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1 Introduction
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2 Force field

e A force field is an empirical approximation for expressing structure-

energy relationships in biopolymers

e It is a compromise between speed and accuracy

e Common form (CHARMM):
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2.1 Energy terms
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2.2 Parametrization
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2.3 Atom types and partial charges
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2.4 Models for simulation studies

e How similar is the (macro)molecular system being studied to systems

that were employed in the development of the model?

e The generality (i.e., range of possible applications) of a given model can
only be established by comparison to experimental data for a wider and

wider variety of (macro)molecular systems.

e Eixample: protein force field parameters are developed using small com-
pounds which represent the peptide bond (e.g., N-methyl-acetamide)
and the functional groups of the side chains of the natural amino acids
(e.g., propane for Val, benzene for Phe, imidazole for His, indole for Trp,
etc). Hence, it is straigthforward to determine the parameters for a nor-
leucine side chain (—Cg-C,-C;-C,) but not for a phosphotyrosine because

a protein force field does not usually have parameters for phospate.

e Some properties are more amenable to accurate computation than oth-
ers. Example: Energy minimization to obtain refined structures is much

simpler than calculating free energy differences.



3 Solvation models
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e Simulations in vacuo suffer from serious artifacts.

e Implicit solvation models reduce computational costs by removal of HyO interaction centers and
degrees of freedom.

e Solvation term based on the solvent accessible surface area (Ferrara et al., Proteins 46, 24, 2002).



3.1 Periodic boundary conditions (PBC) vs. spherical boundary




3.2 Periodic boundary conditions for peptide/membrane system
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Gorfe et al., Membrane localization and flexibility of a
lipidated ras peptide studied by molecular dynamics simulations.
J. Amer. Chem. Soc. 126, 15277-15286, 2004.



3.3 Solvent accessible surface area

Solvent accessible surface

W(r) = E(r) + Vsolvation(T)

N olar Na olar
Violvation(T) = D i 7™ on0Ai + DT oo sAj

Farnesyltransferase-farnesylpyrophosphate complex

hydrophilic/hydrophobic concave/convex electrostatic potential

Scarsi et al., Proteins 37, 565, 1999
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4 Sampling techniques

4.1 Energy minimization

Ener gy

Potenti a

Coor di nat es of nucl ei

e Minimization follows gradient
e Reaches the nearest local minimum

e Steepest descent, conjugate gradient
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4.2 Steepest descent vs. conjugate gradient
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The derivative vector from the initial point a [, 1) defines the line search directian.
[[ote that the derivative vector does not point directly toward the minimum. Compare
this representation with that in Figure ", where the line (b—a—¢—d) is searched in one
dimension for the minimum. Mote that the minimum (point ¢) occurs precisely at the
point where the derivative vector is tangent to the energy contours, which implies that
the subsequent derivative vectors are arthogonal to the previous derivatives,
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4.3 Metropolis Monte Carlo (Boltzmann statistics)

MC compares energies. No forces calculated.

\ -AE /KT
% ¢
M In equilibrium at T: \{

. P(ET) _ _(E-E)/kT

R R p(E) " © | AE

'y Generate random number RAND:

Monte Carlo Algorithm

Generate initial structure R. Calculate V(R).
—» Modify structure to R, Calculate V’'=V(R").

If V' <V then
R-4—R V- P(RAND)

else

i ¢ K RAND 0
R4—R, V-
End if
End if

-#— Repeat for N steps.

e Metropolis Monte Carlo yields an ensemble (Boltzmann statistics).

e Ergodicity: every accessible point in configuration space should be reached in a finite

number of Monte Carlo steps from any other point.

e Kinetics are usually not meaningful.

1 RAND



4.4 Simulated annealing (good for sampling but no ensemble)
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4.5 Parallel tempering (equilibrium Monte
Carlo scheme)

e M non-interacting copies of the system at different 77,

e A state is defined by

Tl: TQ?“‘? TM
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e In order to converge toward equilibrium the detailed
balance should be satisfied. Therefore: T(K)
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Low T replicas explore a single valley (intra-basin)
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Rao and Caflisch, J. Chem. Phys. 119, 4035, 2003
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5 Normal mode analysis

Examples of Normal Modes
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Tama et al., PNAS 100, 9319, 2003
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6 Molecular dynamics

6.1 Basics

e Atomic positions (coordinate file) —

e Covalent structure (topology file) —

. . e Effective temperature
e Potential energy function (parameter file) —
(through kinetic energy)

e Additional atoms (solvent, counterions) —

e [Forces on each atom

e Special features (PBC, constant T and/or P) —

e Atomic velocities —

17



6.2 Equations

® Fz =11, Fz — _gradiE E = Ebonding + Enon—bondz’ng

1. solve for a; at ¢ —Ellf = F; = mya;(t)

2. update v; at t + At/2 v;i(t+ At/2) = v;(t — At/2) + a;(t) At
3. update r; at t + At ri(t + At) = r;(t) + v (t + At/2) At

4. go to 1.

e Timestep controls accuracy of numerical solution.

e Fundamental timestep is determined by high frequency vibrations (co-

valent bonds — At = 107! sec).

e Highest frequency motions, i.e., hydrogen atom vibrations, can be re-

moved with holonomic constraints.

18



6.3 Thermodynamic variables 7" and P

e Statistical ensembles connect microscopic to macroscopic
Microcanonical (NVE, entropy)

Canonical (NVT, Helmhotz free-energy)

T =% m{v?) /(3k)

[sothermal-isobaric (NPT, Gibbs free-energy)

- P = kinetic + virtal contributions

e Thermostats, barostats allow to choose the appropriate ensemble.

- Andersen, Nosé, Hoover.
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7 Applications of molecular dynamics

1. Sampling configuration space,

e.g., simulated annealing to determine or refine structures.

2. Obtaining a description of the system at equilibrium,

i.e., sampling with appropriate Boltzmann factor:
e structural and motional properties

e values of thermodynamic parameters

3. Obtaining actual dynamics and kinetics,
i.e., sampling with appropriate Boltzmann factor and

correct representation of the development of the system over time.

For (1) and (2) Monte Carlo simulations can be also used.

From Karplus and McCammon, Nature Structural Biology 9, 646, 2002.
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8 Free-energy barriers and timescales

barrier crossing

Free Energy

Reacti on coordi nate

e To cross a free-energy barrier | 7 = 79 exp(AG*/kgT) | with 7o ~ 1072 s:

1 kecal/mol : ~ ps, 5 kcal/mol : ~ ns, 10 kcal/mol : ps or longer
e Sampling should exceed timescales of interest by ~ 10-fold.

e System size and complexity increase required timescales (equilibration

of ions, complex landscapes, multiple minima)
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9 Approximations in molecular dynamics

e Approximations inherent to the force field (£) —
Systematic error:

Calculations of free energy differences is still very difficult.

e Time scale and sampling problem —
Statistical error:
Conformational transitions that require > 0.1 — 1us cannot be

simulated (yet) by conventional molecular dynamics techniques.

e Other simulation approaches:

— MD with implicit solvent (approximate)
— Brownian dynamics

— Monte Carlo (move definitions are difficult for macromolecules)

22
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