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Abstract: A new implementation of the adaptive biasing force (ABF) method is described. This
implementation supports a wide range of collective variables and can be applied to the
computation of multidimensional energy profiles. It is provided to the community as part of a
code that implements several analogous methods, including metadynamics. ABF and metady-
namics have not previously been tested side by side on identical systems. Here, numerical
tests are carried out on processes including conformational changes in model peptides and
translocation of a halide ion across a lipid membrane through a peptide nanotube. On the basis
of these examples, we discuss similarities and differences between the ABF and metadynamics
schemes. Both approaches provide enhanced sampling and free energy profiles in quantitative
agreement with each other in different applications. The method of choice depends on the
dimension of the reaction coordinate space, the height of the barriers, and the relaxation times
of degrees of freedom in the orthogonal space, which are not explicitly described by the chosen
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collective variables.

Introduction

A variety of approaches for accelerated sampling and
mapping of free energy landscapes from molecular simula-
tions have been proposed over the years (see refs 1-3 for
reviews). Typically, these approaches have only been used
by a limited number of groups that specialize in theory and
method development. Only rarely have such methods been
made readily available to the broad computational chemistry
and biophysics community, as this requires well-documented
implementations compatible with the standard tools of this
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community: parallel simulation programs capable of high-
throughput, large-scale calculations. An implementation of
the metadynamics approach of Laio and Parrinello® for
mainstream simulation packages has been made available
only very recently.’

The previous publicly available implementation® of the
adaptive biasing force method”® (ABF), in version 2.6 of
NAMD,’ has been applied successfully to a number of
challenging cases. The domains of application of ABF
include the recognition and association of peptides or
proteins,'®"'? peptide— or protein—lipid interactions,'*'?
small molecules interacting in a confined environment, '®
cyclodextrin association with cholesterol,'” steroid drugs,l8
and molecular ions," as well as cyclodextrin self-assembly.>°
Translocation of molecules or ions through natural, trans-
membrane channel proteins®'~>* and transporters,* through
synthetic pores,?® and across simple liquid interfaces’ have
also been studied. Another class of applications involves
conformational changes in peptides,”®?° proteins,**~? and
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nucleic acids.®® Despite the number and variety of such
applications, that implementation carried significant technical
limitations, particularly its restriction to one-dimensional free
energy profiles.

When a low-dimension reduced representation comprised
of a few degrees of freedom is used to describe a complex
process, hidden barriers orthogonal to the chosen parameters
are likely to exist. The orthogonal space random walk
strategy>*>> has been proposed by Zheng et al. as a means
of overcoming such hidden barriers. While a promising idea,
likely to be further explored and built upon in the future, it
treats the orthogonal space using a single degree of freedom,
which may or may not suffice to overcome hidden barriers
effectively in complex examples; in many instances, a well-
chosen degree of freedom may well yield better results. Still,
the orthogonal space random walk approach has the advan-
tage of generality, as it extends a predefined reaction
coordinate space without requiring any additional physical
insight into the particular process being examined.

Using collective variables well-adapted to the chemical
or biophysical process under scrutiny is critical, and specific
problems frequently require tailored variables. We recently
developed a new code, the Collective Variables Module, for
version 2.7 of the high-performance simulation program
NAMD. This code supports a large set of commonly
employed variables, offers the possibility to use polynomial
combinations of such variables, and can be readily adapted
to deal with atypical problems; the full list of features and
technical details will be discussed elsewhere. In this contri-
bution, we illustrate its most important application, that is,
sampling multidimensional collective variable space and
reconstructing free energy landscapes. Example simulations
are presented, which make use of the first publicly released
ABF implementation capable of multidimensional calcula-
tions, and are discussed alongside the results of identical
simulations performed with the metadynamics method.*

In the following section, the theoretical framework un-
derlying this ABF implementation is described, and its range
of applicability as well as its technical limitations are
discussed. Next, physical processes in four molecular systems
are explored using ABF, conformational equilibria of N-acetyl-
N’-methylalaninamide (NANMA), Met-enkephalin, and deca-
alanine, as well as ion diffusion through a membrane-
spanning peptide nanotube. The metadynamics approach is
also applied to the NANMA and nanotube examples. The
deca-alanine case is used to document the application of ABF
to a three-dimensional reaction coordinate. The choice of
reaction coordinate space, numerical behavior, and conver-
gence of the simulations, as well as compared properties of
the two methods, are discussed.

Methods

Defining Reaction Coordinates. The strategy described
here consists of using ABF or metadynamics to map a
complex, slow molecular process, based on simulated
trajectories that are orders of magnitude shorter than its
natural time scale. This can be achieved by navigating a
carefully chosen reduced representation, the “reaction co-
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ordinate space”, in an accelerated fashion. The minimum
requirement for this approach to be useful is that the reduced
representation resolves the end points of the transformation
and, more generally, all states that one wishes to describe
based on empirical knowledge of the system. For numerical
efficiency of the sampling scheme, however, the chosen
degrees of freedom should capture all kinetically significant
regions of configuration space: the metastable intermediates
and most probable transition pathways.

In chemical terminology, a reaction coordinate is a one-
dimensional geometric parameter that can be used to measure
the progression of a reaction.”® Moving from the realm of
chemical reactions to that of physical transformations in soft
matter and biological systems, however, fluctuations along
many degrees of freedom may become as important to the
reaction kinetics as the progression along any particular
pathway. One-dimensional descriptors then become less
useful, while constructing single variables that may play this
role becomes more cumbersome and less intuitive.

For the purpose of numerical simulations, the optimal
situation is to achieve time scale separation, whereby all key
slow degrees of freedom are described explicitly, so that other
degrees of freedom coupled to the transformation relax on a
short time scale, as compared to the length of the simulated
trajectories. This time scale influences both the diffusion rate
of the system in reaction coordinate space and the rate of
convergence of quantities that are measured as a function
of the reaction coordinates, such as the free energy gradient
in ABF calculations.

Thermodynamic Integration in Configuration Space.
This section gives a brief historical overview of the
theoretical results that led to the ABF method.” The
general principles of thermodynamic integration (TI) can
be found in early work by Kirkwood®” and Zwanzig.*® In
TI, the free energy derivative is computed as the ensemble
average of an instantaneous force, F, acting on the reaction
parameter &:

aA
dg
In most applications of TI to configurational variables,
sampling along the reaction pathway is obtained by con-
straining the reaction coordinate, the so-called “blue moon
ensemble”. In one of the earliest cases, F was simply
obtained as the force exerted by the solvent on two atomic
ions, projected onto the interionic distance.*® Shortly after-
ward, a general expression for the average force was
proposed by Carter et al.** The expression features a Jacobian
correction term, purely geometric in origin, and is based on
an explicit set of generalized coordinates (&, q) including
the reaction coordinate &:

dU(, q) i kBTa lnlg(gé, qQ)! @

= _<F>§ ()

— (
Fé.q) = oE
The explicit coordinate transform from (x;) to (&, q) is
needed to define and compute both the Jacobian determinant
I/(&, q)l and the partial derivative dU(&, q)/95 of the potential
energy U. The latter quantity depends implicitly on the vector
field (0x;/05), hereafter referred to as “inverse gradient”. This
vector field can be thought of as the direction along which
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an infinitesimal change in & is propagated in Cartesian
coordinates, the complementary coordinates q being kept
constant. By definition, at any point of configuration space,
the dot product of the inverse gradient with the Cartesian
gradient of & is unity.

A significant step toward lifting the requirement of a full
coordinate transform was accomplished by Ruiz-Montero et
al.,*! who proposed to use an implicit set of complementary
coordinates q = (g;) that would obey:

Vg;- qu = 55,' (3)
VE-Vg, =0 4)
Under these assumptions, a simpler expression holds:

_VU-VE | kBT(wva)-vg
IVE? IVEP

In this formulation, the inverse gradient is replaced with a
vector proportional to the gradient V&, and no generalized
coordinate other than & itself is involved. Den Otter and
Briels noted,*> however, that a set of complementary
coordinates obeying eqs 3 and 4 is not guaranteed to exist
and showed that, in fact, it does not exist in a case as simple
as polar coordinates in two dimensions.

In a later publication,™ den Otter put forward the visionary
idea that the change in & can be propagated along an arbitrary
vector field, provided that it satisfies orthonormality condi-
tions similar to eqs 3 and 4. This obviates the need for a full
coordinate transform, and the propagating field generalizes
the role played by the inverse gradient (which is always a
possible choice if a coordinate transform is available).
Ciccotti, Kapral, and Vanden-Eijnden44 extended den Otter’s
formalism to a multidimensional reaction coordinate § = (&),
in the presence of a set of constraints of the form ox(x) = 0.
For each coordinate &, let v; be a vector field (R*N — RV,
where N is the number of atoms) satisfying, for all j and k:

\A V§j = 5:‘/‘ 6)
v, Vo,=0 7

F&.q) = (&)

The ith partial derivative of the free energy surface can then
be calculated as the ensemble average of the following
thermodynamic force:

F&.q = —VU-v, + kgTV v, (8)

Ciccotti et al. note that a set of vector fields v; can always
be constructed by orthonormalization. There is, however, no
simple algorithm to evaluate the divergence of v; numerically.
This term involves the second spatial derivatives of (&),
making numerical schemes potentially costly and subject to
high variance. In practice, analytical derivation is often
possible, although cumbersome; the present implementation
relies on such analytical derivatives.

Adaptive Biasing Force Method for Multidimensional
Coordinates. The ABF method was put forth in 2001 by
Darve and Pohorille.” Its principle is to perform thermody-
namic integration in configuration space based on an
unconstrained simulation, in which a history-dependent bias
is applied; this bias is designed to cancel the running estimate
of the local free energy gradient. In the same contribution,

J. Chem. Theory Comput., Vol. 6, No. 1, 2010 37

an estimator making use of a constraint algorithm was
proposed. More recently, the same authors have described a
new estimator for the free energy gradient, based on time
derivatives of the reaction coordinates, and its use for
multidimensional ABF calculations.®

The NAMD 2.6 implementation of the ABF method using
eqgs 2 and 8 (in the original one-dimensional version of den
Otter) has been described previously.® In comparison, the
present implementation offers a greatly extended range of
applications by allowing multidimensional free energy
surfaces to be computed, and by handling linear combinations
of predefined variables. Multidimensional ABF may be
implemented on the basis of various formulations of ther-
modynamic integration: this implementation relies on com-
putation of free energy gradients based on eq 8, in arbitrary
dimension, as published by Ciccotti et al.** The algorithm
is otherwise identical to that described previously.®® Much
of the new code base is shared with the rest of the Collective
Variables Module, which will be described in detail else-
where. Increased flexibility does imply some restrictions on
the way variables can be combined: as in the previous
implementation, eq 7 has to be satisfied, should any degree
of freedom be constrained. In addition, collective variables
must obey eq 6. For modularity, program objects handling
different collective variables function independently. As a
result, the option of run-time orthogonalization suggested
by Ciccotti et al.** is not available, and the orthogonality
relationship 6 has to be enforced by construction of the
variables. A trivial way of achieving this is to combine
variables that depend on nonoverlapping sets of Cartesian
coordinates, as illustrated by most of the ABF calculations
discussed in the following sections. In the case of chloride
permeation through the nanotube, the longitudinal and radial
coordinates are orthogonal by construction.

The direct benefit of an ABF simulation, besides enhanced
sampling in the molecular dynamics (MD) trajectory, is an
estimate of the free energy gradient, discretized on a regular
lattice. In dimensions higher than one, several numerical
routes can be followed to integrate this gradient and obtain
the free energy surface itself. Other groups have proposed®*>
to expand the free energy on a basis of spline or Gaussian
functions and minimize the square deviation of the gradient
at a predefined set of control points. Here, a different
approach is adopted: the free energy landscape is recon-
structed on the basis of discrete Monte Carlo sampling of
the lattice. Convergence is accelerated by introducing a
history-dependent biasing potential, which is incremented
locally at each step, much in the spirit of conformational
flooding®® or metadynamics.* This method has fewer tunable
parameters than the aforementioned techniques, and it is
natural to use the same lattice that was used to discretize
the ABF calculation. Unlike the method based on smooth radial
functions,* its convergence speed worsens rapidly as the
dimension increases. ABF calculations, however, are unlikely
to be performed in high dimension due to the computational
obstacles that the current form of the algorithm entails. Indeed,
only one ABF result in dimension higher than one has been
reported so far,® that is, the two-dimensional Ramachandran
map of NANMA. It is, nevertheless, conceivable that ABF
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could be recast into a more scalable form, paving the way for
higher-dimension applications.

Computational Details

Molecular Dynamics Simulations. All simulations re-
ported here were carried out using version 2.7bl of the
molecular dynamics program NAMD.?*” Condensed-phase
simulations were performed in the isobaric—isothermal
ensemble. The pressure and the temperature were fixed at 1
bar and 300 K, respectively, employing the Langevin piston
algorithm™® and softly damped Langevin dynamics. Periodic
boundary conditions were applied in the three directions of
Cartesian space. Short-range Lennard-Jones and Coulomb
interactions were truncated smoothly by means of a 12 A
spherical cutoff with a switching function applied beyond
10 A. The particle-mesh Ewald method*® was employed to
compute long-range electrostatic interactions. The Verlet I
r~RESPA multiple time-step integrator’® was used with a
time step of 2 and 4 fs for for updating short- and long-
range forces, respectively. Covalent bonds involving a
hydrogen atom were constrained to their equilibrium length.
Gas-phase simulations were performed using a 0.5 fs time
step, which is appropriate to ensure energy conservation, and
bond lengths were not constrained. Other parameters were
similar to those of condensed-phase simulations. The dif-
ferent chemical systems described in the present contribution
were described by the all-atom CHARMM force field,’’
supplemented by the TIP3P water model.”*

Free Energy Calculations. The present results were
obtained using a software framework known as Collective
Variables Module and implemented in NAMD, versions
2.7b1 and following. Detailed user-oriented documentation
is available:*’ technical details will be published elsewhere.

Conformational Equilibrium of N-acetyl-N"-methylalanin-
amide. The first application consists of a proof-of-concept
simulation of the prototypical, terminally blocked amino acid
N-acetyl-N’-methylalaninamide (NANMA), often referred to
as “alanine dipeptide”.>® Conformational sampling was
performed in vacuum. The ¢ and 1 torsional angles of the
backbone were handled as coupled variables covering each
the full, [—180°; +180°] range of the Ramachandran free
energy map.>* To increase the efficiency of the calculation,
the latter map was split into four individual quadrants,
corresponding to fully independent simulations. Each quad-
rant was discretized into bins 2.5° x 2.5° wide, in which
the force acting along the collective variables was accrued.
In each quadrant, 25 ns of sampling was collected. A
threshold of 100 force samples was set prior to application
of the adaptive biasing force. Reconstruction of the complete
free energy landscape was achieved by numerical integration
of the two-dimensional gradients. The Ramachandran map
was also sampled by means of the metadynamics algorithm.
Sampling was collected from a 30 ns trajectory, and Gaussian
biasing potentials of width 10° and height 0.1 kcal/mol were
accumulated every 500 fs. The free energy difference
between the Cs,, and Cy,, states was computed by integration
over the corresponding regions V and V' of (¢, 1)-space
according to:
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Transition between the two lowest free energy states of
the Ramachandran map, that is, Cy., and Cy,, which are
stabilized by an intramolecular hydrogen bond formed
between the carbonyl moiety of one terminus and the amino
moiety of the other, was investigated with one-dimensional
ABEF, using as a collective variable the difference between
two distance root mean-square deviations, & = rmsd(Cy,,)
— rmsd(Cy,,). To ensure orthogonality of the variables
according to eq 6, the two RMSDs were defined as two
distinct subsets formed of six atoms of the peptide chain.
Three independent, 20, 20, and 40 ns long, simulations were
run, using a threshold of 5000 force samples prior to applying
the adaptive biasing force along the chosen degrees of
freedom.

Chloride Ion Permeation across a Peptide Nanotube. In
this second application, translocation of an halide ion through
a chemically engineered tubular structure is examined.
Peptide nanotubes, which can be viewed as tailored synthetic
ion channels, result from the self-assembly of cyclic peptides
formed by alternated D-L-a-amino acids,””® by means of a
network of intermolecular hydrogen bonds.”’

The peptide nanotube considered here consisted of eight
stacked cyclo[LW], units, where underlined letters denote
D-amino acids, immersed in a thermalized palmitoyl-oleoyl-
phosphatidylcholine (POPC) bilayer formed by 48 lipid units,
in equilibrium with 1572 water molecules. The complete
molecular assembly was placed in a simulation cell of initial
dimensions equal to 36 x 41 x 79 A3. The two-dimensional
free energy landscape delineating the translocation of a
chloride ion across the tubular structure was determined along
the longitudinal, , and the radial, p, directions of the latter.
Specifically, the model reaction coordinate was chosen as a
subset of cylindrical polar coordinates: the distance separating
the ion from the center of mass of the peptide nanotube,
projected onto its long axis, in conjunction with the distance
separating the ion from the axis. The reaction path spanned
40 and 3 A in the &- and in the p-directions, respectively. In
the ABF calculation, force samples were accrued in bins 0.1
A wide. To increase the efficiency of the calculation, it was
stratified into four nonoverlapping windows extending over
10 A each in the {-direction and in which individual 30 ns
trajectories were generated, corresponding to a total simula-
tion time of 120 ns. A metadynamics simulation was
performed using the same pair of variables, similarly split
into four windows along z. Gaussian hills of width 0.3 A
and height 0.1 kcal/mol were added every 200 fs; the
calculation was run for 44 ns.

Structure of Met-enkephalin in an Aqueous Solution. In
this third application, a set of collective variables is utilized
to explore the possible conformations of the short peptide
Met-enkephalin in an explicit solvent. Met-enkephalin is an
endogenous opioid, five-residue neurotransmitter peptide,
YGGFM, found in mammals and known to inhibit the release
of neurotransmitters upon activation of the relevant opioid
receptors. On account of its small size and biological
relevance, it has served as a paradigmatic system for
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conformational search based on a variety of computational
approaches.”® 72

The molecular system consisted of Met-enkephalin im-
mersed in a bath of 778 water molecules, which corresponds
to a simulation cell of initial dimensions equal to 29 x 29
x 29 A3, Conformational search was conducted in a two-
dimensional space, combining the radius of gyration (R,) of
the short peptide to its distance rmsd with respect to a
reference, helical structure. The reaction path spanned,
respectively, 3.5 and 4.0 A, in the R, and rmsd directions.
To ensure that the force measured along one variable does
not act on the other (eq 6), two distinct subsets of atoms
were defined to compute the distance rmsd and the radius
of gyration, the five o-carbon atoms and all other heavy
atoms of the peptide chain, respectively. The instantaneous
force was accrued in bins 0.05 A wide. No adaptive biasing
force was applied below a threshold of 200 samples. The
limited range covered by the two variables obviated the need
for a stratification strategy. The two-dimensional free energy
landscape reported in the present contribution was obtained
from a total simulation time of 80 ns.

Conformational Landscape of Deca-alanine. To explore
metastable conformations of deca-alanine in vacuum, starting
points were chosen manually from preliminary ABF trajec-
tories, and used as the seed for unbiased, 30 ns simulations,
where relaxation and possible transitions to other local
minima were monitored. Conformations typical of the long-
lived, metastable conformers were extracted from these
unbiased trajectories. The conformational free energy land-
scape of the peptide was then explored by means of ABF-
biased simulations in one, two, and three dimensions. The
one-dimensional calculation was based on the end-to-end
distance d, that is, the distance between the carbonyl carbon
atoms of residues 1 and 10. The duration of the simulated
trajectory was 500 ns. The two-dimensional, 200 ns ABF
calculation was based on both d and the minimal rmsd
between the current structure and a typical [-hairpin
conformation (structure E in Figure 6). The rmsd was
calculated using a-carbon atoms only. Finally, a 400 ns three-
dimensional ABF simulation was carried out: the set of
collective variables was composed of three RMSDs, with
respect to the typical a-helical, turn/3,o-helix, and w-shaped
turn, respectively. The structures of these conformers are
described in the Results section. The three RMSDs were
defined on the basis of a-carbon, carbonyl carbon, and
peptide nitrogen atoms, respectively; these nonoverlapping
sets of atoms ensured that eq 6 was obeyed.

Results and Discussion

Conformational Equilibrium of N-Acetyl-N’-methyl-
alaninamide. In the past 30 years, the conformational
equilibrium of NANMA has been investigated in ample
detail, employing a variety of numerical approaches and
potential energy functions.*>*73~%3 Accurate reproduction
of the gas-phase, two-dimensional Ramachandran free energy
map, therefore, hardly constitutes a methodological prowess.
Popular, well-established approaches like umbrella sam-
pling®® used in conjunction with the weighted histogram
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Figure 1. (A) Two-dimensional (¢, ) free energy landscape
of N-acetyl-N'-methylalanylamide in the gas phase derived
from a reference ABF calculation. (B) Free energy change
along collective variable & = rmsd(Creq) — rmsd(Cr.y), the
difference between the distance rmsd with respect to the Cr¢q
and C;, conformational states. The free energy profiles are
obtained from independent 20 (light curve), 20 (dark curve),
and 40 ns (black curve) ABF simulations.

analysis method”® have proven to be perfectly adapted to
rank with the desired accuracy the conformational states
accessible to this paradigmatic peptide.®? Furthermore, in
several instances, NANMA has served as a discriminating
test case for assessing the performance of novel numerical
schemes.®#39

In the present work, determination of the two-dimensional
free energy landscape of NANMA only represents the
necessary preamble to an independent series of computations
based on variables of higher collectivity than the mere ¢
and 1 torsional angles of the backbone. However predictable,
the results of these preliminary free energy calculations
depicted in Figure 1 agree quantitatively with previous
investigations; see, for instance, ref 96. In particular, (¢, ¥)-
integration over the basins corresponding to the Cy,, and C,,
conformations, characterized by a long-lived intramolecular
hydrogen bond, yields a free energy difference of 2.5 kcal/
mol, in favor of the equatorial motif.”®

The metadynamics calculation yields a free energy land-
scape identical to that determined by means of ABF (data
not shown). Fast-relaxing, low-friction systems such as
NANMA do not place high demands on the algorithms used
to sample them, as demonstrated by early successes obtained



40 J. Chem. Theory Comput., Vol. 6, No. 1, 2010

with limited sampling and unsophisticated algorithms. Meta-
dynamics can be run with settings that result in high energy
input (frequent accumulation of high hill potentials), without
adverse consequences on the accuracy on the PMF. As a
result, complete sampling can be obtained from a relatively
short, 30 ns trajectory. As the ABF approach imposes that
the system remains close to equilibrium, it requires a longer
sampling time (100 ns). It is important to note, however,
that this situation may not always occur in more delicate
cases.

Transition between the lowest free energy states, Cy,., and
Cia, of NANMA has been the object of a number of
computational investigations published in the past
decade.®*>% In a nutshell, three possible, low free energy
pathways can be considered to describe the (¢, 1)-isomer-
ization of the peptide. The first path connects the two
conformations through the lowest point of the quasi-
continuous free energy barrier arising around ¢ = 0°. The
second path uses the Cs, extended state as an intermediate
between the C;,, and Cy,, conformers, overcoming the free
energy barrier located ca. ¢ = 120°. Last, the third path
partially overlaps with the previous one, yet, in lieu of
diffusing in the wide basin that encompasses the Cs, Cs,,,
and 8 conformations, visits the higher free energy states of
the right-handed a-helix region.

As can be observed in Figure 1, the three independent free
energy calculations that rely upon the use of variable & =
rmsd(Cy,,) — rmsd(Cy,,) yield a consistent picture for the
transition between Cy,, and Cy,,. Although a longer, 40 ns
simulation has been performed for reference purposes, 20
ns appears to be ample to achieve convergence of the free
energy. Each free energy profile possesses two distinct
minima positioned almost equidistantly with respect to § =
0 A and approximately 2.5 kcal/mol apart, in line with the
measure based on the two-dimensional (¢, 1) map. Interest-
ingly enough, the three different curves exhibit a shallow
free energy minimum emerging around —0.4 A, which
corresponds to an ensemble of Cs-like, extended states. This
pseudominimum prefaces an abrupt, 5.6 kcal/mol barrier
toward the C;, conformation, thereby suggesting that
isomerization of NANMA proceeds through the second low
free energy path outlined previously.

Chloride Ion Permeation across a Peptide Nanotube.
Synthetic nanotubes resulting from the self-assembly of
cyclic peptides are capable of conducting ions.?” Synthe-
sized with the proper amino-acid sequence, these nano-
tubes exhibit a pronounced tendency to insert as inde-
pendent entities into the lipid bilayer, where they act as
transmembrane channels.”®® Atomic-level mechanism and
energetics of ion transport have been explored by means of
complementary theoretical approaches.'**~'%? In the light of
calculations relying upon Poisson—Nernst—Planck theory,
it has been suggested that conduction through open-ended
tubular structures can be strongly modulated by the nature
of the surroundings.'®"*19319% Such environmental effects on
ion transport were subsequently quantified, employing free
energy calculations, wherein a sodium ion was shuttled across
the cavity of a peptide nanotube spanning the width of a
fully hydrated POPC lipid bilayer.?*
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Figure 2. Comparison of the two-dimensional free energy
landscapes characterizing the transport of a chloride ion in a
peptide nanotube spanning a fully hydrated POPC lipid
bilayer, using ABF, without (A) and with (B) periodicity-
enforced integration of the gradients, and metadynamics (C).
The free energy is measured concomitantly along the radial,
p, and the longitudinal, ¢, directions of the membrane-
spanning tubular structure.

In Figure 2, the two-dimensional (p, &) free energy maps
delineating the translocation of a chloride ion in the same
tubular structure are displayed, based on separate ABF and
metadynamics calculations. From a methodological stand-
point, the striking resemblance between the measured free
energy landscapes ought to be underlined. Periodicity-
enforced integration of the gradients obtained from the ABF
calculation yields a free energy map that is by and large fully
superimposable on that generated with metadynamics. A
glance at the ABF maps reconstructed with and without
periodicity suggests that introduction of the latter when
integrating the gradients somewhat reshapes the free energy
landsgape, altering its expected symmetry with respect to &
=0 A.

In sharp contrast with sodium,® transport of chloride in
the present peptide nanotube is markedly unfavorable.
Translocation of the halide ion is burdened by a steep free
energy barrier, on the order of 17 kcal/mol, at the mouth of
the synthetic channel. This result is not completely surprising,
given the radius of the pore formed by the stacked cy-
clo[LW], peptide units, and the optimal aqueous coordination
of chloride, found to be equal to ca. 6—8 at the experimental
level,'% and to about 7.5 on the basis of MD simulations in
bulk water.'® The significant free energy penalty arising at
= =+£I15 A is, therefore, linked to a severe dehydration of
the halide ion, entering the synthetic channel partially
“naked”.

Diffusion of the ion is further hampered by subsequent
free energy barriers, ca. 7—8 kcal/mol high, emerging at the
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Figure 3. Two-dimensional (rmsd, Ry) free energy landscape of Met-enkephalin in aqueous solution. The position rmsd with
respect to a helical conformation is measured over o-carbon atoms only. The radius of gyration, Ry, is evaluated over all heavy,
but a-carbon atoms. Contours of the main two-dimensional map are separated by 0.5 kcal/mol. The I-IV key conformations of
Met-enkephalin are charted on the inset free energy landscape and depicted to the right as cartoon and ball-and-stick
representations. In the cartoon representation, color indicates secondary structure. Molecular graphics were rendered with VMD.'%°

midpoint between two adjacent cyclic peptides, the separation
of which amounts to about 4.7 A. Congruent with the
simulations of the sodium ion,*® in-plane coordination
appears to be also the energetically preferred state for
chloride. It is remarkable that the halide ion does not hop
between cyclic peptides following a rectilinear path, collinear
to the long axis of the synthetic channel at £ = 0 A, but
instead grazes the wall of the latter to form intermittent
interactions with peptide amino moieties. This diffusion mode
is reflected in a curvilinear low-free energy path apparent in
Figure 2.

Structure of Met-enkephalin in an Aqueous Solution. On
account of its unusual flexibility, Met-enkephalin can bind
interchangeably either the 9, the «, or the u-opioid receptor,
where it is anticipated to adopt distinct conformations. This,
in large measure, rationalizes why experimental approaches
have hitherto failed to propose a converging view of the
native structure of this short peptide.?*'°%!%7 Although it is
reasonable to believe that the marked flexibility of the
backbone would be reflected in a generally flat free energy
landscape, equilibrium MD simulations at a single temper-
ature have proven to prevent exhaustive exploration of
conformational space, the peptide chain being recurrently
trapped kinetically in a random, unrepresentative conforma-
tion.®® Despite its reduced length, Met-enkephalin, therefore,
constitutes a pathological case for standard MD, but a well-
suited candidate for more recent, multicanonical approaches,
like replica-exchange MD,'*® aimed at enhancing ergodic
sampling.

The two-dimensional free energy map of Figure 3 sheds
light on the conformational space accessible to the short
peptide along the directions of the position rmsd with respect
to an arbitrary chosen helical motif and of the radius of
gyration of the backbone. As has been commented on
previously,®” the free energy landscape of Met-enkephalin
in aqueous solution consists of a rather wide, shallow basin,
featuring a number of pronounced minima. At low distance
rmsd and R,, a compact, 3j¢-helix motif (I) is observed,
resulting primarily from the formation of an intramolecular
hydrogen bond between the carbonyl group of residue i and

the amino group of residue i + 3, albeit transitory intercon-
version to an a-helical i to i + 4 hydrogen bond can be
detected. Still at low R,, but at a larger distance rmsd, around
2.8 A, a free energy minimum (II) corresponding to an
embryonic helix turn emerges about 2.1 kcal/mol higher than
that of conformation I. A third minimum (ITI) can be found
at a distance rmsd of 2.0 A and an R, of 5.2 A, with a free
energy equal to that of the helical motif I within statistical
accuracy. Its U-shaped structure is essentially nonhelical,
featuring an intermittent hydrogen bond formed between the
terminal, blocking amino moiety and the carbonyl group of
the first glycine residue. Last, a fourth conformational
minimum (IV) can be found at a distance rmsd of 1.4 A
and an R, of 4.8 A, and corresponds to a free energy only
0.6 kcal/mol above that of structures I and IIIL. In this free
energy minimum, the peptide chain adopts a y-turn confor-
mation, often encountered in S-hairpin motifs.

It is apparent from the present results that, using a reduced
set of collective variables and a single temperature, ABF is
able to recover the complete free energy landscape of Met-
enkephalin, virtually identical to that reported by Sanbon-
matsu and Garcia on the basis of parallel-tempering MD
simulations.®” The (rmsd, R,) two-dimensional map confirms,
indeed, that this free energy landscape is relatively shallow
and consists of essentially four distinct ensembles of
conformations characterized by overall comparable free
energies, barring structure II, and separated by appreciably
low barriers.

The local minima are primarily distinguished by their rmsd
value. Therefore, in this case, the second collective variable,
R,, is not essential to resolve the low free energy states, but
it accelerates the sampling of transition pathways between
them, and therefore the overall convergence of the calcula-
tion. The rmsd could be considered a one-dimensional
reaction coordinate, while R, is a degree of freedom in the
orthogonal space that is included in the ABF calculation for
numerical efficiency.

Conformational Free Energy Landscape of Deca-ala-
nine. Deca-alanine in vacuum has been used several times
as a computationally inexpensive and seemingly simple toy
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Figure 4. (A) One-dimensional free energy profile of deca-
alanine in vacuum, as a function of the end-to-end distance.
Intermediate results are plotted for every 20 ns period as gray
lines; the final result of the 500 ns ABF simulation is shown
as a dark line. (B) Sampling histograms (on a logarithmic
scale) corresponding to the one-dimensional ABF simulation
of deca-alanine. Each line is the full histogram at the end of
a 20 ns period of the simulation.

model for conformational free energy calculations on
peptides.®?%119-113 Stretching the peptide from its native,
a-helical state to extended conformations, and back, is indeed
a fairly straightforward transformation, for which relatively
few pathways are possible. All simulations cited above, using
the end-to-end distance of the peptide chain as a coordinate
and various biasing schemes, achieve convergence and find
potentials of mean force in good agreement with one another.
Such simulations, however, only explore a small fraction of
the conformational space available to deca-alanine. Indeed,
when an attempt was made to sample the more compact
conformations corresponding to end-to-end distances shorter
than the o-helix length (i.e., less than 12 A), it was found
that several local minima, and the complex pathways linking
them, were not resolved by that simple distance parameter.
As a result, the complete free energy landscape of the peptide
could not be mapped.”®

As can be seen from Figure 4B, using ABF to sample the
end-to-end coordinate d provides very uniform histograms
for elongated structures, and uneven, sporadic sampling of
the compact region. Thus, the potential of mean force shown
in Figure 4A, while very accurate for d greater than 12 A, is
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not converged for smaller values. Furthermore, it does not
exhibit clear features that could be related to the metastable
conformations that can be identified in that region. The
reason behind such nonuniform sampling of the low-d range
is that d is a highly degenerate descriptor of most of the
conformational space of deca-alanine. Even with an ideally
converged adaptive bias canceling the free energy profile,
some of the transitions would remain rare events, essentially
because the enthalpic or entropic barriers are orthogonal to
the direction of the bias.

Unbiased simulations starting from structures chosen from
the ABF simulations indicate several metastable conformers
whose lifetime is at least 30 ns. In order of increasing relative
potential energy, these structures are the o-helix (0 kcal/
mol), a loop containing a short 3p-helical segment (3.5 kcal/
mol), an w-shaped loop composed of 5 and other turns (6.2
kcal/mol), a 5-bridged loop (9.3 kcal/mol), a S-hairpin (9.8
kcal/mol), and a slightly expanded 7-helix featuring transient
i to i + 5 hydrogen bonds (11 kcal/mol). These conforma-
tions are represented in Figure 6.

To resolve the compact states that are merged in the one-
dimensional landscape, the distance parameter was supple-
mented with a second degree of freedom, the position rmsd
from a typical S-hairpin conformation. The results are
represented in Figure 5. Although a large fraction of the
reduced space is visited, sampling tends to accumulate in a
few localized regions (Figure 5B), suggesting a failure of
the collective variables to describe all of the free energy
barriers in these regions. The global free energy minimum
corresponding to the a-helix is clearly visible in the measured
free energy landscape (Figure 5A). In contrast, the basins
corresponding to metastable structures are almost coalesced
and separated by low barriers, inconsistent with the long
lifetimes of these conformers. Despite its limits, the two-
dimensional profile is consistent with the one-dimensional
free energy of 4 in the region containing the a-helix and the
extended states.

Finally, a set of three RMSDs was chosen to try and
resolve the numerous conformers of similar compactness of
deca-alanine. The three-dimensional PMF is shown in Figure
6. In general, the differences in free energy between the
metastable conformers and the a-helix are smaller than the
potential energy differences, indicating significant entropy—
enthalpy compensation. Indeed, the a-helix is more rigid than
the other conformers. Because of the width of basins
corresponding to individual conformers, and the short
distance separating them in the reduced space, some con-
formers are still not perfectly resolved, in particular in the
low free energy region containing the -hairpin and 5-bridge
structures. Indeed, the local free energy minimum in that
region contains conformations similar to both structures,
whose similarity renders difficult to distinguish in a low-
dimension representation. The free energy landscape is,
however, sufficiently resolved for the complete conforma-
tional space to be explored at a much increased rate due to
the adaptive bias. Here, because the full conformation space
of flexible peptide is explored, the rmsd coordinate is not
robust over its entire range. Specifically, at very high rmsd
values, the structure becomes too dissimilar from the
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reference coordinates for the optimal rotation to be uniquely
defined. In such regions of conformation space, the gradient
of the rmsd is irregular and exhibits jumps, and hence forces
measured or applied along that direction have little physical
significance. It should nevertheless be noted that in more
realistic applications, the relevant range of the rmsd will
typically be limited to the region where the optimal rotation
is unique, hence avoiding the issue altogether.
Deca-alanine exhibits a very structured, corrugated free
energy landscape, featuring a rich set of metastable conform-
ers. Although the peptide is of little intrinsic biochemical
relevance, particularly in vacuum, it proves to be a chal-
lenging test case for conformational sampling algorithms.
Comparison of ABF and Metadynamics. The ABF and
metadynamics schemes rely on several comparable param-
eters. The choice of collective variables is crucial in both
cases. Metadynamics offers more flexibility in the choice
and implementation of collective variables, because only the
value and gradient of the variables are needed, not their
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second derivatives. In the present implementation, any set
of variables can be used together: there is no orthogonality
requirement. Both methods require a width parameter, the
Gaussian hill width in metadynamics and the bin width in
ABF. This parameter defines the spatial resolution of both
the time-dependent bias and the final PMF. Finally, a
metadynamics simulation can be characterized by a filling
rate, equal to the height of the Gaussian potential increments
divided by the period of addition of such increments. This
parameter controls how much work is performed on the
system by the bias, and this quantity is typically constant
for the complete duration of the simulation. The correspond-
ing parameter of ABF, the threshold amount of sampling
before the adaptive bias is enabled, is not equivalent to the
filling rate. It has the dimension of a time rather than that of
a power, and it only affects the initial behavior of the
simulation. Once the amount of sampling is above that
threshold, and neglecting the finite resolution of the lattice,
the behavior of ABF is entirely specified by the algorithm,
regardless of the values of tunable parameters.

In biased simulations that rely on reduced representations
comprising few degrees of freedom, the most common
shortcoming is the slow relaxation of other, “hidden” degrees
of freedom, not included in the chosen set of collective
variables. Under these premises, the underlying energy
landscape of a given point in reduced space may change
during the simulation, with the result that data collected
previously become ‘“stale”, at least on the time scale of
assisted diffusion in reduced space.?* In principle, in the limit
of ergodic sampling, even the slowest degrees of freedom
are fully thermalized and convergence occurs. In practice,
however, achieving this situation is highly dependent on the
relevance of the reduced space as a reaction coordinate.

In any such nonideal situation, the exact form of history
dependence of the biasing algorithm comes into play.
Metadynamics is almost always performed with a constant
height of the Gaussian hills, chosen to meet the desired
accuracy through a theoretical estimate of the error.!'*!!>
This gives the method a finite memory time, which can be
identified as the time required to explore the whole landscape.
In this case, if relaxation of hidden degrees of freedom
modifies the potential seen by the collective variables,
metadynamics will fill up the minima of the “new” free
energy landscape, until all memory of the previous landscape
has been erased. It seems possible that such a situation might
give rise to a cyclic behavior, where the locally measured
free energy (on the time scale of metadynamics) oscillates
between values corresponding to different basins, as dictated
by transitions of hidden, slow degrees of freedom. This
behavior might, however, be viewed as useful, in that it
allows the method to recover from situations where inac-
curate data have been collected, either as a result of
deficiencies in the reduced representation or due to irrevers-
ible work performed by the metadynamics bias.

ABEF, in contrast, has an effectively infinite memory time.
Once a data point has been accumulated in the average, its
weight decreases as the inverse of the total number of
samples, that is, as 1/t. For this reason, the oscillating
behavior described above is unlikely. Instead, a commonly
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Figure 6. Three-dimensional conformational free energy landscape of deca-alanine, as a function of the rmsd with respect to
ideal a-helical, w-shaped y-turn, and turn/3,o-helix conformations, respectively. The free energy was computed by numerically
integrating the gradient obtained from a 400 ns ABF simulation. Free energy isosurfaces are shown for respective values of 3
(black), 6 (blue), 9 (green), 12 (yellow), and 24 kcal/mol (white). Average positions corresponding to metastable conformations
are indicated by red spheres. Conformers are shown as ball-and-stick and cartoon representations, with color indicating secondary
structure (purple, a-helix; blue, 34o-helix; red, w-helix; gray, turn; yellow, -strand; tan, 5-bridge; white, unstructured). Hydrogen
bonds are indicated as blue lines. The conformers are labeled using red capital letters: (A) a-helix, (B) turn/3¢-helix, (C) w-shaped
turn, (D) g-bridge, (E) p-hairpin, (F) w-helix, and (G) extended form (unstable).

observed effect of slowly relaxing hidden degrees of freedom
is a change of the sampling behavior as the simulation
progresses. Over time, the relative weight of newly accrued
data in the average decreases, as does the responsiveness of
the time-dependent bias to changes in the locally measured
thermodynamic force. This is the desired behavior in the ideal
context of a perfect reaction coordinate space, where all
orthogonal degrees of freedom are either fast, or kinetically
trapped and not relevant to the transformation under study.
In real cases, the symptom is an initially efficient exploration
of reduced space, followed by an increasing tendency to get
trapped in local minima as they are “discovered” through
relaxation in the orthogonal space and crossing of hidden
barriers. This is observed, to a minor extent, in the 2D and
3D deca-alanine simulations described in the previous
sections. Arguably, such behavior is indicative of failure of
the reduced space to capture the reactive intermediates and
pathways to a degree that allows for sampling over the
intended (or technically feasible) time scale.
Metadynamics is designed as a nonequilibrium method,
whereas ABF relies on equilibrium sampling from the
canonical ensemble. In practice, ABF simulations go through
an initial stage during which the estimate of the local free
energy gradient evolves rapidly; then the running average is
updated on a much slower scale, and eventually stabilizes
altogether. Applying a biasing force based on the early, fast-
fluctuating estimate of the free energy gradient may push

the dynamics into a nonequilibrium regime. This initial
departure from equilibrium conditions can be greatly reduced
in practice by delaying the introduction of the biasing force
until after the large fluctuations of the running average have
ended: this is accomplished by waiting for a preset number
of samples to be accrued in a local bin.**** Should any
nonequilibrium effects occur, however, force samples mea-
sured in that phase are still taken into account in the average,
and, as mentioned above, this contribution never vanishes.
Any bias (typically, an overestimated free energy gradient)
due to irreversible work performed in the beginning of the
simulation will taint the final data, with a weight that only
decays as 1/¢. In contrast, exponential convergence of ABF
has only been proved under somewhat restrictive assump-
tions, including the use of a large number of replicas.''®
When a metadynamics run is carried out with constant hill
height, irreversible work is performed throughout the simula-
tion. This contribution may only be deemed to have been
eliminated from the measured PMF once multiple sweeps
have been observed (or, in higher dimension, multiple
transitions between neighboring basins).

Both issues (slow hidden variables and irreversible work)
can be alleviated by restricting the data set used to reconstruct
the free energy, eliminating selected, problematic data. In
metadynamics, this is achieved by stopping the simulation
once the system leaves the relevant region of configuration
space. In ABF, data collected in the initial, out-of-equilibrium
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stage can be removed from the final average. Metadynamics
performs well in low-friction systems such as the peptide
nanotube example, because the filling rate (hill height divided
by the hill accumulation period) can be increased while
maintaining a level of irreversible work that does not hinder
convergence.

Conclusion

An implementation of the ABF approach supporting multi-
dimensional reaction coordinates based on sophisticated
variables is proposed. This implementation is available in
the scalable molecular-dynamics program NAMD, but can
be readily incorporated into any MD platform. The method
and its implementation have been tested on a variety of
biomolecular systems. Multidimensional reaction descriptors
improve the level of detail in which molecular processes can
be mapped, as in the case of chloride permeation through a
self-assembled peptide nanotube. In systems featuring par-
ticularly complex free energy landscapes, such as the multiple
metastable conformations of deca-alanine, efficient sampling
is only possible when applying the adaptive bias in a two-
or three-dimensional reduced space. The work of constructing
an appropriate reduced representation is made easier by the
availability of variables such as the position rmsd, and the
flexibility afforded by linear combinations of predefined
variables.

Two of the test cases were used to compare directly ABF
and the metadynamics method, applied on the same variables,
under otherwise identical simulation conditions. Both ap-
proaches yield the expected results in terms of phase space
exploration and sampling, and reconstruction of the free
energy landscape. Neither can be said to be more efficient
or accurate than the other on general grounds. Still, meta-
dynamics does offer an inexpensive way to rapidly explore
simple, fast-relaxing systems that are robust enough to
withstand a high energy input, as is apparent from the toy
model of NANMA, while ABF may constitute a safer option
for more fragile systems. Differences are likely to become
most apparent in difficult scenarios, where the two ap-
proaches react differently to incomplete sampling and
nonequilibrium effects. Whereas metadynamics is much more
likely to perform significant irreversible work in late stages
of such simulations, ABF may become inefficient and sample
reduced regions for disproportionate times.

The most crucial issue remains the choice of a reaction
coordinate space. As illustrated in the deca-alanine example,
describing a small system with seemingly limited phase space
may require multiple parameters, fine-tuned to resolve nearby
points of conformation space that, nevertheless, belong to
different low free energy basins or pathways. More sophis-
ticated collective variables will be developed to describe
complex, frustrated free energy landscapes. The existing
algorithms will evolve toward better scalability, or be
replaced altogether by new sampling methods. In any event,
it is essential for the progress of large-scale applications that
new developments in sampling and free energy algorithms
be kept in phase with state-of-the-art, parallel simulation
software.
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