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 Nature of the protein universe
 Michael Levitt1

 Department of Structural Biology, Stanford University, Stanford, CA 94305-5126

 Contributed by Michael Levitt, May 9, 2009 (sent for review April 20, 2009)

 The protein universe is the set of all proteins of all organisms. Here,
 all currently known sequences are analyzed in terms of families
 that have single-domain or multidomain architectures and
 whether they have a known three-dimensional structure. Growth
 of new single-domain families is very slow: Almost all growth
 comes from new multidomain architectures that are combinations

 of domains characterized by «15,000 sequence profiles. Single-
 domain families are mostly shared by the major groups of organ-
 isms, whereas multidomain architectures are specific and account
 for species diversity. There are known structures for a quarter of
 the single-domain families, and >70% of all sequences can be
 partially modeled thanks to their membership in these families.

 domain architecture | protein sequence | protein structure |

 structural genomics

 protein universe, a concept first mentioned in 1992 (1), is
 the collection of all proteins of every biological species that

 lives or has lived on earth. It is a very large, poorly defined, even
 mysterious entity, which also happens to be an essential under-
 pinning of all biology. Studies of the protein universe as it exists
 today began with the first determination of a protein sequence
 by Sanger in 1952 (2). Now, there are almost 8 million sequences
 in a nonredundant (NR) database of protein sequences, includ-
 ing the complete genomes of «=4,800 different species. This large
 body of data is doubling in size every 28 months. The sequences
 are very different, with polypeptide chain lengths that range
 from 6 to almost 37,000 amino acid residues. Biological knowl-
 edge on sequences also varies enormously. For some proteins, we
 know their three-dimensional structure and how and where they
 function and at what kinetic rate. For most, we know just the
 sequence deduced from the DNA sequence.

 Coming to grips with the protein universe is unarguably
 central, given its importance to biology and the consequent
 devotion of large resources to accumulate all of this experimen-
 tal data. In this endeavor, we are aided by the evolutionary
 relatedness of all life on earth, which provides a shortcut that
 speeds analysis of the protein universe. Many sequences show
 detectable levels of similarity (measured, say, by the percentage
 of identical amino acids when suitably aligned). Appreciable
 levels of similarity generally imply homology or descent from a
 common ancestor, which allows related sequences to be grouped
 into families (3). The number of families is much smaller than the
 number of sequences, making the entire task more manageable.

 To reveal the nature of the protein universe, we ask: How
 many protein sequences are there? How many sequences are
 novel vs. repetitious? How many sequences are characterized at
 structural and functional levels? Are sequences of prokaryotes,
 eukaryotes, and viruses different? Is the number of sequence
 families saturating or is it still expanding rapidly?

 An obvious way to cluster sequences into families is by
 pairwise comparison (4) of all sequences preceded by indexing
 (5) to eliminate close pairs. Such a combination led to massive
 clustering of millions of protein sequences from both known
 species and environmental samples by Yooseph et al. (6). Their
 remarkable conclusion was that the number of protein families
 as measured by the number of sequence clusters showed no sign
 of saturation. Indeed, the cluster count was increasing at the
 same rate as new sequences were being determined. This result

 featured in a recent report on the Protein Structure Initiative (7)
 that expressed concern that because the number of new families
 is expanding rapidly determining three-dimensional structures
 for a representative of each family may not be possible (8).

 Here, we approach the problem differently. Instead of clus-
 tering entire protein sequences (6), we rely on the occurrence of
 protein sequence patterns termed "sequence profiles." These
 patterns can be derived from a few members of the family and
 then used to add new members that match the same pattern.
 They are related to structural domains, the independent globular
 parts of the polypeptide chain found in protein structures, but
 the correspondence is not exact (9).

 The first major set of sequence profiles, PFAM (Protein
 FAMilies), is curated as a consortium (10), which has grown
 from 100 to > 10,000 different sequence profiles. Our analysis
 uses the Conserved Domain Architecture Retrieval Tool

 (CDART) resource at the National Center for Biotechnology
 Information (NCBI) (11), which includes >30,000 sequence
 profiles from seven different databases and searches sequences
 using RPS-BLAST (12), which is based on PSI-BLAST (13).
 Methods such as PFAM, RPS-BLAST, and others (14, 15) build
 a profile from a multiple sequence alignment and use it to search
 for any protein sequence. RPS-BLAST uses heuristics for effi-
 ciency and is almost as sensitive as the probabilistic hidden
 Markov models (HMMs) (16, 17) used by PFAM, with a
 matching threshold of ^20% sequence identity (18).

 On the basis of early work of Chothia (19), Holm and Sander
 (20), and Koonin et al. (21), the present work provides a concise
 description of the protein universe: (i) The number of single-
 domain architecture families (SDAs; with one region matched by
 a sequence profile) is increasing very slowly. («) Multidomain
 architecture families (MDAs; with more than one region
 matched by a sequence profile) continue to grow rapidly and at
 the same exponential rate as deposited sequences. (Hi) Almost
 all novelty comes from the arrangement of known SDA domains
 along an MDA sequence, (iv) Structural information is known
 for a quarter of sequence profiles, with one-fifth of these
 structures coming from structural genomics. (v) Evolution pro-
 ceeds by creating new MDA families, particularly for eukaryotes.
 (vi) Less than 25% of the sequences do not match any sequence
 profile (referred to as the "dark matter") and likely contain
 additional sequence profiles, (vii) The distribution of SDA family
 sizes does not follow a simple power law, preventing an estimate
 of the effective total number of SDAs.

 Different Growth of SDAs and MDAs

 The growth in the number of SDA and MDA families is very
 different (Fig. 1). Although the number of MDA families is
 growing rapidly with time, the number of SDA families
 appears to be saturating. In 1980, there were 8,000 sequences
 in the NR database, with 4,500 different SDA families and 400
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 Fig. 1. As the NR database grows, the number of different multidomain architecture (MDA) families found by CDART is increasing rapidly with year (¿eft) or
 added sequence (Right). In contrast, the number of single-domain architecture (SDA) families is increasing much more slowly. Because the number of sequences
 is growing exponentially, fractional sequence coverage (number of sequences in a SDA or MDA family divided by the total number of NR sequences) has dropped
 slightly from 0.88 to 0.76; more than three-quarters of current sequences still contain a domain recognized by a known sequence profile. Merged CDART
 sequence profiles are used here. Corresponding results with unmerged CDART sequence profiles are given in Fig. S1 . The solid curves marked "2008" were made
 with a release of CDART from February 9, 2008, which contained fewer sequence profiles (24,083 compared with 27,036). This gave rise to smaller numbers of
 SDA and MDA families and lower coverage. During this time, the number of sequences in the NR database increased by 2 million.

 different MDA families. By mid-2000, the numbers of
 MDA families and SDA families were equal. In the past 9
 years, the number of deposited sequences has increased 13.6-
 fold, the number of MDA families has increased 5.6-fold, but
 the number of SDA families has increased only 21%. The vast
 majority of sequence profiles found in MDAs (98.2%) also
 occur independently in SDAs.

 Part of the slow growth of the numbers of SDAs is due to the
 time needed to define a new sequence profile (Fig. S2). A year
 ago, the number of merged sequence profiles was smaller (11,678
 vs. 14,119), resulting in lower values of the number of SDAs and
 MDAs. Although almost 2,000,000 new sequences were added
 to the NR database in this period, the fractional sequence
 coverage actually increased from 0.766 to 0.774 to reduce the
 dark matter fraction by >3% (from 0.234 to 0.226). Even a few
 additional sequence profiles allow characterization of a larger
 fraction of sequences.

 The NCBI's NR database of sequences used here is large, with
 almost 8 million sequences and 2.6 billion residues (Table SI),
 and includes approximately equal amounts of data from pro-
 karyotes and eukaryotes. To ensure that the radically different
 growth seen for SDA and MDA families is not an artifact of the
 definition of sequence profiles and my method to merge dupli-
 cated sequence profiles (see Materials and Methods), I repeated
 this analysis with all of the CDART sequence profiles and
 CDARTpFAM, the subset of sequence profiles from PFAM. I
 also tested the role of the sequence matching algorithm using the
 actual matches found by PFAM in version 23.0 (PFAM23). The
 results (Fig. SI) show the same slow growth of SDA families and
 rapid growth of MDA families seen with CDART. In CDART
 and indeed in PFAM (Table S2 and Table S3), there is the
 duplication of sequence profiles, characterized by more than one
 sequence profile matching the same region of a particular
 sequence. Such duplication directly affects the number of dif-
 ferent domain architectures found.

 Structural Coverage Is High

 Fig. 2 Left shows the percentage of different SDA families
 that have a sequence of known structure in the family (unique
 coverage); it has grown from 17% in 1980 to 26% today. Recent
 growth is very dependent on structures solved by structural

 genomics programs: Without these structures, the coverage
 would have peaked at 21% and be on the decline. A similar
 picture is seen when coverage is plotted against the total number
 of sequences in the NR database (Fig. 2 Center) and emphasizes
 the dramatic increase in percentage coverage achieved by struc-
 tural genomics even though the number of NR sequences has
 increased 4-fold. Chandonia and Brenner (22) also used PFAM
 to assess progress of structural genomics efforts.

 Knowing the structure of one member of a family allows one
 to extrapolate (at least partially) to all members of the family.
 When every sequence in a family is counted (repetitious cover-
 age, Fig. 2 Right), 50% of all characterized sequences had some
 structural information in 1980; now this number is 71%.

 An unexpected consequence of merging duplicated sequence
 profiles is to increase repetitious coverage (Fig. 2 Right): Merged
 SDA families are larger in size and have a higher chance of
 including a member with a known three-dimensional structure.
 The effect is surprisingly large: The structural coverage of
 repetitious sequence falls from 71% to 54%.

 I also quantified the structural coverage of the MDA families
 by checking if the individual domains were in a SDA family with
 a known structure. The results were surprising in that 42% of the
 unique MDA families had known structures for all domains, 46%
 had known structures for some domains, and only 12% had no
 known structure for any domain. The corresponding numbers
 allowing for sequence repetition in the family (repetitious cov-
 erage) are very similar at 49%, 37%, and 14%, respectively.

 Evolution via MDA Families

 The Venn diagrams in Fig. 3 show that most SDA families occur
 in more than one major organism group (prokaryotes, eu-
 karyotes, or viruses). Such commonality disappears when one
 considers MDA families, which are much more organism spe-
 cific. Sharing drops from 61% to 6% in going from SDA families
 to MDA families. Prokaryotes have more SDA families, and
 eukaryotes have more MDA families, in accordance with the
 finding that domain combinations give rise to new function (23).
 A simpler reason for more MDA sequences in eukaryotes is to
 ensure that certain proteins are coexpressed and colocalized in
 these multicellular organisms.
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 Fig. 2. Unique and repetitious structural coverage as a function of year and size of the sequence database. Coverage is the percentage of single-domain
 architecture (SDA) families containing at least one sequence of known three-dimensional structure (in the PDB). For unique coverage, we count each family once,
 whereas for repetitious coverage we count every sequence in the family. If all of the known structures belonging to a particular family are determined by
 structural genomics, then that family is counted in structural genomics coverage. (If any structure of a family is not from structural genomics, then the entire
 family is not.). (Left) Unique coverage with merged CDART sequence profiles increasing from 17% in 1980 to 26% now, with a 5% increase since 2004 due to
 structural genomics. {Right) This increase in coverage occurred during a period when the number of sequences increased 900-fold (from 8,600 to 7.6 million) The
 upper curves show corresponding data for repetitious coverage that are higher at 71%; this is expected because larger families are more likely to contain a
 member with a known structure. It is an indication of the maximum number of sequences (4.2 million) that could be modeled by homology. (Center) Coverage
 with unmerged sequence profiles is significantly lower (22% and 54% for unique and repetitious coverage, respectively); this is expected because families are
 smaller with unmerged sequence profiles and less likely to contain a member with a known structure.

 Although most MDA families consist of a few domains, a few
 families consist of many domains to give the power-law
 number_of_cases = 400,000/(number_oLdomains)2 9. Repeats of

 Fig. 3. Scaled Venn diagrams of the numbers of single-domain architecture
 (SDA) and multidomain architecture (MDA) families for the three major
 organism groups of life: prokaryotes, eukaryotes, and viruses. (Upper Left) For
 SDA families, there is a good deal of commonality, with 64% of SDAs shared
 between two or more groups. (Upper Right) For MDA families, the situation
 is very different, with 96% of MDAs unique to a particular group. The larger
 eukaryotedisk in Upper Left com pa red with Upper Right shows that although
 prokaryotes have the highest fraction of SDA families (88%), eukaryotes have
 the highest fraction of MDA families (68%). The very small number of shared
 MDAs in Upper Right (4%) shows the relationship that MDAs have to evolu-
 tionary diversity. Results with merged sequence profiles are very similar in that
 Lower Left and Lower Right have corresponding percentages of 61 %, 94%,
 85%, 68%, and 6%, respectively. The MDA panels are drawn on a different
 scale from the SDA panels; the area of the prokaryote disk is kept fixed to
 facilitate comparison.

 the same domain in a particular MDA family are very common:
 A power law is also found for the number times that a particular
 sequence profile repeats: number_of_cases = 2,000/
 (number.oLrepeats)1 7. Repeating domains often have known
 structures with 17 of the top 20 most frequent repeat domains in
 the Protein Data Bank (PDB), partially explaining MDA struc-
 tural coverage. Study of the evolution of domain architectures is
 an active field (24-27) beyond the scope of this work.

 Relation to Earlier Work

 Previous work (6) suggests that the protein universe is growing
 rapidly and without bounds; we find that only the MDA se-
 quences are growing linearly with added sequences. The new
 MDA families are almost always combinations of a smaller
 number of existing domains found in SDA sequences. This
 discrepancy arises from the different ways that sequences are
 matched: Previous work (6) matched entire sequences without
 concern for domain structure. Earlier analysis (28) also con-
 cluded that the number of protein families is growing rapidly.

 The slow growth that we find for SDAs is also consistent with
 the Structural Classification of Proteins (SCOP) classification of
 protein structural domains into family, superfamily, or fold
 categories (29). I showed earlier (30) that each category is
 becoming saturated. Although the correspondence between
 CDART families and SCOP categories is not straightforward,
 interestingly, SDA families are growing slowly.

 Role of Homology Modeling
 The limited number of different SDA families found here has

 implications for structural genomics. If almost all novelty in
 newly discovered sequences is coming from new MDA families
 that are combinations of domains already found in SDA families,
 then the aim of determining structural representatives for each
 sequence profile is achievable.

 Structural coverage of SDA families has increased linearly for
 the past 5 years thanks to structural genomics. Continuing at the
 same rate for another 40 years would lead to coverage of 70%
 (Fig. S3). Although the current level of repetitious coverage of
 SDA families is much higher at 71%, it is growing more slowly

 I1
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 (new families have fewer members than existing families). Con-
 tinued linear growth of repetitious coverage would lead to 85%
 coverage in 2050. Extrapolations like this are fraught with
 uncertainty, but researchers should be heartened that achieving
 70% coverage would require just 60,000 additional X-ray or
 NMR structures. In this same period, the number of protein
 sequences is expected to grow 100,000-fold to 1 trillion (1012).

 Currently, 4.2 million sequences have some relationship to
 structural data: They are matched to one or more sequence
 profiles that are in the same family as a sequence of known
 structure (Table SI). The value of this relationship depends on
 being able to make a useful homology model for the particular
 sequence. For a sequence to be modelable in this way, it must
 align well to a known structure, and this is likely to be achieved
 because RPS-BLAST is a fairly conservative alignment method
 (31). The field of homology modeling has been active for almost
 40 years (32, 33) and is improving rapidly as we accumulate more
 structural data. Aligning part of the sequence generally only
 allows that part to be modeled. The average lengths are 336 and
 716 aa for SDA and MDA sequences, respectively (Table SI).
 The average lengths of the unmatched regions are 77 and 294
 aa, respectively, showing that known domains cover 59% and
 77% of the SDA and MDA protein lengths, respectively.
 Modeling MDA sequences may require assembly of the indi-
 vidual domains, an area of considerable activity (34). In
 modeling, every residue counts: A billion residues are matched
 to a PDB structure (39.3% of all 2.7 billion residues in the NR
 database) with higher structural coverage for SDAs than
 MDAs (57.2% vs. 42%).

 Dark Matter of the Sequence Universe
 Our analysis has been able to characterize 78% of all known
 sequences longer than 50 aa by matching all or part of the
 sequence to a sequence profile. The remaining 22% is unchar-
 acterized and considered as dark matter. Dark matter contains

 equal numbers of prokaryote and eukaryote sequences, but
 there are more eukaryote residues.

 Uncharacterized sequences could exist for four reasons: (i) the
 DNA-deduced protein sequences are not real; (//) these are
 low-complexity, nonglobular protein sequences; (Hi) many of the
 dark matter sequences belong in known families but pattern
 matching methods are not sensitive enough to detect them; (iv)
 discovery of new sequence profiles lags so far behind the increase
 in the number of sequences that very many sequence profiles
 remain to be discovered in the dark matter. Support for / comes
 from Sammut et al. (35), who find that UniProt sequences
 marked as having little evidence of existence have a much
 higher chance of being identified as dark matter. Support for
 ii comes from the shorter length of dark matter sequences
 (median length of 155 aa, half that of other sequences). These
 sequences are also 50% more likely to be from eukaryotes,
 whereas new sequence profiles are expected to be more
 common in prokaryotes (Fig. 3).

 Reason Hi is supported by the dependence of the percentage
 of dark matter on the definitions of the sequence profiles and the
 methods used for matching. The subset of CDART sequence
 profiles found in PFAM reduces sequence coverage from 78%
 to 72% and increases the dark matter percentage from 22% to
 28%. Improved recognition could be obtained by using matching
 methods more sensitive than those of RPS-BLAST. For example,
 on a common set of almost 3 million sequences, HMMs used in
 PFAM give 5% more sequence coverage than the PSI-BLAST
 method used in CDART (see Materials and Methods). Using the
 HMM method on all of the sequence profiles in CDART would
 be expected to reduce the dark matter percentage to 18%. The
 PSI-BLAST method was taken as the default method for 7th

 Critical Assessment of Structure Prediction (CASP7) assessment

 Fig. 4. Although the fraction of MDA families with a particular number of
 members has a power-law dependence on the family size (as shown by the linear
 log-log plots), the fraction of SDA families with a particular number of members
 does not. For MDA families, the fraction of families with m members varies as
 m~2 09. For small SDA families, the fraction drops much more slowly than that for
 large SDA families (varies as m~° -18 for m < 32 and then as m~257 for m > 64).

 (31); better sequence coverage is obtained by methods found to
 work best for CASP7 (36-38).

 Reason iv is the hardest to assess, because it depends on the
 activity of scientists defining new sequence profiles. The defi-
 nition of what constitutes a new sequence profile is arbitrary and
 will depend on the particular sequence profile database. We
 have known for some time that the number of SDA families of

 a given size does not follow a linear power law, whereas the
 number of MDAs does (39) (Fig. 4). Specifically, there seem to
 be too few SDA families with small numbers of members (<128).
 Does this result from the greater sensitivity of methods such as
 PSI-BLAST and HMM, where the sequence profile is derived
 from large families, or could it be a reluctance to define a new
 SDA until it has been seen many times? Fig. S2 shows that new
 sequence profiles defined in the last year characterize sequences
 deposited in the NR database decades ago.

 Nature of the Sequence Universe
 I provide two illustrations of the protein universe (Fig. 5): The
 repetitious protein universe counts each sequence once and
 shows current sequence holdings; the unique protein universe
 counts each domain architecture once and shows novelty or
 diversity. In the repetitious universe, SDA sequences dominate
 (88% of 5.9 million sequences), because SDA families are much
 larger than MDA families. Most of the SDA sequences (71%)
 are in a family with at least one member of known structure, and
 5% of these 3.7 million sequences come from structural genom-
 ics structures.

 The number of different MDA families, which are different
 combinations of SDAs, can clearly expand with the number of
 sequences. The slow growth of SDAs and the leveling off seen
 in Fig. 1 would seem to imply saturation in the number of SDAs,
 but as new sequence profiles are discovered, the saturation level
 increases. Given the limited sensitivity of methods to recognize
 homology in sequences, those already at the limits of detection
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 Fig. 5. Illustrations of sequence space in which area is proportional to the number of sequences or sequence families in that region. Sequences not characterized
 by any merged CDART sequence profile are the dark matter of the protein universe (23% of 7,500,000, the gray core). (Top Left) The unique sequence universe
 contains all sequence families. Eighty-six percent of the families are MDAs, and the other 14% are SDAs. Thirty-two percent of SDA sequence families have a
 known structure, with one-fifth of these from structural genomics. For 49% of the MDAs, all domains have a known structure (hatched), and another 42% have
 at least one domain with a known structure (part PDB). (Top Right) The repetitious sequence universe contains all sequences. Most characterized sequences (88%,
 orange area) have single domain architectures (SDAs), where one region of the sequence is matched by a sequence profile (colored bar on black line). The
 remainder (12%, blue area) have multidomain architectures (MDAs), with more than one region of the sequence matched (several colored bars on sequence).
 Over three-quarters (76%) of the SDA sequences are matched by a sequence profile family that has a known three-dimensional structure, and 4% of the SDA
 sequences were solved by structural genomics (brown area, hatching indicates domain of known structure). (Middle) Numbers of sequences in the corresponding
 regions of Top Right. (Bottom) Numbers of families in the corresponding regions of Top Left.

 easily can be imagined to drift apart further to give rise to a new
 SDA family not recognized by an existing sequence profile. Is the
 number of SDAs going to continue increasing more slowly than
 the number of sequences? Fig. 4 shows that for large SDA family
 sizes, the value of the power is less than -2.0; this means that the
 number of SDA families will eventually increase linearly with the
 number of sequences (6). This is contrary to the very slow
 increase in the number of SDAs observed in Fig. 1 and remains
 to be resolved.

 Limitations of This Study

 Any study that predicts the future from the past is fraught with
 uncertainty. The NCBI NR database used is large and repre-
 sentative, with almost 8 million sequences and 2.7 billion amino
 acids. It contains the complete genomes of > 1,800 organisms
 and partial genome sequences of many more. Particularly un-
 certain is whether the uncharacterized dark matter and met-

 agenomic sequences that are omitted from the NR database (6)
 contain large numbers of new sequence profiles. PFAM23 does
 analyze metagenomic sequences and finds them to have a lot
 more dark matter (54% vs. 34% for PFAM in its version of
 NCBFs GenBank, which differs from the NR database).

 Implications

 Beyond conclusions coming directly from the data, this work
 suggests that attention be focused on three areas: (i) Improved
 ability to recognize and model sequence would reduce the
 amount of additional experimental structure determination, (ii)
 Dark matter needs to be analyzed for new sequence profiles, (mi)
 Frequent updates of sequence profile databases are needed to
 keep up with the rapid growth in the number of protein
 sequences, doubling in 28 months.

 Materials and Methods

 Databases Used. This work depends on a database of sequence prof ¡les that are
 matched to all known sequences; I used CDART because it contains all se-

 quence profiles and is matched several times per month to the NCBI's NR
 database.

 The NCBI provided us with the first deposit dates of NR sequences to
 February 7, 2009. In all (Table S1), there were almost 8 million nonredundant
 (nonidentical) protein sequences (7,624,220). That same day, I downloaded
 the CDART data from ftp://ftp.ncbi.nih.gov/pub/mmdb/cdart/ and the NR
 sequences from ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz.

 The sequence profiles used in CDART are taken from the NCBI's Conserved
 Domain Database (13). This database includes all of the sequence profiles from
 four external resources: (/") PFAM, (//) SMART (Simple Modular Architecture
 Research Tool), (Hi) COGs (Clusters of Orthologous Groups of proteins), and (iv)
 PRK (PRotein Klusters). In addition, there are entries from three other sources:

 (/) KOGs (eukaryotic counterpart to COGs), (ii) CHL (Chloroplast and organelle
 proteins, a subset of PRK), and (Hi) ed (a database curated at NCBI). There were
 no hits to any of the KOG sequence profiles: the effective number of profiles
 in CDART is 27,036 (Table S2).

 PFAM23 (July 2008) was downloaded from http://pfam.janelia.org/, PDB
 entries solved by structural genomics from http://targetdb.rcsb.org/
 target-files, and protein taxonomy from ftp://ftp.ncbi. nih.gov/pub/taxonomy/
 gLtaxid-prot.dmp.gz.

 Data Processing. The lengths of the sequence profiles in CDART vary greatly
 from a minimum of 5 to a maximum of 5,019 aa. There are 1,182 sequence
 profiles that are shorter than 50 aa (74% from PFAM). Almost 250,000 of the
 NR sequences are shorter than 50 aa, and these were omitted. Sequence
 profiles shorter than 50 aa were included. The results and conclusions of this
 work are not sensitive to these choices.

 The CDART files (cdart_hits1 .txt.gz to cdart_hits2.txt.gz) list all of the
 matches of each of the 27,036 sequence profiles to each NR sequence that is
 below the expectation value (E-Value) threshold of 0.01. Many different
 sequence profiles may overlap a given region of the sequence under consid-
 eration, and I used a greedy method to select just one arrangement of
 sequence profiles. All of the sequence profiles that match a particular se-
 quence are given a score that is a combination of its eval, which is defined as
 10 x loge(E-value) plus the length of the sequence matched, SCORE = eval x
 0.01 + (S2 - S1 + 1), where S1 is the hit start and S2 is the hit stop. Matches
 are sorted by decreasing SCORE, the first match that does not overlap with any
 other already included sequence profile is accepted, and this is repeated until
 no more matches can be added. This method weights the match length more
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 strongly than its CDART E-Value. Different scoring schemes are possible by
 changing the relative weights of match length and E-value. Thresholds also
 can be set for length and E-value. Tests of different schemes gave only small
 differences.

 As a further test, I compared the hits found with CDARTpfam and those
 found in PFAM23. For the almost 3 million sequences in common, CDART
 found 2,859,558 hits; PFAM found these and 129,921 more (4.5%). PFAM
 residue coverage is also higher than that of CDARTpfam by a similar margin
 (4.9%).

 Once matches are found, the domain architecture is defined by the type
 and order of sequence profiles along the particular sequence. The position
 and length of nonmatched sequence are ignored.

 Merged CDART Subset. Use of different names for essentially the same se-
 quence profile could give rise to different domain architectures that are really
 equivalent. Here, the CDART sequence profiles were clustered to get a merged
 subset of sequence profiles. This was done by looking at particular sequences
 on which different sequence profiles matched well (E-value better than
 0.0001) and overlapped so extensively as to be identical. Specifically, I use a
 stringent overlap criterion, ensuring that the lengths of the two sequence
 profiles and their extent of overlap on a particular sequence are within 10%.

 The 16,099 sequence profiles that overlapped in this way were clustered by
 single-linkage clustering to give 4,049 sequence profiles. These were added to
 the 10,937 sequence profiles without overlap to give a total of 14,986 merged
 sequence profiles. All of the sequence profiles in a particular cluster are given
 the name of the central member. PFAM provides 57% of the merged profiles,
 much more than COG (19%) and PRK (13%, Table S2). Some of the sequence
 profiles in both CDART and the merged subset are never matched (1,276 and
 863, respectively).

 In all, there are 1 12,804 overlapping sequence profiles. Surprisingly, more
 than half of the overlap pairs (71,705 or 64%) are between sequence profiles
 within the same CDART subset (Table S3). The overlaps also occur within
 well-curated databases such as PFAM and SMART and are unavoidable if one
 is to maximize sensitivity. Overlaps include PF00106 and PF08659 in PFAM
 (short chain dehydrogenase and KR domain) and sm00406 and sm00409 in
 smart (IGv and IG).
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