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Protein substitution models

Ideally, we should have developed substitution models for protein
sequence evolution as we did for DNA sequences. However, too many

parameters in such models make them difficult to use and for theoretic
analysis.

Therefore, traditionally, protein substitution models have been
developed empirically based on statistical data from groups of closely
related proteins (they are called protein families).

The first such empirical protein substitution model is the PAM (point
accepted mutation) model, developed by Dayhoff, Schwarts and Orcu
in 1978.

The basic assumption of the models 1s that if we only compare closely
related sequences, then the observed different amino acids at a site car
be thought being caused by a single substitution, 1.e., d=D.
TLTKIQKQ
d=D=1/8
TLTQOIQKQ



The PAM protein substitution models

To derive the statistics about amino acid substitutions, we need to use
multiple closely related sequences, and make multiple alignments of
them.

Because the sequences are closely related to one another, the multiple
alignments can be reliably generated. A. T | K K V QKT

However, to avoid over-counting of B: TLKKVQKT
substitutions when comparing these C: TLKKIQKQ
multiple sequences, we have to assume

that we know the phylogenetic D: 11T TKLQKQ
relationships of the sequences, so that E: TITKLQKQ
the minimal number of substitutions F: TLTKIQKQ

can be counted. G: TLTQIQKQ

The method that creates a phylogenetic tree by minimizing the number
of substitutions needed is called a parsimonious method, and the
resulting tree is called a parsimonious tree.



The PAM protein substitution models

On the other hand, a parsimonious tree can A: TLKKVQKT

o R B: TLKKVQKT
guarantee the minimal counts of substitutions c: TLkk1qQkQ
. D: I TKLQKQ

among multiple sequences. E TITKLOKQ
, ) FF TLTKIQKQ

Based on a parsimonious tree, we G: TLTQIQKQ

can generate an observed
substitution matrix 4, whose
1tem A i 1s the number of times
amino acid 7 has been substituted
by j. The matrix is symmetric, i.€., v—

QD ATLKKVQKT

QB TLKKVQKT

1:TLKKVQKT

QD CTLKKIQKQ

_ L 22TLKKIQKQ
[ I KLQTV\ e D:1 ITKLQKQ
I --2-11 — 4:TITKLQKQ
— — — — | |
K 11 ETITKLQKQ
A=l 1, 2 - - - - - U@ 3: TLTKIQKQ
0-1--1- ETLTKIQKQ
T11-1 - - 5TLTKIQKQ
vV ----=-="/ samalt GTLTQIQKQ



The PAM protein substitution models

-The upper diagonal part of the following matrix 1s the original
observed amino acid substitution matrix developed by Dayhoff and

colleagues.  Jones,Taylor; Thornton (1992)
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The PAM protein substitution models

Based on this observed substitution matrix 4, we want to develop a
protein substitution model M, whose element M;; is the probability that
amino acid i will be substituted by j in a small unit of time A.

For a small period of time =An, we can assume that the probability of
substitution changes linearly with time, 1.e., p,(f)=ot=cAn.

Therefore, M;; should be proportional to A and 4;;, but inversely
proportional to the total number of amino acid 7 in the sequences, N,
1.€.,

M; = p;(A) = % (= J).

l
Let 7, be the frequency of amino acid i in the sequences, then,
N.

]ri B Ntot .

where N, .1s the total number of amino acids in the sequences.




The PAM1 protein substitution model

If we define the time A to be a PAM unit, which 1s the time required
for an average of 1% of amino acids being substituted in the

sequences, then we have, v

AA; AA.
2”"2]‘40’ =22ﬂ'i N,-J =22m.7'£NJ =22 N

J i~ 7 tot tot

=NL22AI‘J= )]L;“wt=o.01. @i = j)

tot i j tot

where 4, , is the total number of substitutions, i.e., the sum of all

elements in A. Therefore,
A’ —

0.01N,,

Atot
- Using this one PAM unit value, we can compute all M;; values using

the formula, Iy 2, . 0.01N,, 4,

a N i AtotN i
For M, the probability that amino acid i remains unchanged 1in the

time of a PAM unit, we define, M, =1- E M,

, (= )).



The PAMI protein substitution model

» This substitution matrix obtained at one PAM unit is called a PAM1
matrix. The PAM1 matrix obtained by Jones et al (1992) are shown
below, where values have been multiplied by 100,000 for convenience.
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The PAMI1 protein substitution model

» Note that the mean substitution rate per A time unit is 0.01.

» The sum of the each row except for the element in the diagonal 1s the
total probability for that amino acid to be substituted by another one,
which 1s equal to 1-M,

1’

» Dividing this number by the mean substitution rate 0.01, gives the
relative mutability of the amino acid 7, denoted by m,, i.e.,

m, =i
l 0.01
> A value of m, grater than 1, means the amino acid i is more likely to be
substituted by another than an average one, and vice versa.

» The time reversibility also holds for the PAM1 substitution matrix, as
for any amino acids i, and j, we have,

Mz’j _ Ni Mlj _ Ml] =Mﬁ _ Nj Mﬁ =a.M ..
Ni Ntot N; Ntot Ntot Ntot Nj T

l

JZ’iMl-j = JT;



The PAMn protein substitution models

-Using the PAM1 substitution matrix, we can compute substitution
probability that amino acid i will be substituted by j at a time interval
of 2, 3,4, ..., and n PAM units. Let’s denote this probability as p(nA).

‘Let’s first consider p ,,(24), the probability that alanine (A) will be
substituted by valine (V) after 2A time.

-After one PAM unit time, A can remain unchanged, or be substituted
by any of the other 19 amino acids, so we have to consider the
following 20 possible scenarios,

t=0 A A A A

1 l l l
t=1 113‘ M,, I} M g 111 My - YMAV
t=2 VM, V My, VM, " VM,

Therefore, p ,,(24) = ZM My, =M M., =M).

In general, we have, Pij(zi) = ZM M v = M;_z[



The PAMn protein substitution models

For p ,,(nA), we have to consider the following 20 scenarios,

t=0 A A A A
| | | |

t=n-1 A M(n-])AA R M(n-J)AR N M(n-])AN V M(n-I)AV
| | | |

t=n V M, V My, V My, V M,

Therefore, P (nA) = Z M fqz_l)M w =M ,(4nV) °

_ (n-1) _ A
In general, we have, p,(nA) = ZM w M =M.

-Using this formula, we can compute any » PAM units time substitution
matrix, and each is called a PAMn matrix, e.g, PAM250 matrix; and »
1s called the PAM distance.



PAM distances

The evolutionary distance between two sequences that have n PAM
unit distance 1s: d=0.017 substitutions / site

For two very long protein sequences, we assume that their amino acid
frequency 7, is the same as the sequence set used to generate PAM1
substitution matrix. Therefore the expected difference between the
two sequences at PAM distance 7 is, (n)
D = E”i(l -M,;").
i

This 1s simply the probability that a site in one sequence i1s amino acid
i, and same site in the other sequence 1s not i.

Theoretically, we can use this relationship to calculate the PAM
distance d=0.01n, by solving for n, but the calculation is not straight
forward, because we cannot easily solve for # in this equation.

A pre-computed table or graph can be used for calibration purpose.

Kimura gave an empirical approximation of d using D,

d =0.01n =-In(1- D-0.2D?).



PAM distances

The relationship between the evolutionary distance d and the
difference D between two amino acid sequences.

1 d=-In(1-D-02D*)" "
s 2.0
2 Calculated by the protdist S
S 1.6 . .
z program in Phylip package
R o5 D = Zn 1-M)
z; 0.8
0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of sites that differ (D)



Log-odds scoring matrices for amino acids

We now develop the PAM scoring matrix for protein sequence
alignment.

Let a and b be two very long sequences with n PAM distance, then the

probability that a site in a has an amino acid i and the same site in

sequence b has an amino acidj is, T,M l.(j").

The probability for this alignment to happen in two random sequences

1S 77T, (n) (n)
TM _ M;

Jl'iﬂ'j .717j

We define the odds ratio of these two events as, R, =

If R,>1, then amino acid i and j are more likely to be aligned with eact
other according to the PAM model than they would be by chance. The

opposite conclusion holds if R, <I.

(n) (n)
Because , _ ;M7 mMyT a: TLTKIQKQ ..
Jji T, T, Y2 b: TLTQIQKQ ..

the odds ratio matrix R is symmetric.



Log-odds scoring matrices for amino acids

> Let a, and b, be amino acids at the 4-th site of the alignment between
sequences a and b, then the relative likelihood that this alignment can
be made according to the PAM model relative to the likelihood that 1t

can be made by chance is, ! a: TLTKIQKQ
I{a,b) = ];[Rakbk' b: TLTQIQKQ

>For the convenience of calculation, we take logarithm on L(a,b),
/ /
log L(a,b) = logHRakbk = ZlogRakbk.

> We define the score to align amino acid i and j as S(a,b) = clog R,
where c 1s a scaling factor.

>S 1s called the scoring matrix, clearly, it 1s symmetric, 1e, S(i,7)=S(,i).
>Then we define the score of an alignment between sequences a and b

l
aS, Salignemnt(a, b) = ClOgL(aab) = Zs(ak’bk)'

> The goal of a pair-wise alignment method 1s to find the alignment that
maximizes this scoring function.



The relationship between alignment score and the

physico-chemical prosperities of amino acids
The lower diagonal part of the following matrix is the log-odds scoring

matrix corresponding to the PAM250 matrix, and S(i,/))=10log,,R;;

Two amino acids that have similar physico-chemical property tend to
have a large positive score, and vice versa.
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Table 2.2 Physico-chemical properties of the amino acids.

From Higgs and Attwood, bioinformatics and molecular Evolution chap2






Results from a PCA, principal component analysis)
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BLOSUM scoring matrices for amino acids

BLUSOM scoring matrices are another popular models for amino acid
evolution.

The models are derived from multiple sequence alignments without
resorting to an evolutionary tree and substitution model.

Given a multiple sequence alignment, we first count the number of
times amino acid i is aligned with j, denoted 4.

A: TLKKVQKT I K L Q T V,
B: TLKKVQKT I8 - 16- 6 6
C: TLKKIQKQ K- 78 - 6 12 -
D: 1 I TKLQKQ | L16 - 22 - - 4
E: TITKLQKQ A= Q- 6 - 62 10 -
FF TLTKIQKQ T 6 12 - 10 44 -
G: TLTQIQKQ ‘vVvVe - 4 - - 2/

If amino acids i and j occurs # and m times 1n a column, respectively,
the total number of alignments between a and b 1n this column 1s mn.

If amino acid i occurs z times 1n a column, the total number of
alignments among these #» amino acids in the column is n(n-1).



BLOSUM scoring matrices for amino acids

The frequency of aligning i with j in the multiple alignments 1is,
A.

U .
Atot
where 4, , is the sum of the items in the matrix 4, i.e., the total number
of pair-wise alignments among amino acids in the multiple

alignments.

dij =

The relative frequency of 4;; compared to two randomly selected

sequence 1is, g
Rl] = .
TC,TE ;
Similarly, we can define the score to align amino acid i and j as,
S(i,j) =clogR, = clog 9y :
T,

Based on the similarity levels of the sequences in the multiple
alignments, we can define different scoring matrices at different

evolutionary distances, such as,
BLOSUMG62: sequence 1dentity < 62%, and

BLOSUMSO0: sequence 1dentity < 80%.



Make practice with multiple alignment software
(see ya on Monday!)

Clustal Omega
COBALT
EMBOSS
MUSCLE

3D COFFEE






