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* Complements in MD

* Thermostats and barostats
* bibliography

NOTES ON INTEGRATORS

Frenkel & Smit Understanding Molecular Simulations 4.2,
Schiller2008

An interesting course David Ceperley from which we shall
present a few slides, as such.

https://courses.physics.illinois.edu/phys466/fa2018/

Elegant lectures by Michiel Sprik
Introduction to molecular dynamics methods
(see Binder_Ciccotti1996.pdf)



Elegant,rigorous and compact lectures by Michiel Sprik
Introduction to molecular dynamics methods

Chap.3 m “Montecarlo and Molecular Dynamics of Condensed Matter Systems (K.

Binder and G. Ciccott1 Eds.)SIF, Bologna, 1996)

Basic Molecular Dynamics (Newton’s equations of motion, Criteria for time
iteration in MD, Verlet algorithm)

Dynamics in Phase Space (Hamiltonian dynamics, Liouville operators,
Factorization of phase space propagators)

MD under Constant Pressure and Temperature (Equilibrium statistical
mechanics, Instantaneous temperature and pressure, [kinetic temperature, instantaneous
virial pressure], Constant pressure MD [Andersen’s algorithm], Constant temperature
MD [Nosé-Hoover dynamics]

Multiple Time Scales (Constraint dynamics[Ciccotti-Ryckaert,1987], Multiple time
steps[Tuckerman, Martyna and Berne 1992])

Long Range Interactions (Dielectrics, reaction field method, Ewald summation,
Polarization fluctuations and dielectrics)

Free Energy and Rare Events (potential of mean force and reversible work, [this is
still an active field])



THE OPERATOR ORIGIN OF VELOCITY VERLET
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We review recently developed decomposition algorithms for molecular dynamics and spin dynamics simula-
tions of many-body systems. These methods are time reversible, symplectic, and the error in the total energy
thus generated is bounded. In general, these techniques are accurate for much larger time steps than more stan-
dard integration methods. Illustrations of decomposition algorithms performance are shown for spin dynamics
simulations of a Heisenberg ferromagnet.



2 Molecular Dynamics

Let us consider a system of NV particles with masses m; de-
scribed by their positions r; and velocities v;, interacting via
a potential u(r;;), where r;; = r; — r;. The Hamiltonian
function of the system can be written as

H= Z2mv + Z“(Tu) (1)

i,J, J#i
and the force on particle ¢ due to particle j is given by
aU(Tij) rﬁ
Orij Tij

The equations of motion are given by

fij = —Vru(ri;) = — (2)

‘{r' =Y f;=f, i=1,.N 3)
3, JFi
The time evolution of the system can be studied by integrat-
ing the equations of motion to obtain r;(¢) and v;(£), for
1 = 1,2,---, N, and by expressing other physical quanti-
ties in terms of r; () and v; ().

2.1 Liouville Formulation

The equations of motion (3) can be rewritten as
dy

=Ly @
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where y(t) = {r;(t),v;(t)} denotes a configuration of the
N particles, and L is the Liouville operator defined as

‘NV

an o fi 8\ _
L=Z(vi.§i+a.3v1)=A+B (5)

=1

The term 3" v; - 2 = A in Eq.(5) corresponds to the
free motion of the particles (kmetlc part) whereas the po-
tential part is given by the term 23—1 m’ av = B. With

these definitions of operators A and B, the equations of mo-
tion (4) can be written as

W (a+Bu), ©)

which have the formal solution
y(t+A) = e B8y(1), @)

where A represents a time step. For a general many-body

system the combined operation e(4+5)2y(t) cannot be eas-

ily performed. However, the separate operators e1®y and
BAy can be written as

By = exp(szz a){r,,vz} fritvi A, vi)
®)

0 f;
eBAy—exp(AZ me By ){r,,v,} {rz,Vz+ A}

=1

©)
and they represent shifts in the positions and in the veloci-
ties, respectively. Moreover, the shift in the positions (ve-
locities) generated by e*2y (e?2y) only depends on the ve-
locities (positions) and can be easily computed. However,
note that in general e(A+B)4 £ eAleBA|
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5.3 Velocity-Verlet algorithm

Another implementation of the Verlet algorithm, denoted as
velocity-Verlet algorithm, computes the time evolution of
the position and velocity with

r(t+ A) =r(t) +v(t)A + %A'z (26)

and

fE+4)+ f(t)
2m

v(t+ A) =v(t) + A, (27)

respectively. This corresponds to first computing 7(f + A)
using Eq.(26), then from these new positions the forces
f(t+ A) can be determined. Finally, the velocities v(t + A)
are computed from Eq.(27).

To show the equivalence between the position- and the
velocity-Verlet algorithms, we write Eq.(26) for time £+ 2A,
namely

f(t+A)

2m
and we then subtract Eq.(26) from Eq.(28) to obtain

r(t+2A) = 2r(t+A) —r(t) + [o(t + A) — v(t)]A

r(t+2A) = r(t+A)+v(t+A)A+ A%, (28)

+ L(H’_gm_M(QA2 (29)
Substituting Eq.(27) in Eq.(29), we get
r(t+2A) = 2r(t + A) — r(t) + f(tT“LA)AZ (30)

which is the position-Verlet algorithm derived before.



Velocity Verlet from
operator factorization

where we have used the shorthand notation r for r™ and p for pN. The last
line of equation (4.3.8) defines the Liouville operator

. .0 .0
il = L - pa—p. (4.3.9)

We can formally integrate equation (4.3.8) to obtain
f[pN (1), rN (t)] = exp(iLt)f [pN(0),£™(0)] . (4.3.10)

In all cases of practical interest, we cannot do much with this formal solu-
tion, because evaluating the right-hand side is still equivalent to the exact
integration of the classical equations of motion. However, in a few simple
cases the formal solution is known explicitly. In particular, suppose that our
Liouville operator contained only the first term on the right-hand side of
equation (4.3.9). We denote this part of iL by iL,:

I
iL, = r(O)a‘, (4.3.11)

where 1(0) is the value of  at time t = 0. If we insert iL, in equation (4.3.10)
and use a Taylor expansion of the exponential on the right-hand side, we get

(iL,t)?

flt) = f(0)+il,tf(0) + —;

= exp <t(0)ta%> f(0)

= (ko)™ "

£(0) + -

= f[pN0), (r+#(0)t)N]. (4.3.12)

Hence, the effect of exp(iL,t) is a simple shift of coordinates. Similarly, the
effect of exp(iLpt), with iL,, defined as

: o~ O
iL, = p(O)a, (4.3.13)

is a simple shift of momenta. The total Liouville operator, iL, is equal to iL,
+ iL,. Unfortunately, we cannot replace exp(iLt) by exp(iLt) x exp(iL,t),
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because iL, and iL,, are noncommuting operators. For noncommuting oper-
ators A and B, we have

exp(A + B) # exp(A) exp(B). (4.3.14)

However, we do have the following Trotter identity:

e(A+B) _ Lim (eA/zpeB/PeA/ZP)P, (4.3.15)

P—oo

In the limit P — oo, this relation is formally correct, but of limited practical
value. However, for large but finite P, we have

P 2
e(A+B) _ (eA/ZPeB/PeA/ZP) eO1/P%) (4.3.16)

Now let us apply this expression to the formal solution of the Liouville equa-
tion. To this end, we make the identification

A iyt D
p=p =AMl
and B 5
ikt
$= P =Atr(0)a,

where At = t/P. The idea is now to replace the formal solution of the Liou-
ville equation by the discretized version, equation (4.3.16). In this scheme,
one time step corresponds to applying the operator

eilpAt/2iL At il At/2

once. Let us see what the effect is of this operator on the coordinates and
momenta of the particles. First, we apply exp(iL,At/2) to f and obtain

iL,At/2¢ [N N At N N
e!b» AY2f [pN(0),2™(0)] =< |p(0) + - PO)| ,r7(0),.
Next, we apply exp(iL;At) to the result of the previous step
N
emmfﬂmw+§mm],ﬁw%

At | N . N
=f[mm+7wwﬂ,mm+Aumvm :
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and finally we apply exp(iL,At/2) once more, to obtain

N

f { [p(O) + %p(O) + %pmt) ,[r(0) + Ati'(At/Z)]N} )

Note that every step in the preceding sequence corresponds to a simple shift
operation in either rN or pN. It is of particular importance to note that the
shift in r is a function of p only (because ¥ = p/m), while the shift in p
is a function of r only (because p = F(r™)). The Jacobian of the transfor-
mation from {p™N(0),rN(0)} to {p™N (At), rN(At)} is simply the product of the
Jacobians of the three elementary transformations. But, as each of these Ja-
cobians is equal to 1, the overall Jacobian is also equal to 1. In other words,
the algorithm is area preserving.

If we now consider the overall effect of this sequence of operations on
the positions and momenta, we find the following:

p(0) = p(0)+%(F(0)+F(At)) (4.3.17)
r(0) — r(0)+Ati(At/2)
= r(0) + Ati O)+A2tF(0 43.18
= 1(0) i o ). (4.3.18)

But these are precisely the equations of the Verlet algorithm (in the velocity
form). Hence, we have shown that the Verlet algorithm is area preserving.
That it is reversible follows directly from the fact that past and future coor-
dinates enter symmetrically in the algorithm.

Finally, let us try to understand the absence of long-term energy drift in
the Verlet algorithm. When we use the Verlet algorithm, we replace the true
Liouville operator exp(iLt) by exp(iL;At/2) exp(iLpAt) exp(iL;At/2). In do-
ing so, we make an error. If all (nth-order) commutators of L,, and L, exist
(i.e., if the Hamiltonian is an infinitely differentiable function of p™ and r™)
then, at least in principle, we can evaluate the error that is involved in this
replacement:

exp(iL;At/2) exp(iLpAt) exp(iL;At/2) = exp(iLAt + €), (4.3.19)

where e is an operator that can be expressed in terms of the commutators of
L,and L;:

(o]
e=) (A)"cony, (4.3.20)
n=1

where ¢, denotes a combination of mth-order commutators. For instance,
the leading term is

—(at)® (2l4ﬁLr, e, Lol + iy, G, inu) .



Temperature and Pressure Controls

Ensembles

1. (E, V, N) microcanonical (constant energy)
2. (T, V, N) canonical, constant volume

3. (T, P N) constant pressure

4. (T, V, g) grand canonical

« #2, 3 or 4 are often better for macroscopic properties
» Today we will learn how we can do #2 and #3 with MD.

*Reading Lesar Section 6.4

Atomic Scale Simulation 1

Richard LeSar; Introduction to computational materials science: fundamentals to applications



Constant Temperature MD

* Problem in MD is fo control the temperature.

 How to start the system?

Sample the velocities from a Maxwellian (Gaussian) distribution. (we
will learn how to do this next time)

2

-

P(v)=Ce %’

— If we start from a perfect lattice as the system becomes disordered,
it will suck up the kinetic energy and cool down.

— Vice versa for starting from a gas.

* QUENCH method.
* Andersen Thermostat
 Nose-Hoover Thermostat

Atomic Scale Simulation



Quench method (Berendsen)

* Run for a while, compute kinetic energy, then rescale the
momentum to correct temperature T, repeat as needed.

. 2:‘_m,.1:,.2 Jnew _

81—3N_3 l

<

DIMENSION 3

TYPE argon 256 48.
POTENTIAL argon argon 1 1.
DENSITY 1.05

TEMPERATURE 1.15_

TABLE LENGTH 10000
LATTICE 4 4 4 4

SEED 10

WRITE_ SCALARS 25

WRITE COORD 25

QUENCH 100 ék-—‘tf
RUN MD 400 .05 &— Il
QUENCH 0

RUN MD 1800 .05 (>— 42

Iy

* Control is at best O(1/N), not real-time dynamics.

lvl?ld Instantaneous T,

1. 2.5
15

KE

1.0

4 quenches: 400/100

0

Atomic Scale Simulation
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Brownian dynamics/Andersen thermostat

Put a system in contact with a heat bath
Leads to discontinuous velocities.
Not necessarily a bad thing, but requires some physical

insight into how the bath interacts with the system.

— For example, this is appropriate for a large molecule (protein or
colloid) in contact with a solvent.

— Other heat baths in nature are given by phonons, photons,...
We will discuss Brownian dynamics later in the course.

Andersen thermostat:

— With some probability, resample velocities from a Maxwell dist.
(see FS 6.1.1)

Atomic Scale Simulation



Nose-Hoover thermostat (FS 6.1.2)

* MD in canonical distribution (T,V,N) 7z
* Introduce a friction force {(t)

d
-2 = Fq.n- {®0)p()
dt 7
77
Dynamics of friction coefficient to get canonical ensemble.
d{ 1 3N Feedback makes
Q- = 25’”:": 5 &l KE=3nkT

g

= =0 Dynamics at steady-state

Q= fictitious “heat bath mass”. Large Q is weak coupling

Atomic Scale Simulation 5



Nose-Hoover thermodynamics

Energy of physical system fluctuates. However energy of
system plus heat bath is conserved.

din(s)
dt

H'=H+%§z+ngT1n(s) and 4

Derive equation of motion from this Hamiltonian.
— dr/dt=p, dp/dt= F-p,/Q, df/dt=p,/Q etc. (see text)

Hopefully system is ergodic.

Then stationary state is canonical distribution
1 5,04,
exp[-f(V+—p +=C7)]
2m 2

Atomic Scale Simulation



Effect of thermostat

Trace of col 3 (hw3d.sca)

System T fluctuates but
how quickly?

LTIy '
5 -NUWWWVVV"W g

10

Q=1

Q=100 \

DIMENSION 3 | Trace of col 3 (hwie.sca)
TYPE argon 256 48.
POTENTIAL argon argon 1 1. 1. 2.5

DENSITY 1.05
TEMPERATURE 1.15

TABLE LENGTH 10000
LATTICE 4 4 4 4

SEED 10

WRITE SCALARS 25

NOSE 100. .
RUN MD 2200 .05

Atomic Scale Simulation 7



 Thermostats are needed in non-equilibrium situations
where there might be a flux of energy in/out of the

system.

o Itis time-reversible, deterministic and goes to the
canonical distribution but:

e How natural i1s the thermostat?

— Interactions are non-local. They propagate instantaneously

— Interaction with a single heat-bath variable-dynamics can be
strange. Be careful to adjust the “mass”

REFERENCES FS 6.1.2
1. S. Nose, J. Chem. Phys. 81, 511 (1984); Mol. Phys. 52, 255 (1984).

2. W. Hoover, Phys. Rev. A31, 1695 (1985).

Atomic Scale Simulation



Comparison of Thermostats

Nose-Hoover (deterministic) vs. Andersen (stochastic)

T Marwes flotrmann’ 20 +

' Oqe=0
"geil
04
15 ¢
§ -
0.2 . 1.0
- 05 .
0.0 10000 20000
v 0.0 5.0
- v time step
microcanonical Nose
a0 v 40 40 -
0} wh 20}
. Q al sl O
a0y @20 Q0
AD - “0

“0 a0 (L " o0 ‘“ ‘A. L1 l; o “0 a0 LU w a0

Figure 6.7: Trajectories of the harmonic oscillator: (from left to right) in the
microcanonical ensemble, using the Andersen method, and using the Nosé-
Hoover method. The y axis is the velocity and x axis is the position.

Atomic Scale Simulation



Constant pressure or constant volume

At constant pressure phase

transitions are sharp @ constant P (b) constant V
P1 Solid
At constant volume, a two phase Liquid
region (shaded region) is seen.  [reeeeefrenemeee
Gas
In a finite cell, one will have T

droplets/crystallites form, but
surface tension will make a
barrier to the formation of them.

An additional problem is the 1 T
shape of simulation cell, that will
favor certain crystal structures.

Atomic Scale Simulation 10



Features of Constant Pressure/Variable Structure Simulations

« Can “automatically” find new crystal structures
* Nice feature is that the boundaries are flexible

* But one is not guaranteed to get out of local minimum

* One can get the wrong answer. Careful free energy
calculations are needed to establish stable structure.

» All such methods have non-physical dynamics since they

do not respect locality of interactions but non-physical

effects are small: O(1/N).
REFERENCES
1. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
2. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7158 (1981).
3. R. Martonak Eur. Phys. J. B 79, 241-252 (2011)
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https://carnevalelab.org/toolsmethods.html




A note on Temperature Echo

T
g Al VI To/2
¥ echo
T |
0 T 27 ¢

J. Chem. Phys. 132, 114901 (2010); https://doi.org/
10.1063/1.3353952

Dendrimers, proteins




