavior. However, the extrac-
tion of functionally relevant motions from simulation
results is not straightforward. For example, it is diffi-
cult to capture the early stages of the ion-gating pro-
cess in membrane channels, to reveal conformational
changes in the catalytic site of enzymes, or to inves-
tigate the folding—unfolding process as occurring in
peptides and proteins. A solution to overcome these
difficulties is the use of collective coordinates to iden-
tify a low-dimensional subspace in which the signif-
icant, functional protein motion is expected to take
place.

The two most widely used computational meth-
ods to identify collective motions are normal mode
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analysis (NMA)"? and principal component analysis
(PCA),>7 the latter being the subject of the present
overview. NMA is based on a harmonic approxima-
tion of the conformational energy surface, that is,
assuming a single (parabolic) energy minimum, and
independent normal modes are derived by diagonal-
ization of the mass-weighted Hessian matrix of a sin-
gle structure, corresponding to the energy minimum
configuration. It, therefore, ignores the multiple min-
ima nature of the conformational energy surface typ-
ically governing the functional motions in solvated
proteins. The limitations of the use of normal modes
to describe protein collective motions have been the
subject of a number of studies.?’

To overcome (partially) the limitations of NMA,
a PCA can be carried out on a large number of con-
figurations generated by an MD trajectory [or alter-
natively, by a Monte Carlo (MC) sampling]. PCA is
a multivariate statistical analysis that involves diag-
onalization of a correlation matrix for a set of ob-
servables to yield collective variables. It has been
applied to a large variety of very different observ-
ables/processes, as, for example, to analyze the genetic
history of a group of populations.'®

One of the first applications of PCA to pro-
tein dynamics, the quasi-harmonic analysis, used
mass-weighted coordinates of protein atoms to con-
struct the correlation matrix of atomic fluctuations
(i.e., the mass-weighted covariance matrix), thus
utilizing PCA to reconstruct approximated normal
modes.>” This method, based on the assumption of
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quasi-harmonic internal motions, when applied to
the study of processes involving large conformational
transitions characterized by complex energy surfaces
suffers, in principle, the same limitations of NMA. By
using a non-mass-weighted covariance matrix, PCA
may properly account for anharmonic internal mo-
tions, thus providing the concerted motions associ-
ated to the largest collective atomic fluctuations. Typ-
ically, more than 90% of the total atomic fluctuation
is described by ~20% of the principal axes (i.e., the
covariance matrix eigenvectors). This analysis is of-
ten termed optimal dynamic coordinate analysis® or
essential dynamics (ED) analysis.” Excellent reviews
on the topic appeared in the years 1999-2000.'1-12
Hence, in this overview we focus on the more recent
developments and applications.

THEORETICAL FOUNDATION

Let us consider N dynamical observables x1, x,, ...,
xn (represented by the N-dimensional column vector
x) defining the states space of the system of interest.
For any distribution of such observables, providing
the statistical behavior of x in either the full states
space or within a subpart of it, we can define the N x
N correlation matrix C of the distribution via

C = (AxAxT), (1)
Ax =X — xrefa (2)

where x.f is an arbitrary reference value of x to be
chosen according to the type of observables and infor-
mation considered, Ax” is the transpose of Ax (i.e.,
the N-dimensional row vector), and the angle brack-
ets represent averaging over the distribution. From
Egs (1) and (2), we have

[Cly = (AxAxy) 1,I'=1,2,..., N, (3)

clearly showing that when x.f = (x) (i.e., the refer-
ence is the mean as in most of the applications on
atomic coordinates) the correlation matrix coincides
with the covariance matrix, that is, each element of
the matrix provides the covariance of two observ-
ables. Equation (3) also shows that C is a symmetric
matrix with hence real eigenvalues and orthonormal
eigenvectors. Therefore, the transformation matrix T
for the diagonalization of the correlation matrix, with
each column given by an eigenvector of C, provides

(AgAg™) = A, (4)

where A is the diagonalized correlation matrix with
eigenvalues A and Aq = TT Ax is the observables vec-

T'CT = (TTAxAxTT") =
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tor as expressed in the eigenvectors (5) basis set. From
Eq. (4) it follows that

(nf Axax"n,) = (Ax"gAxTy) = (AqAgy)
= M1y, (5)

showing that C is also a positive definite matrix with
the eigenvalues given by the mean square projections
of Ax onto the eigenvectors 5 of the correlation ma-
trix. Such eigenvectors may then serve to define a new
orthonormal basis set to describe the states space of
the system providing a new set of N dynamical ob-
servables (Ag1, Aga, ..., AgN) given by linear com-
binations of the original ones.

To understand the meaning of such a frame ro-
tation (a schematic two-dimensional example is given
in Figure 1), it is convenient to order the eigenvec-
tors and the new observables according to the size of
the corresponding eigenvalue, that is, numbering the
eigenvectors according to the eigenvalues decreasing
order with hence the first eigenvector corresponding
to the largest eigenvalue (see Figure 2). If we now
consider an arbitrary unit vector v expressed in the
eigenvectors basis set

N
v="> am, (6)
=1
N
Yoai=1, (7)
=1

we can easily obtain the mean square projection of
Ax onto v as

((Ax v)?)

N
(Ax Zalm
=1

;

2 N 2

ZaleTm
=1

N N
Z Zﬂlal’ACIIAQI’

M =

ajlAq

=1 I=11I'=1
N N N
=YD aar(Aqigr) =) afh, (8)
=1 I'=1 =1
which, using Eq. (7), provides
N N
Z@ZKJ:M-FZ&I;Z(M—M)- 9)
=1 =2

By noting that from ordering the eigenvalues
in decreasing order, that is, Ay > A, it follows
S, at (4 — A1) < 0, we readily obtain

r > (AxTv)?) (10)
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FIGURE 1| Example of essential dynamics in two dimensions.
With a distribution of points as depicted here, two coordinates (x, y)
are required to identify a point in the cluster in (A), whereas one
coordinate (x') approximately identifies a point in (B).

and hence

(AxTv)?) < ((AxTq1)%). (11)

Equation (11) clearly shows that the correla-
tion matrix eigenvector corresponding to the largest
eigenvalue provides the direction in the states space
maximizing the mean square projection of the ob-
servables vector Ax. With the same derivations for
the subspace orthogonal to the first eigenvector, we
can obtain the same result for the second eigenvector
and, so forth, for any other eigenvector/subspace.
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FIGURE 2| Relative cumulative deviation (i.e., percentage of the
cumumlative square fluctuation) up to the first 30 eigenvectors
provided by the essential dynamics analysis performed on the C,
atoms of a 25-residue peptide simulated in water. The corresponding
eigenvalues are given in the inset. It can be seen that the first two
eigenvectors contribute for ~65% of the total C, motion.

It is then evident that the correlation matrix
eigenvectors furnish a new basis set, equivalent to
a rotation of the original axes, fitting the observables
distribution at best (i.e., maximizing the Ax mean
square projections). Hence, for anisotropic distribu-
tions such a procedure allows to define a possibly low-
dimensional subspace (essential subspace) describing
most of the behavior of the system, that is, the prop-
erties of the original observables can be largely re-
constructed by using a limited set of new dynamical
observables as defined by the essential subspace eigen-
vectors (essential eigenvectors).

CONVERGENCE OF COLLECTIVE
COORDINATES

The mathematical derivation described in the section
Theoretical Foundation is based on the use of an avail-
able statistical distribution for the observables con-
sidered. In practice, in most cases, we only have at
hand a finite sampling distribution as obtained by a
MD (or MC) simulation. Therefore, the accuracy of
the ED analysis depends on the statistical relevance
of the configurational subspace sampled within the
simulation.

To evaluate the convergence of the essential
eigenvectors, a possible strategy is to divide the
simulation trajectory into two or more parts and
compare the corresponding essential subspaces. The
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FIGURE 3| Typical root mean square

inner product of the essential subspaces (10
eigenvectors) obtained from two independent F
subparts of increasing time length as provided
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degree of overlap between the essential subspaces can
be obtained from the root mean square inner product
(RMSIP) of the essential eigenvectors of one trajectory
subpart with the essential eigenvectors of another tra-
jectory subpart!3-13;

1 M M
RMSIP = | 2> > (ni v, )2, (12)

i=1 j=1

where n; and v; are the ith and jth eigenvectors of two
different subparts, respectively, and M is the dimen-
sion of the subspaces (see Figure 3). Another measure
of the overlap related to the RMSIP was proposed!®
in which the dependence on the size of the fluctua-
tions along the considered eigenvectors is introduced.
An alternative quantity proposed is the overlap of the
covariance matrices as obtained in the different tra-
jectory subparts.!”

To obtain a quantitative assessment of the sta-
tistical significance of the similarity of essential sub-
spaces, it is possible to explicitly evaluate the overlap
as provided by a ‘random’ distribution. The compar-
ison of the distribution of the inner products of the
eigenvectors of one part of the trajectory onto the
eigenvectors of another part, with the random inner-
products distribution allows to quantitatively assess,
within a statistical confidence, whether the observed
similarity is physically meaningful or not.!* Another
measure of the statistical significance of the overlap of
subspaces has been introduced,’ again based on com-
paring the results with a random-like distribution.

Other strategies to assess whether protein dy-
namics is insufficiently sampled were proposed based
on comparing a given measured observable (e.g., the
cosine content of the principal components) with
the corresponding value as obtained by a random
walk.!®18 For example, it was shown that the pro-
jections to the essential eigenvectors obtained from
short (picoseconds time scale) protein MD trajecto-

4 © 2012 John Wiley & Sons, Ltd.
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ries are similar to those of a random walk. In par-
ticular, the projections to the first essential eigen-
vectors show sine- and cosine-shaped curves of large
amplitude.'”>'® Although, in principle, the average co-
sine content of the principal components might be an
indicator for bad sampling; in practice, it cannot be
used for a quantitative assessment of the sampling
because its measure is affected by large errors.!”

The question of the convergence of the essential
eigenvectors was addressed in several papers and led
to a controversial discussion.!3!*%161921 In 3 num-
ber of studies that were restricted to short (100 ps
to 1 ns) MD simulations, it was concluded that PCA
eigenvectors are intrinsically unreliable.!®?° Instead,
in many other studies it was shown that typically
for single-domain proteins the eigenvectors converge
with the simulation time toward a ‘stable’ set in the
nanoseconds time range, %1921 and that such a con-
vergence is statistically significant.'* Whether this set
is really stable beyond the nanoseconds time range,
and coincides with the expectation set, is still an
open question.'® To date, protein MD simulations
may achieve time lengths which at most reach one
microsecond, thus not allowing any explicit evalua-
tion on slower, possible conformational transitions
occurring on the microseconds, or higher, timescales.
For processes clearly involving conformational transi-
tions on such higher timescales, for example, protein
folding—unfolding transitions, the presence of well-
distinct conformational basins separated by relatively
high free energy barriers implies that the essential
eigenvectors evaluated on one basin will not properly
describe the fluctuations within the other basins.

BEYOND LINEAR CORRELATIONS

The ED analysis detects only linear correlations,
hence it is unable to identify correlations of, for ex-
ample, concerted rotations of chemical groups (e.g.,
two methyls simultaneously rotating in a correlated
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way). In general, nonlinear correlations between the
ED modes do persist.” Such higher-order correlations
are difficult to detect and require the use of com-
plex procedures, heavily based on iterative numerical
methods.

Methods to capture nonlinear correlations have
been proposed, as, for example, the nonlinear princi-
pal component analysis (NLPCA)?>?3 based on neu-
ral networks, the full correlation analysis (FCA)?*23
based on mutual information, and the Scalable
ISOMAP (ScIMAP) algorithm.?® Nonlinear correla-
tion analysis may reduce the ‘essential’ dimension-
ality of the considered systems more efficiently than
the ED analysis, that is, a lower number of essen-
tial degrees of freedom is needed to achieve a similar
level of accuracy in reproducing the motions in config-
urational space. Nevertheless, nonlinear correlation
methods have drawbacks connected to the use of the
complex iterative numerical procedures involved, the
difficulty to clearly understand the relevance of each
obtained degree of freedom, and hence the ordering of
the modes, and the often required a priori definition
of key parameters to be used in the method (e.g., the
number of principle components in NLPCA). These
drawbacks limit the use of those methods in practice.

Finally, the use of linear correlation analysis
(PCA) for non-Cartesian atomic coordinates (e.g., di-
hedral angles), possibly leading to estimate nonlinear
correlations in Cartesian space, has been proposed.?”
However, such methods not always provide useful in-
formation on conformational transitions as the metric
change associated to the nonlinear coordinates trans-
formation typically implies that the ‘essential’ modes
in the new space do not correspond to any large struc-
tural fluctuation and/or transition in the Cartesian
space.?®2?

APPLICATIONS

The drastically reduced dimension of the essential
space has been exploited with a great success in (1)
functional and folding studies, (2) the construction
of peptide folding free energy landscapes, and (3) en-
hanced sampling techniques.

Functional and Folding Studies

The typical applications of the ED analysis to the
study of functional motions, that is, by performing a
PCA on unbiased MD simulations, are so many that
a comprehensive list is impossible. Therefore, in what
follows we will provide some recent examples. The
ED analysis is commonly applied to study the large
conformational transitions occurring in enzymes and
regulatory proteins. For example, ED analysis was
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FIGURE 4| Superimposition of 10 filtered configurations obtained
by projecting the Ca motion onto an essential eigenvector of
fluctuation involved in the unfolding of cytochrome c.

used to capture the early stages of the gating pro-
cess in a potassium channel,>* or to reveal a gating-
like conformational change in the catalytic loop of
a HIV-1 integrase,>' or to suggest that conforma-
tional selection, rather than induced-fit, is the domi-
nant mechanism in the molecular recognition dynam-
ics of ubiquitin.?? Another interesting application was
utilized to study the relation between flavin’s redox
states and protein dynamics. In particular, a dramatic
change in the principal components of atomic fluc-
tuations upon reduction of a flavin was revealed.?3
Another application we mention is for the under-
standing of the solvent-driven dynamical transition in
myoglobin that is correlated with the onset of protein
function.?*

ED analysis can also be used to study protein
unfolding. It allowed, for example, to determine the
directions of motion that are activated in the early
stages of the thermal unfolding of cytochrome c¢!®
(see Figure 4) or to distinguish the different mecha-
nisms taking place in thermal and low-pH-induced
unfolding in a prion protein.

Peptide Folding Free Energy Landscapes

The investigation of conformational free energy land-
scapes is central to the understanding of how peptides,
and potentially proteins, fold and function. How-
ever, finding a relatively small and appropriate set
of coordinates by which to represent the free energy
landscape remains challenging for biological macro-
molecules containing many thousands of degrees of
freedom. To this end, PCA is particularly useful in
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Overview

FIGURE 5| Example of the folding free
energy landscape of a peptide in solution as a
function of the position along two first
essential eigenvectors (qq, g2). The
corresponding free energy change, AA(g1, gz),
is given in kJ/mol and gy, g, are given in nm.

providing collective reaction coordinates for the con-
struction of folding free energy surfaces of peptides
(and small proteins).

In the case of a sufficiently converged sampling,
showing reversible folding/unfolding, the free energy
profile as a function of the essential eigenvectors of
motion (typically the first, or the first two) can be eval-
uated as AA(q) = —RT In p(q)/p(qrt), with p(q) the
equilibrium probability density as a function of the
position, ¢, along the eigenvector (or eigenvectors)
and p(qyef) the probability density corresponding to
the overall free energy minimum position. Surfaces of
the internal energy and entropy can be calculated as
well®® and by evaluating within the considered essen-
tial subspace the diffusion coefficient a complete (dif-
fusive) kinetic model of the folding—unfolding process
can be obtained.3”-3

Typically, the folding free energy landscape of
peptides shows the characteristic features of a fun-
neled landscape, either with a downhill surface to-
ward the folded basin or with a more rugged sur-
face with local minima populating the unfolded basin
36,3941 (3 typical example is given in Figure 5). The
degree of roughness was shown to strongly depend
on the temperature.>**! Comparison of the fold-
ing landscapes at different temperatures revealed that
a temperature-dependent transition from a funneled
free energy landscape (at higher T) to a rugged one
(at lower T) occurs for the studied peptides.

The construction of free energy landscapes has
been particularly useful for the understanding of the
role of solvation in the folding process.*>*} The ef-
fect of solvation on the thermodynamics (and ki-

6 © 2012 John Wiley & Sons, Ltd.
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netics) can be explored comparing the free energy
landscapes in vacuum and in solution. For exam-
ple, for a polyalanine peptide a dramatic effect of
the aqueous solvent on the free energy landscape
was observed, resulting in an inverted stability of the
a-helical and B-hairpin states.*? Another important
result was obtained comparing explicit- and implicit-
solvent-derived landscapes showing that implicit sol-
vent models might fail in reproducing the correct
folding thermodynamics.** The construction of free
energy surfaces was also successfully utilized for the
study of the effect of a point mutation on the fold-
ing thermodynamics and kinetics of an amyloidogenic
peptide.**

Enhanced Sampling Techniques

The accessible simulation times of at most hundreds
of nanoseconds are much shorter than the micro-
to millisecond times scales at which many of the
biomolecular processes occur as, for example, ligand
binding, molecular recognition, or chemomechanical
energy conversion. To overcome this limit, a huge
variety of enhanced sampling techniques has been de-
veloped (for a review, see Ref 45).

Here, we will focus on the approaches that
make use of a sufficiently converged essential sub-
space, obtained from a relatively short MD simu-
lation, to bias the sampling. These methods can be
divided in two categories. In a group of approaches
(e.g., local elevation,*® adaptive umbrella sampling,*”
conformational flooding,*® or metadynamics*’) adap-
tive umbrella potentials are employed to destabilize
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the conformations already sampled, and thus gradu-
ally elevate the system from the bottom of a confor-
mation minimum until transition into another mini-
mum takes place. In essence, these are search methods
with ‘memory’, recording a history to penalize vis-
iting the same conformation. To improve sampling
efficiency, the energy landscape can be lifted selec-
tively in an essential subspace of the biomolecule, for
example, a subspace defined by a few essential eigen-
vectors, as was done in conformational flooding®® and
metadynamics.’! An example of a successful applica-
tion of conformational flooding revealed large-scale
functional motions in carbonmonoxy myoglobin.*®
In metadynamics, as a byproduct of the biasing pro-
cess, a quantitative determination of the free energy
surface (defined in the essential subspace) can be ob-
tained for relatively simple systems, as, for example,
a small peptide.’! Other biasing techniques exist to
construct free energy landscapes (e.g., weighted his-
togram techniques?) but, to the best of our knowl-
edge, they do not make use of principal components
as reaction coordinates.

A second group of methods makes use of
constraints or restraints along collective degrees of
freedom.’3=57 The method of ED sampling (EDS)33-5
performs constraint dynamics simulations in the re-
duced space defined by a number of essential eigenvec-
tors. It can be used to increase (expansion procedure)
or decrease (contraction procedure) the distance from
a reference structure, the expansion or contraction
being performed in a selected essential subspace. Re-
cently, the EDS was applied to study the mechanism of
protein folding,>*>>® and the accessibility of the closed
and open domain conformations in an enzyme.’® A
slightly modified version of EDS, namely, the directed
essential dynamics (DED),%” was successfully applied
to determine peptide folding pathways. In another
method,’® restraints in collective coordinate space are
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applied on an ensemble of parallel MD trajectories.
Weak restraints on the ensemble variance are shown
to be sufficient for an increase in sampling efficiency
along the essential eigenvectors by two orders of
magnitudes.

CONCLUSIONS AND OUTLOOK

The great success of PCA for the study of atomic—
molecular systems and, in particular, for character-
izing the conformational mechanics and dynamics of
biomacromolecules, relies on its great simplicity and
applicability, also due to the fact that it is not based
on any phenomenological parameter or a priori in-
formation. These characteristics allow this method to
provide physically consistent low-dimensional essen-
tial subspaces for a wide range of atomic—-molecular
systems/observables.

As outlined in this overview, during the last
two decades ED analysis, that is, PCA applied to the
atomic positional fluctuations as provided by molec-
ular simulations, made it possible to collect a huge
amount of new data, opening the way to the ex-
plicit evaluation of the thermodynamics and kinetics
of conformational transitions via atomistic simula-
tions. Despite the enormous number of applications
described in literature and its almost a century of ex-
istence, PCA is presently not only a widely used tool
in most of the fields of atomic-molecular research,
but it is still undergoing new developments. Of par-
ticular interest for chemical-physical studies are the
new applications of PCA on hydrogen-bonding fluc-
tuations to describe folding—unfolding transitions in
peptides and, in principle, secondary structure ele-
ments of proteins®® or on electronic state fluctuations
to characterize quantum state transitions as provided
by perturbation effects.®!
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