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ABSTRACT
The earliest molecular dynamics simulations relied on solving the Newtonian or equivalently the
Hamiltonian equations of motion for a system. While pedagogically very important as the total energy
is preserved in these simulations, they lack any relationship with real-life experiments, as most of
these tests are performed in a constant temperature environment that allows energy exchanges. So,
within the framework of molecular dynamics, the Newtonian evolution equations need to be modified
to enable energy exchange between the system and the surroundings. The prime motive behind
allowing energy exchange is to control the temperature of the system. Depending on the
temperature being controlled and the modifications made to the equations of motion, different
evolution equations, or thermostat algorithms, can be obtained. This work reviews the recent
developments in controlling temperature through deterministic algorithms. We highlight the physical
basis behind the algorithms, their advantages, and disadvantages, along with the situations where
they are applicable. The review ends with a brief discussion on open-ended questions related to
thermostatted dynamics.
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1. Introduction

The computer revolution of the last century has fundamentally
altered scientific research. With increasing computational
power, researchers can build and test complex situations,
which otherwise would have remained unexplored. The impor-
tance of computational modelling has been such that it has been
adopted across disciplines as broad as physical sciences, chemi-
cal sciences, biological sciences, engineering, economics, etc.,
and now, techniques exist for solving problems at all known
length scales – smooth particle hydrodynamics at astronomical
scales, finite element method at macroscales, Monte-Carlo, and
molecular dynamics at the atomic scale, density functional the-
ory at the quantum scale, etc.

At atomistic scales, molecular dynamics (MD) has become
one of the most popular techniques. MD simulations are
powerful, only limited by the availability of computational
resources. In MD, the temporal and spatial evolution of indi-
vidual atoms and molecules (particles) are computed to
obtain in-depth insights into the properties of a system and
make several testable predictions about it. Consider an iso-
lated system comprising N particles, with a Hamiltonian
given by:

H =
∑3N
i=1

p2i
2m

+F x1, x2, . . . x3N( ), (1)

where, xi and pi denote the position and the momentum of
the ith particle, and F( . . . ) denotes the potential energy of
the system. For simplicity, all particles are assumed to have
the same mass m. The equations of motion of such a system

are given by [1]:

dxi
dt

= ∂H
∂pi

= pi
m

,
dpi
dt

= − ∂H
∂xi

= − ∂F

∂xi
. (2)

Traditionally, in MD simulations these 6N equations are
integrated in time to provide the system’s trajectory. One
of the simplest and most popular symplectic time inte-
gration algorithms is the Velocity-Verlet algorithm [2],
which propagates the positions and momenta in time
through:

xi(t + Dt) = xi(t)+ pi(t)
m

Dt + 1
2
Fi(t)
m

Dt2,

pi(t + Dt) = pi(t)+ 1
2
Fi(t)+ Fi(t + Dt)[ ]Dt.

(3)

Here Fi = − ∂F
∂xi

is the force experienced by the ith particle.
Since the system is isolated from the surroundings, these
simulations preserve the total energy. The linear momentum
is also conserved by these Newtonian equations. Thus, the
trajectories obtained from these MD simulations are conco-
mitant with a subset of the micro-canonical (NVE) ensemble
encountered in statistical mechanics; the link between the
two being provided by the ergodic hypothesis.

The ability of MD simulations to accurately reflect the real-
life properties of a system relies on the accurate modelling of –
(i) the interactions between the different particles constituting
the system, and (ii) the interaction of the system with its sur-
roundings. While the accuracy of the interatomic interactions
depends on the choice of potential (F( . . . )), modelling the
interaction between the system and its surroundings depends
on the equations of motion. Traditional MD, owing to it
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conserving the total energy, is well suited for modelling iso-
lated systems. However, it falls short for modelling systems
that exchange energy with the surroundings and have a con-
stant temperature. Such scenarios occur very commonly in
real-life. For example, most real-life experiments are per-
formed in a constant temperature environment, where a con-
tinuous energy exchange occurs between the system and the
heat reservoir. In order to model these scenarios through
MD, the equations of motion (2) need to be supplemented
in a manner that continuous energy exchange is permitted, a
constant temperature is enforced, and the dynamics is sampled
from the Gibbs’ distribution. Such alterations to the equations
of motion, however, come with the cost of developing appro-
priate time-integration techniques.

Apart from accurately mimicking real-life experiments at
constant temperatures, temperature control in MD is needed
for – (i) identifying the equilibrium properties of a system,
(ii) calculating the transport characteristics of systems using
Green-Kubo relations or by subjecting the system to dissipa-
tive fields, (iii) understanding temperature-dependent mech-
anical properties of materials, (iv) creating amorphous
systems based on high-temperature quenching, and (v)
extracting energy from a system on which external work is per-
formed, etc. In fact, temperature control in MD is essential for
studying non-equilibrium situations due to the lack of sound
theoretical understanding of non-equilibrium statistical
thermodynamics.

Initial attempts at developing temperature control algor-
ithms revolved around controlling the kinetic temperature
of the system, and until as recently as the early part of this
century, only kinetic temperature based thermostats existed.
However, recent advances in statistical mechanics have ren-
dered new ways of defining temperature. The temperature
of a system in MD, which used to be invariably kinetic temp-
erature, now can be defined solely in terms of the configura-
tional variables. These advances have prompted the
development of different classes of temperature control
algorithms, with each algorithm having its own strength
and weakness.

In this review, our objective is to provide a comprehensive
guide for researchers trying to simulate a system whose (part
or whole) temperature is controlled. We briefly describe the
applicability of the different temperature control algorithms
to different scenarios – both equilibrium and non-equilibrium.
Using the pedagogical case of a single harmonic oscillator
(SHO), under both equilibrium and non-equilibrium con-
ditions, we demonstrate the dynamical behaviour of the differ-
ent thermostats. Subsequently, we use a one-dimensional F4

chain and a two-dimensional soft-sphere system to compute
the transport properties from the thermostatted non-equili-
brium MD simulations. The scope of this work is limited to
deterministic thermostats. This review is organised as follows:
in the next section, we discuss the thermodynamic definition
of temperature, which is followed by the properties of a
good thermostat. We, subsequently, discuss the different
ways of defining operational temperature in MD simulations
– kinetic, generalised, configurational, and Rugh’s – and algor-
ithms for their control. The case studies, involving SHOs, the
F4 chain and the two dimensional soft-sphere system, follow

next. The review ends with a set of open-ended questions,
whose answers, once obtained, may further enrich thermo-
statted dynamics.

2. Thermodynamic definition of temperature

Theoretically, the concept of temperature goes beyond mere
perception of the degree of hotness or coldness of a body.
Instead, it has a solid mathematical background. The idea
of temperature begins with the Zeroth Law of thermodyn-
amics. The Zeroth Law enables us to define a class of equiv-
alence relations that is symmetric, reflexive, and transitive
[3]. These equivalence relations are isotherms, each of
which is associated with an empirical variable called tempera-
ture. However, the Zeroth Law in itself is not sufficient to
identify the relative degree of hotness. For this purpose, we
need both the First Law and the Second Law of
thermodynamics.

The First Law enables us to define heat energy in terms of
the conservation of total energy. In a closed system, the
sum of the change in internal energy and thermodynamic
work done by the system equals heat energy supplied to
the system:

dQ = dU + dW = dU + P dV, (4)

where dQ is the heat energy supplied to the system, dU is the
change in the internal energy of the system, and dW is the
work done by the system which can be expressed in terms
of the pressure, P, and the change in volume, dV.

The Second Law helps in identifying the relative hotness
of two bodies in terms of the spontaneous flow of heat
energy between them. For a reversible process (necessarily
in equilibrium), one can replace the LHS of (4) and rewrite
it as:

T dS = dU + P dV, (5)

where, T = temperature of the system, and dS is the change
in entropy of the system. All three laws combined together
give the thermodynamic definition of temperature,

1
T
= ∂S

∂U

( )
V

(6)

One can understand temperature as the change in the
internal energy of a system for a unit change in its entropy
at constant volume [4]. Interestingly, the temperature may
also be viewed as an integrating factor that converts the
path differential variable dQ to the total differential variable
dS. Both these interpretations do not preclude the concept of
negative temperature [5].

The concept of thermodynamic temperature may be under-
stood in other ways as well. Consider Jaynes’ framework of
statistical mechanics [6,7], where one maximises the Shan-
non’s entropy functional [8],

C =
∫
f (G) log (f (G)) dG, (7)

subjected to the constraints imposed by the physics of the pro-
blem. For example, there are two constraints in a canonical
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ensemble – the phase-averaged energy constraint, 〈H〉 = E,
and the normalisation constraint,

�
f (G) dG = 1. The least

biased distribution for the canonical ensemble can be found
by maximising:

C =
∫
f (G) log (f (G)) dG− l0

∫
f (G) dG− 1

( )

− l1

∫
H(G)f (G) dG− E

( )
,

(8)

where, l0 and l1 are the Lagrange multipliers associated with
the normalisation constraint and the energy constraint, respect-
ively. It is straightforward to show that the least biased distri-
bution is the canonical distribution, with l1 = b = 1/kBT [3].
Here, kB is the Boltzmann constant. Thus, the temperature of
a system may be identified as the inverse of the Lagrange mul-
tiplier associated with the energy constraint.

From an operational perspective, measurement and control
of thermodynamic temperature are difficult, both in equili-
brium and non-equilibrium. This is because the computation
of Gibbs’ entropy in equilibrium comprises a 6N dimensional
integral. The situation is more problematic in non-equili-
brium, where the meaning of S itself remains an open question.
As a result, in MD we rarely use thermodynamic temperature
[9]. Instead, other definitions of temperature, some of which
we describe later, are used. We emphasise that these different
definitions are essentially phase-averaged quantities that are
equal to the thermodynamic temperature in equilibrium. In
non-equilibrium problems, whether these phase-averaged
quantities can be ascribed the meaning ‘thermodynamic temp-
erature’ is a question open to debate. However, for operational
reasons we still treat them synonymously with thermodynamic
temperature.

3. Properties of a good deterministic thermostat

The role of a good deterministic thermostat goes beyond just
controlling the temperature of the system. So, what makes a
deterministic thermostat good? Some of the properties are
listed below:

(1) Time-reversibility: Consider a deterministic system which
starts at the microstate (x0, p0), and evolves to the micro-
state (xt, pt) in time τ. Hamiltonian mechanics suggests
that if pt is reversed instantaneously i.e. pt � −pt and
the dynamics proceeds for a time duration of τ, the initial
microstate with reversed momenta i.e. (x0, − p0), is
obtained. Alternatively, if the system starts from the
microstate (xt, pt) and proceeds backward in time for a
time duration of τ, the initial microstate is reached.
Time reversibility of the dynamics is important because
some of the fundamental properties of dynamical systems,
such as conservation laws, depend on it [10]. The arrow of
time does not have any naturally preferred direction when
it comes to the fundamental interactions, and all equations
of motion in classical mechanics are time-reversible. Thus,
the equations of motion for a deterministic thermostat
should obey similar time-reversal symmetry to be at the

same platform as the other equations encountered in
physics.

(2) Ergodicity: MD simulations are typically performed with
one sample-path, which begins from a specific set of initial
conditions. The properties measured from MD simu-
lations are, as a result, time-averaged quantities obtained
over the single sampled path. Macroscopic averages, on
the other hand, are based on the phase-space averages of
dynamical observables [11]. The link between the time-
averages and the phase-averages is provided by the ‘ergo-
dic hypothesis’, which states that a phase-averaged vari-
able is the same as its time-averaged counterpart. In
essence, ergodicity of the dynamics is a prerequisite for
obtaining statistical-mechanical properties from a single
run of MD simulation. Throughout this work, we use
Ehrenfests’ ‘quasiergodicity’ equivalently with the tra-
ditional ergodicity. (Quasi)ergodicity says that a trajectory
initiating from any microstate within the accessible phase-
space must eventually come arbitrary close to all the
microstates that lie within the accessible region [12]. In
the context of MD simulations, this implies that the
phase-space trajectory must visit the accessible phase
space in a frequency commensurate with the theoretical
phase-space probability distribution.

The ergodic hypothesis has been proved theoretically
only for a handful of systems like hard billiard balls [13]
and Lorentz gas [14]. One usually employs numerical
techniques to determine if the dynamics is ergodic. It
has been customary to study the ergodic characteristics
of thermostatted dynamics using an SHO [15–18] due to
the oscillator’s ‘stiff’ nature and simplicity. To the best
of our knowledge, no watertight proof of ergodicity exists
for any thermostatted dynamics. In larger systems, com-
prising hundreds of thousands of degrees of freedom,
the (non)ergodicity of dynamics takes a back seat owing
to the large Poincaré recurrence time, which often is
greater than the age of the universe [19]. Thus, although
ideally, we need algorithms that impart ergodicity to the
dynamics, the effect of non-ergodicity becomes progress-
ively less important as the system size increases.

There are two ways of ascertaining ergodicity numeri-
cally. Both the approaches are briefly described, and the
interested readers are referred to [20,21] for a more com-
prehensive treatment. Note that in both approaches, we
deal with a SHO.

Dynamical Systems Approach: Non-ergodicity implies
the partitioning of the phase-space into two (or more)
non-communicating regions. So, when the dynamics of
a thermostatted SHO is limited to a (hyper-)torus for
one or more initial conditions (except perhaps those
that form a set of zero-measure), the thermostatted
dynamics is non-ergodic. For a multidimensional phase-
space flow, as is the case with thermostatted SHOs, this
can be assessed by studying the Lyapunov spectra of the
dynamics [22]. A d−dimensional flow is associated with
d Lyapunov exponents, which are ordered:
L1 . L2 . · · · . Ld−1 . Ld. The sum of these exponents
describes the deformation of an infinitesimal hypercube in
the d−dimensional space describing the motion. L1 gives
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the time-averaged rate of separation of two neighbouring
trajectories. L1 + L2 gives the rate of separation of the
area defined by three neighbouring trajectories. Similarly,
L1 + L2 + L3 describes the separation rate of volume, and
so on. The pre-deformation infinitesimal hypervolume
dV(0) with the post-deformation hypervolume dV(t)
may be related as:

dV(t) = dV(0)e L1+L2+···+Ld−1+Ld( )t (9)

In equilibrium,
∑〈Li〉 = 0, i.e. there is no change in

phase-space volume in an averaged sense, and
〈L1 + Ld〉 = 〈L2 + Ld−1〉 = . . . = 0, i.e. the Lyapunov
exponents are conjugately paired. To ascertain the ergodic
characteristics, Lyapunov spectra corresponding to
millions of initial conditions need to be found. For non-
ergodic dynamics, at least one initial condition yields a
(hyper-)torus for which all the Lyapunov exponents are
statistically insignificant from zero.

Statistical Approach: Consider the Maxwell-Boltzmann
distribution. For an SHO of unit mass and stiffness, the
Maxwell-Boltzmann distribution reduces to a product of
two independent normal distributions:

f (x, p) = 1
Z

exp −b0

2
x2

( )
exp −b0

2
p2

( )[ ]
(10)

In the presence of thermostat variables (h1, h2, . . . , hn),
the distribution function gets augmented by additional
terms. However, the conditional distribution of oscil-
lator’s position and momentum variables still remains
jointly normal i.e.

f (x, p|h1 = h1,0, h2 = h2,0, . . . , hn = hn,0)

= 1
Z′ exp −b0

2
x2

( )
exp −b0

2
p2

( )[ ] (11)

The statistical approach of ascertaining ergodicity looks at
this conditional joint distribution of position and momen-
tum to assess if the dynamics samples the phase-space fol-
lowing the Maxwell-Boltzmann distribution. Any
deviation from normality is an indicator of non-

ergodicity. Numerically, this implies finding the joint
probability distribution of position and momentum in a
Poincaré section defined by h1 = h1,0, h2 = h2,0,
. . . , hn = hn,0, and performing a test for normality.

It is important to note that the marginal distributions
of position and velocity are often incapable of capturing
the deviation from normality. This is exemplified next.
Consider a four-dimensional space filled with 10 million
random samples drawn from the independent standard
normal vectors (n1, n2, n3, n4). Let a small hole be
embedded in this 4-D space by deleting the points that
lie within the hyper-sphere n21 + n22 + n23 + n24 ≤ 0.0625.
Clearly, having lost all probability content around the ori-
gin of the 4-d space, the remaining points would no longer
satisfy a joint normal density function. However, the
phase-space plot projected on to n3 = 0, n4 = 0 plane is
devoid any empty space (see Figure 1(a)), and the mar-
ginal distributions of n1 and n2 agree well with a standard
normal distribution (see Figures 1(b,c)). The first three
even marginal and joint moments also agree well with
the standard normal distribution: 〈n21〉 = 1.000, 〈n41〉 =
3.000, 〈n61〉 = 15.007, 〈n22〉 = 0.999, 〈n42〉 = 2.999, 〈n62〉 =
14.992, 〈n21n22〉 = 0.999, 〈n41n42〉 = 9.003 and 〈n61n62〉
= 227.496. Thus, one needs to check ergodicity using con-
ditional joint distributions rather than marginal
distributions.

(3) Conformity with the Laws of Thermodynamics: Being
mathematical counterparts of the real-life thermal reser-
voirs, the thermostat algorithms must satisfy the different
laws of thermodynamics. Take the Zeroth Law of thermo-
dynamics, for example, which says that if two bodies are in
mutual thermal equilibrium with a third body, then the
two bodies are in thermal equilibrium with each other.
Now, consider a system in thermal equilibrium with
known macroscopic properties. If this system is coupled
with a thermostat (algorithm) at the same temperature,
then as per the Zeroth Law, the macroscopic properties
of the system remain time-invariant. Going one step
further, if the system is coupled with more than one ther-
mostat, the properties of not only the system but the indi-
vidual thermostats also remain time-invariant. This idea is

Figure 1. (Colour online) The inability of projected variables n1 − n2 to capture the 4-dimensional hole of radius 0.25 forcefully embedded within a 4-dimensional joint
standard normal. (a) Projected values of n1 − n2 onto the n3 = 0, n4 = 0 plane. (b) Marginal distribution of n1 and (c) marginal distribution of n2. No difference in
marginal distributions from that of standard normal can be observed.
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central to testing if a thermostat algorithm satisfies the
Zeroth Law: an SHO is simultaneously coupled with two
thermostats kept at the same temperature. The resulting
equations of motion are solved, and the phase-space of
the oscillator is analysed along with that of the thermostat.
The Zeroth Law is not satisfied if: (i) the temperature of
any of the thermostats differ from that of the system or
with each other, (ii) there is a heat flow within the system,
or (iii) the time-averaged phase-space compression, which
is defined as,

〈L〉t =
1
t

∂Ġ

∂G
, (12)

is not equal to zero. Here, τ represents the time, and
G ; (x, p, h1, h2, . . . , hk) denotes the extended phase-
space, with his as the thermostat variables.

The Second Law, on the other hand, demands heat to
flow from a thermostat at a higher temperature to a
thermostat at a lower temperature spontaneously. In
essence, if one end of a system is thermostatted at a
higher temperature and the other end at a lower temp-
erature, then a spontaneous heat flow must occur
between the hotter and the colder thermostats. Thermo-
stats unable to engineer such a heat flow fail to satisfy
the Second Law, and hence, are not suitable for MD
simulations. Apart from the ability to ensure heat
flow, the time-averaged phase-space compression,
defined by (12), must be non-zero. In order to check
if a thermostat satisfies the Second Law, we take an
SHO and subject it to a position-dependent tempera-
ture field

kBT(x) = 1+ e tanh (x), (13)

by coupling it with a thermostat. Here, ε denotes the
strength of non-linearity. For e = 0, this becomes a
non-equilibrium problem, with heat flow and phase-
space compression.

(4) Autonomous and Easy Implementation: The equations of
motion corresponding to the deterministic thermostats
must be autonomous, i.e. they should not have an explicit
dependence on time. An explicit dependence on time
makes the equations lose their time-invariance character-
istic, which is a prerequisite for equilibrium. Lastly, the
equations of motion must be easy to implement, not be
stiff, and simple to solve using existing numerical
techniques.

4. Kinetic temperature and its control

In MD simulations, the temperature used to be invariably
expressed in terms of the kinetic variables. The kinetic
definition of temperature owes its origins to the kinetic theory
of gases. Consider an isolated system comprising ideal gas par-
ticles that are confined to move within a container. The par-
ticles are assumed to be rigid and collide elastically with
each other and with the walls. A quick comparison of the
pressure exerted by the particles on the wall surface with the
ideal gas equation of state reveals that the kinetic temperature

[23], Tk, is:

3
2
kBTk = p2i

2m

〈 〉
. (14)

Here, 〈. . .〉 denotes the phase-averaged quantity. Unlike ther-
modynamic temperature, the expression of Tk is easy to com-
pute and control in a computer simulation without expending
too many computational resources. If the system is in equili-
brium and is isotropic, as is the case with an ideal gas or a sys-
tem without any directional dependence, one can employ
equipartition theorem to show that, in an averaged sense,
each kinetic energy component is equal to the other and to
the thermodynamic temperature i.e.

1
2
kBTk =

p2i,x
2m

〈 〉
= p2i,y

2m

〈 〉
= p2i,z

2m

〈 〉
(15)

Alternatively, Tk may be derived from the canonical prob-
ability distribution function, wherein the phase space is
sampled according to the Maxwell-Boltzmann distribution:

f (x, p) = 1
Z
exp −bF(x)− b

∑3N
i=1

p2i /2m

[ ]( )
. (16)

Here, Z is the partition function and b = (kBT)
−1. Equations

(14) and (15) may be obtained by relating, 1/b, the variance
of the Maxwell-Boltzmann distribution with the momentum
variables.

From a statistical perspective, when a system is in thermal
equilibrium with a reservoir, all moments of the momentum
distribution must agree with the kinetic temperature of the
system. This statistical nature of the momentum variables
may be exploited to obtain higher-order measures of Tk, as
often, it has been observed that the control of the second-
moment based Tk alone is insufficient for effectively therma-
lising small-scale systems such as SHOs. With this in mind,
higher-order moments of kinetic temperature – Tk,2, the kin-
etic temperature calculated from the fourth moment of vel-
ocity distribution and Tk,3, the kinetic temperature
calculated from the sixth moment of velocity distribution –
may be calculated as:

kBTk,2 =
�����
〈p4i 〉
3m2

√
, kBTk,3 =

�
[

√
3]

〈p6i 〉
15m3

. (17)

An unconventional route to kinetic temperature is from the
viewpoint of the kinetic energy of the system – as particle vel-
ocities are normally distributed, the kinetic energy, K, follows
a x2 distribution. Based on this argument, Tk shown in
equation (14) represents the mean of the x2 distribution.
Although Tk calculated from the first even order moment
of momentum distribution and the first moment of kinetic
energy distribution agree with each other, the second-order
kinetic temperature obtained from kinetic energy distri-
bution, TK,2, is different from that of Tk,2:

kBTK,2 = 〈4K2〉
〈2K(N + 2)〉 (18)

It is important to note that all expressions of kinetic
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temperature written so far apply only to the translation
motion of the individual particles. These expressions require
modification if there is a centre of mass translation or if
rotational and internal degrees of freedom are present [24].

The kinetic temperature control algorithms may be divided
into three categories – temperature constraining algorithms
(Velocity Rescaling and Gaussian isokinetic thermostat),
temperature control through weak coupling (Berendsen ther-
mostat) and temperature control through extended system
(Nosé, Nosé-Hoover, Martyna-Klein-Tuckerman, Hoover-
Holian and Campisi-Zhan-Talkner-Hängii thermostats). We
now discuss these categories.

4.1. Temperature constraining algorithms

The primary idea behind these algorithms is to constrain the
instantaneous kinetic temperature, Equation (14), to the
desired value. The constraining may be performed in an
adhoc manner (Velocity Rescaling and Berendsen thermo-
stats) or through a more physics based approach (Gaussian
Isokinetic thermostat). Constraining the temperature reduces
the independent degrees of freedom of the system by one,
and removes fluctuations in temperature. These algorithms
do not generate a canonical distribution in momentum vari-
ables, however, a canonical distribution is generated for the
configurational variables [25]. Note that the absence of temp-
erature fluctuations could result in inaccurate solutions in
typical systems employed in MD simulations.

4.1.1. Velocity rescaling and berendsen thermostats
Velocity rescaling is possibly the simplest of all temperature
control algorithms. As the name suggests, the instantaneous
velocities of the particles are rescaled in an ad-hoc manner
such that the desired temperature, T0, is obtained [26]. For a
d−dimensional system, T0 is related to the desired kinetic
energy, K0, as:

T0 = 2
dNkB

K0. (19)

Let, at any time t, the instantaneous kinetic energy, Kt , be given
by: Kt =

∑
p2i /2m. The corresponding instantaneous kinetic

temperature, Tt , is Tt = 2Kt/(kBdN). Evidently, if the instan-
taneous velocities of each particle are scaled by a factor α,
where,

a =
���
K0

Kt

√
(20)

the instantaneous temperature of the system is forced at T0.
The rescaling may be performed after every few steps.

The sampled ensemble is not canonical in momentum vari-
ables. However, in massive systems, this algorithm may pro-
vide satisfactory results due to the equivalence of different
ensembles in the thermodynamic limit [27]. Apart from the
inability to sample the dynamics correctly, this algorithm is
not physics preserving [25], and does not follow any of the
properties of a good thermostat discussed before. The sampled
space and the temperature fluctuations depend on the fre-
quency of rescaling. For example, if the rescaling is done

every time step, then the fluctuations in temperature are
zero. Because of these reasons, this simple algorithm is typi-
cally not used these days. However, a simple modification
can remove some of the drawbacks. Rather than treating K0

as a hard equality constraint, if one treats it as a soft constraint,
where at each rescaling step it is sampled from an appropriate
x2 distribution [28], some of the problems are resolved.

The Berendsen thermostat [29] is a weaker form of the vel-
ocity rescaling algorithm. In this, the velocities are rescaled at
each time step so that the rate of change of temperature is pro-
portional to the instantaneous difference between the desired
temperature and the actual temperature:

dT(t)
dt

= 1
t
T0 − Tt[ ], (21)

where, τ is the time parameter that determines the (exponen-
tial) rate at which the actual temperature decays to the desired
temperature. The temperature of the system after one iteration
is: Tt + DT = Tt + Dt

t (T0 − Tt), from which the velocity
rescaling factor may be calculated:

a′ =
����������
Tt + DT

Tt

√
. (22)

Like the Velocity rescaling thermostat, the Berendsen ther-
mostat does not sample the dynamics from a canonical dis-
tribution. In some cases, the Berendsen thermostat results in
the unphysical flying ice cube effect, wherein the energy of
the high-frequency normal modes is funnelled into the
low-frequency modes, and hence, it is advised to avoid
this thermostat [30].

4.1.2. Gaussian isokinetic thermostat
Amongst the first physics-preserving deterministic thermo-
stats, the Gaussian isokinetic thermostat (GIK) was simul-
taneously developed by Hoover [31] and Evans [32–34]. In
here, the kinetic energy (and thereby, the kinetic temperature)
is controlled through the non-holonomic constraint [35,36]:

g xi, ẋi, t( ) =
∑3N
i=1

1
2
mẋ2i −

3
2
NkBT0 = 0. (23)

Being a hard equality constraint, the kinetic energy of the sys-
tem remains equal to 3/2NkBT0 at all times. The equations of
motion are obtained from the Gauss’ principle of least con-
straint, which states that the true trajectory of a constrained
system is the one that minimises the difference between the
true acceleration and the unconstrained acceleration of the
constituent particles in a least-squares manner [35]:

M = 1
2

∑3N
i=1

m ẍi − Fi
m

( )
. (24)

Here, ẍi is the true acceleration of the ith particle and Fi
m is

its unconstrained acceleration. The constraint equation (23)
is brought to the acceleration space: G(ẋi, ẍi, t) =∑3N

i=1 mẋi.ẍi = 0, and M of Equation (24) is minimised sub-
jected to G through the Lagrange multiplier, λ. The equations
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of motion become:

mẍi = Fi − lmẋi. (25)

λ may be obtained by substituting equation (25) in the differ-
ential constraint, G:

l =
∑

Fiẋi∑
mẋ2i

=
∑

Fipi∑
p2i

. (26)

Notice that the equations of motion do not explicitly account for
T0. The information on T0 goes into the dynamics from the
initial description of the system – the initial kinetic energy of
the system equals 3/2NkBT0. An incorrect choice of the initial
conditions results in the system being thermalised at an incorrect
value. Equation (25) bears similarity to a damped system, where λ
acts like the damping coefficient. However, in the GIK thermo-
stat, the magnitude and the sign of λ depends on the instan-
taneous value of equation (26): l . 0( , 0) indicates that the
reservoir extracts (supplies) heat energy from (to) the system.
The pseudo-energy which is a constant of motion is given by:

EGIK = F(x)+
∑ p2i

2m
+
∫t
0

∑
Fipi dt (27)

Equations of motion of the GIK thermostat can also be derived
using a Hamiltonian formulation [37]. For simplicity, consider
the case where kBT0 = 1 and m=1. Let the Hamiltonian, HGIK,
be given by:

HGIK(xi, pi, t
′) = 1

2
e g+1( )F[ ]∑3N

i=1

p2
i −

1
2
e g−1( )F[ ], (28)

where Φ is the potential energy, pi is the momentum conjugate
to xi and is different from the real momentum pi, t′ is the Ham-
iltonian time, which is different from the real time t, and γ is an
arbitrary multiplier. Applying Hamilton’s equations provides:

dxi
dt′

= ∂HGIK

∂pi
= e g+1( )F[ ]pi

dpi

dt′
= −∂HGIK

∂xi
= −1

2
∂F

∂xi
e g−1( )F[ ]

× g+ 1
( )

e(2F)
∑3N
i=1

p2
i − (g− 1)

[ ]
.

(29)

Equations (25) and (26) can be obtained from Equation (29), if
the following relation is imposed on the Hamiltonian variables
and the real-time variables:

dt
dt′

= exp −gF[ ], pi = exp F[ ]pi. (30)

The Hamiltonian formulation enables the study of GIK ther-
mostatted dynamics within the framework of Hamiltonian
mechanics, including conservation of phase-space volume
and its symplectic structure. The GIK thermostatted
dynamics is a part of the m− thermostat family, under the
special condition of m = 1 [38], and is unique amongst
the different m− thermostat candidates as it is the only
one from the family – (i) for which the conjugate pairing
rule holds, and (ii) which generates an equilibrium state.

The GIK thermostat samples the configurational space
canonically and the momentum space microcanonically. Let
fGIK be the distribution function generated by the GIK
equations of motion, then the Liouville’s equation becomes:

dfGIK
dt

= −fGIK
∂

∂G
.Ġ = fGIK

∑N
i=1

∂

∂pi
.(lpi), (31)

where, G = (x, p) denotes the phase-space variables. Neglect-
ing the 3N terms obtained from the derivative
pi.∂l/∂pi = −l, Equation (31) may be simplified to:

dfGIK
dt

= 3NlfGIK = −3N
2K

fGIKḞ, (32)

which upon integration in time yields:

fGIK(G) = exp −bF[ ]d(K − K0)�
( exp −bF[ ]d(K − K0)) dG

. (33)

Consequently, a single GIK trajectory cannot sample the
dynamics canonically even if it is ergodic. It is easy to check
that the phase-space compression factor, L = ∂

∂G .Ġ = 0, but
in absence of any dissipative field, 〈L〉 = 0 as 〈Ḟ〉 = 0 in equi-
librium. The instantaneous rate at which the GIK thermostat
exchanges heat with the system is:

Q̇GIK(t) =
d
dt

K(t)+F(t)[ ] = −l(t)
∑N
i=1

p2i
mi

. (34)

It has been observed that in the long-time limit, the tempera-
ture drifts away from its desired value. The solution lies in add-
ing a proportional feedback term [39] through a modified form
of the Lagrange multiplier:

l′ = l+ c

∑
p2i /m− 3NkBT0

3NkBT0

[ ]
, (35)

where, c is the weighting term, which typically varies between
0.1 and 10. However, this correction introduces irreversibility
into the dynamics.

For non-equilibrium problems, the GIK thermostat has
been extensively used for studying three-dimensional Couette
flow [40–40], as the peculiar kinetic energy can be made a con-
stant of motion:

ṙi = pi
m + nxġyi

ṗi = Fi − nxġpy,i − lpi

l =

∑N
i=1

Fi.pi − ġpx,ipy,i

∑N
i=1

pi.pi

(36)

Here, r ; (x, y, z) and p ; (px, py, pz) denote the position and
momentum of the particles, respectively, nx is a unit vector in
the x−direction and ġ is the shear rate. Evidently, Couette flow
is treated as a mechanical perturbation by writing the
equations of motion in terms of peculiar momenta [43]. How-
ever, the correctness of such enforcement has been questioned
[44], and at large strain rates, a string phase is formed in the
system, which will be discussed in the case study.
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4.2. Thermostats based on the extended system
method

In the extended system method, the temperature is con-
trolled by coupling the physical system to a ‘hypothetical’
heat bath. The heat bath is represented by additional degrees
of freedom. While the total energy of extended system, com-
prising the physical system and the heat bath, remains con-
stant, the total energy of the physical system fluctuates [45].
Nosé did the pioneering work on the extended system ther-
mostats [46,47], although the idea of extended system can be
traced back to Andersen [48] for his constant pressure
method. Nosé introduced two types of variables – real vari-
ables that represent the dynamics of the physical system in
real time, and time-scaled variables that represent the virtual
evolution of the system in Hamiltonian time. Subsequently,
Hoover [49] proposed a simplification to the Nosé’s
equations of motion, which is now known as the Nosé-
Hoover thermostat. While Nosé’s original formulation and
Hoover’s modification satisfy several properties of a good
thermostat, when coupled with very small systems, the
dynamics is non-ergodic. This issue may be tackled through
the Nosé-Hoover chain thermostat [50,51] and the kinetic-
moment based thermostat [52], all of which we describe in
this section.

Typically, the thermostats based on the extended system
method can be developed in two separate ways:

(1) Develop a Lagrangian or a Hamiltonian for the extended
system in such a manner that when the heat bath variables
are integrated out, the dynamics of the physical system is
sampled from a canonical distribution. This method was
adopted by Nosé [45] and Campisi et. al [53,54] to develop
their thermostats.

(2) Alternatively, one can use the Guessing Method of Holian
and Hoover, which was further generalised by Bauer, Bul-
gac and Kusnezov [16,55]. Assuming an arbitrary coup-
ling between the physical system and the heat baths –
denoted by h1(j) and h2(h), the position and the momen-
tum evolution equations may be written as:

ẋi = pi
m

− h1 j( )Ci xi, pi
( )

ṗi = − ∂F

∂xi
− h2 h

( )
Di xi, pi
( )

,
(37)

where, Ci(xi, pi) and Di(xi, pi) are arbitrary phase func-
tions. The temporal evolution of the heat bath variables
– ξ and η, are obtained by solving the extended phase-
space Liouville’s equation:

∂fex
∂t

+ ∂fex
∂G

.Ġ = −fex
∂Ġ

∂G
, (38)

where the extended phase-space, G = (x, p, j, h) com-
prises 6N+ 2 dimensions, and fex(G) is the extended
phase-space distribution function:

fex(G) = 1
Z′ exp −b H + g1(j)

Qj

+ g2(h)
Qj

( )[ ]
(39)

Under the assumptions that the heat bath variables evolve
self-consistently (∂g1(j)/∂j = h1, ∂g2(h)/∂h = h2) and
are independent of their time derivative
(∂j̇/∂j = ∂ḣ/∂h = 0), the evolution equations of the
heat bath variables are given by:

ḣ = Qh

∑3N
i=1

pi
m

Di xi, pi
( )− kBT0

∂Di xi, pi
( )
∂ pi

[ ]

j̇ = Qj

∑3N
i=1

∂F

∂xi
Ci xi, pi
( )− kBT0

∂Ci xi, pi
( )
∂xi

[ ]
.

(40)

Appropriate form of the coupling terms result in a family
of thermostats using this method.

We now look at the extended system based thermostats in
details.

4.2.1. Nosé thermostat
The strength of the Nosé’s approach lies in treating the entire
effect of a heat bath through a single variable. The extended sys-
tem obtained as a result constitutes a micro-canonical ensemble
with 6N+1 degrees of freedom. The physical system, denoted by
the variables (xi, pi), constantly exchanges heat energy with the
heat bath variable, denoted by s with its conjugate momentum
denoted by ps. The variable s may be viewed as a time-scaling
factor which relates the real-time evolution with the Hamil-
tonian (virtual) time evolution of the physical system. The
idea of scaling the time arises from the need to provide a feed-
back mechanism for controlling the momenta, and hence, the
temperature. Consider the evolution of the physical system in
an incremental time dt, so that p2i = m(dxi/dt)

2. If the total kin-
etic energy is less (more) than 3/2kBT0, then decreasing
(increasing) the real time dt to the virtual time dt′ ensures
that the kinetic energy equals 3/2kBT0.

The simplest manner in which the virtual time, t′, and the
real-time, t, can be related is dt = s−1 dt′. As the Hamiltonian
time differs from the real-time, the Hamiltonian positions and
their conjugate momenta, denoted by x′i and pi, respectively,
are also different from the real-time positions and momenta;
their relation being:

xi = x′i, pi = pi

s
. (41)

Let the Lagrangian describing the evolution of the extended
system in the Hamiltonian time be chosen as:

LNos′e =
∑3N
i=1

m
2
s2ẋ′2i −F(x′)+ Qs

2
ṡ2 − gkBT0 log s, (42)

then, pi and p′s, the momenta conjugate to x′i and s, respect-
ively, are given by:

pi = ∂LNos′e
∂ẋ′i

= ms2ẋ′i, p′s =
∂LNos′e
∂ṡ

= Qsṡ. (43)

The overdot notation represents the derivatives with respect to
the Hamiltonian time, t′. The term Qs is a user-controlled par-
ameter, which typically denotes the ‘mass’ of the thermal reser-
voir, and g is a constant that denotes the number of degrees of
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freedom within the system. Note that pi = m dx′i
dt′ . Using

Legendre transformation, the Hamiltonian corresponding to
LNos′e can be written as:

HNos′e =
∑3N
i=1

p2
i

2ms2
+F(x′)+ p′2s

2Q
+ gkBT0 log (s), (44)

from which the equations of motion are obtained in the Ham-
iltonian time:

dx′i
dt′

= ∂HNos′e
∂pi

= pi

ms2

dpi

dt′
= − ∂HNos′e

∂x′i
= − ∂F

∂x′i
ds
dt′

= ∂HNos′e
∂p′s

= p′s
Qs

dp′s
dt′

= − ∂HNos′e
∂s

= 1
s

∑3N
i=1

p2
i

ms2
− gkBT0

[ ]
.

(45)

This extended system constitutes amicro-canonical ensemble as it
remains isolated from the environment, and all energy exchanges
between the system and the reservoir are internal. Consequently,
the Hamiltonian represented by equation (44) is a constant of
motion. InHamiltonian time, thephase-space compression factor,

L = ∂Ġ

∂G
= 0. (46)

A physical interpretation of L = 0 is that the phase-space prob-
ability in a volumeelement alongaphase-space is always conserved.

The real-time evolution of the extended system can be
obtained by substituting the relations shown in Equation
(41) in Equation (45) along with the relation ps = p′s/s:

dxi
dt

= pi
m

dpi
dt

= − ∂F

∂xi
− 1

s
ds
dt

pi

ds
dt

= s2ps
Qs

dps
dt

= 1
s

∑3N
i=1

p2i
m

− gkBT0

[ ]
− 1

s
ds
dt

ps.

(47)

Unlike that in the Hamiltonian time, in real-time L = 0 due
to the non canonical nature of the transformation from the vir-
tual to the real variables.

Under the assumption of ergodicity, the real phase-space is
sampled as per the Maxwell-Boltzmann distribution, Equation
(16), in both real as well as Hamiltonian time. Interested readers
are referred to the review paper by Hünenberger [25] for a com-
prehensive treatment of the derivation. Nosé’s extended system
formalism was generalised by Jellinek and coworkers [56,57].
By distinguishing between the scaling of the real phase-space
variables and the real time, they showed – (i) the time scaling
leads to a weighted distribution in the real phase-space, and (ii)
there are infinite ways in which the scaling functions can be cho-
sen such that a canonical distribution is sampled.

The Nosé thermostat suffers from two problems – (i)
the computation of dynamical properties in real time
requires re-weighting (or interpolating) the trajectories in
equally spaced time interval, a non-trivial task, and (ii)
the Hamiltonian formalism is not applicable to cases
where separate temperature control is desired for the
different degrees of freedom (such as vibrations, trans-
lations and rotations) as each of them has a different
relaxation time [58]. These problems can be resolved
through the Nosé-Hoover (NH) thermostat.

4.2.2. Nosé-Hoover thermostat
Nosé’s equations of motion can be written in the form:

dxi
dt = pi

m , dpi
dt = − ∂F

∂xi
− 1

s
ds
dt

( )
pi,

ds
dt = sp′s

Qs
, dp′s

dt =
∑3N
i=1

p2i
m

− 3NkBT0

[ ]
.

(48)

Defining h = p′s/Qs and Qs = Qh, Hoover [49] simplified
these equations to:

dxi
dt = pi

m , dpi
dt = − ∂F

∂xi
− hpi,

ds
dt = hs, dh

dt = 1
Qh

∑3N
i=1

p2i
m

− 3NkBT0

[ ]
.

(49)

As the differential equation for s is redundant, the remaining
three differential equations are self-sufficient in describing
the extended-system dynamics. These three equations consti-
tute the NH thermostat.

The NH equations of motion satisfy the steady-state Liou-
ville’s Equation (38) in a comoving frame of reference [59]
with G = (x, p, h) and fex equalling:

fex(G) = 1
Z′ e

−b
∑3N

i=1

p2
i

2m+F(x)

( )[ ]
× e −bQh

2 h2
[ ]

(50)

The instantaneous phase-space compression factor,
L = [ ∂ẋ

∂x + ∂ṗ
∂p + ∂ḣ

∂h ] = −3Nh = 0, which suggests that the
phase-space probability is not conserved along a phase-space
trajectory. However, since in an averaged sense, 〈h〉 = 0,
〈L〉 = 0 as well. The NH equations of motion bear similarity
to the GIK thermostat, the difference being the dynamic
evolution of η.

The Guessing Method discussed previously can be used to
derive the NH equations of motion. Starting with the
Equation (37) under the coupling h1(j) = Ci(xi, pi) = 0,
h2(h) = h and Di(xi, pi) = pi, one ends up with Equation
(49) if the extended phase-space distribution is chosen
according to the Equation (50). The NH equations of motion
may also be obtained from a Hamiltonian described by
Dettmann and Morriss [60]:

HD&M ; sHNos′e ; 0 (51)

This Hamiltonian omits the time-scaling variable used in the
Nosé’s Hamiltonian. Bond and coworkers developed a more
formal approach, the Nosé-Poincaré method, to come up
with the same Hamiltonian [61]. Note that for some non-
equilibrium problems of one-dimensional oscillators, the
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traditional Nosé-Hoover equations differ [62] from those
obtained using equation (51).

For the NH equations, the pseudo energy, defined by:

ENH =
∑3N
i=1

p2i
2m

+F(x)+ Qhh
2

2
+
∫t
0
h3NkBT0 dt, (52)

is a constant of motion for all t. While ĖNH = 0, the rate at
which the energy of the system changes is given by:

E =
∑ p2i

2m
+F(x) ⇒ dE

dt

= −
∑hp2i

m
.

(53)

By definition, if no work is done on/by the system, it only
exchanges heat energy with the thermostat. Consequently,
applying the First Law of thermodynamics provides the rate
of heat flow (Q̇) in NH thermostatted dynamics:
Ė = Q̇ ⇒ Q̇ = −∑

hp2i /m. Under steady-state conditions:
d
dt 〈

Qhh
2

2 〉 = 0 ⇒ 〈∑hp2i /m〉 = 3N〈h〉kBT0, so that one can
write:

〈Q̇〉 = −
∑hp2i

m

〈 〉
= −3N〈h〉kBT0 (54)

This simple equation enables us to relate the dynamical heat
flow characteristics with the phase-space properties. For
example, in equilibrium, 〈Q̇〉 = 0 ⇒ 〈h〉 = 0. However,
instantaneously, Q̇ = 0 even in equilibrium (see fluctuation
theorem [63]), which suggests that h(t) = 0∀t. As discussed
previously, similar information is obtained by looking at Λ,
the phase-space compression factor. The heat-flow entropy
rate, defined as: 〈Ṡ〉 = −〈Q̇〉/T0 signifies that in non-equili-
brium 〈h〉 . 0. Thus, while in equilibrium, the phase-space
neither contracts nor expands in an averaged sense, the
phase-space volume continuously shrinks and collapses to a
dimension smaller than the embedding dimension in non-
equilibrium cases.

Further, since the sum of the Lyapunov exponents,
∑

Li,
provides the rate at which the phase-space volume changes,
both 〈L〉 and 〈Ṡ〉 are related to it:

〈L〉 =
∑
i

Li ⇒ 〈Ṡ〉
kB

= −
∑
i

Li (55)

For non-equilibrium problems, this equivalence occurs
under the special condition that the temperature field, T0,
is constant. The equivalence is violated if the temperature
field is position-dependent, such as the one shown in
equation (13). The Gibbs’ heat flow entropy, in this case,
is given by:

Ṡ
kB

〈 〉
= −Q̇

kBT

〈 〉
=

∑
hp2i

mT

〈 〉

=

∑
hp2i /m

〈 〉
kBT〈 〉 = 3N〈h〉 = 〈−L〉

(56)

However, a slight modification in the equations of motion
(49) resolves the problem:

dxi
dt

= pi
m

,
dpi
dt

= − ∂F

∂xi
− hpi,

dh
dt

= 1
Qh

∑
p2i /m

3NkBT
− 1

[ ]
.

(57)

Imposing steady-state conditions,

d
dt

〈Qhh
2〉

2

( )
= 0 ⇒

∑
hp2i /m
kBT

〈 〉
= 〈3Nh〉, (58)

on the time-averaged rate of heat-flow entropy, we get

Ṡ
kB

〈 〉
=

∑
hp2i /m
kBT

〈 〉
= 〈3Nh〉 = −〈L〉. (59)

The remarkable ability of the NH thermostat to link the
dynamical variables with their thermodynamic counterparts
has made it very popular amongst researchers. The NH ther-
mostat performs well for large equilibrium as well as non-
equilibrium problems, having been verified experimentally
as well [64].

The NH thermostat has spurred the development of several
thermostat algorithms, each with its own merit. Watanabe and
Kobayashi [18] relaxed the assumption of ∂ḣ/∂h = 0, and gen-
eralised the Nosé-Hoover equations. Working with Jellinek and
Berry’s generalisation of Nosé Hamiltonian [57], which results in
a more efficient mixing of phase-space trajectories, Brańka and
Wojciechowskie generalised the Nosé-Hoover dynamics [65]
to obtain improved thermalising characteristics in an SHO.
Using the Guessing Method, Bravetti and Tapias [66] developed
equations of motion that generate any target density distribution.

For a large system, one can use Gear’s predictor-corrector
method [67] for solving the NH equations of motion (49). In
here, the variables are first predicted based on a Taylor’s series
expansion, and then corrected with respect to a higher-order
derivative of acceleration. However, the time-reversibility of
the equations of motion is lost along with the symplectic prop-
erty of the dynamics. While for a small system, the 4th order
Runge-Kutta method may be used, the method is time-con-
suming, not symplectic, and causes a long-term energy drift.
Martyna and coworkers [68] have developed a symplectic
algorithm based on Trotter’s factorisation and Liouville’s oper-
ators, which may be used for a large system.

The NH thermostat satisfies almost all qualities of a ‘good’
thermostat – (i) it is time-reversible: if we reverse each momen-
tum term such that pi � −pi and h � −h, the path is traced
back, (ii) it conforms with the laws of thermodynamics and
allows heat to flow from a hotter thermostat to a colder thermo-
stat, and (iii) it is easy to implement. But, the dynamics is not
ergodic [17], as we shall see later. In general, it is thought that
the issue of non-ergodicity of the NH thermostat can be tackled
by using multi-variable thermostats [12,18,50,52,69]. We now
describe these multi-variable thermostats.

4.2.3. Martyna-Klein-Tuckerman thermostat
One of the major breakthroughs in improving the ergodic
characteristics of a single-particle system thermostatted using
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the NH thermostat was the development of the Nosé-Hoover
chain (MKT) thermostat [50,51]. In this approach, the kinetic
temperature of the system is controlled along with the fluctu-
ations of the heat-bath variable through additional variables.
Simply put, while the thermostat variable h1 controls the kinetic
temperature of the system similar to that in the NH thermostat,
the fluctuations of h1 are controlled by another variable h2.
Likewise, the fluctuations of h2 are controlled by a third ther-
mostat variable, h3, and so on. Thus, a chain of thermostats
(h1, h2, . . . , hk) is formed. The MKT equations of motion are:

ẋi = pi
m

,

ṗi = ∂F

∂xi
− pi

h1

Qh1

,

ḣ1 =
∑3N
i=1

p2i
mi

− 3NkBT0

[ ]
− h1

h2

Qh2

,

·
·
·

ḣj =
h2

j−1

Qh j−1

− kBT0

[ ]
− hj

h j+1

Qh j+1

·
·
·

ḣk =
h2
k−1

Qhk−1

− kBT0

[ ]
.

(60)

The variable Qhi
may be thought of as the mass associated with

the heat-bath variable hi. An empirical rule of selecting the ther-
mostat masses is: Qh1

= 3NkBT0/v
2 and Qh j=1

= kBT0/v
2

[50,51]. The frequency, ω, describes the frequency with which
the kinetic energy oscillates between the system and the reser-
voirs. A lot of approximations have gone in developing this
relationship, and a suitable choice is usually problem-depen-
dent. We will see later how the dynamics changes substantially
depending on the choice of Qhi

, especially for small-scale
systems.

Due to the presence of k heat-bath variables, the extended
phase space is 6N+k dimensional: G = (x, p, h1, h2, . . . , hk).
The MKT equations satisfy the steady-state Liouville’s
Equation (38) with the extended phase-space distribution as:

fex(G)/ exp −b0 H +
∑k
i=1

h2
i

2Qhi

( )[ ]
. (61)

Here, H = ∑
p2i /2m+F(x). The pseudo energy for the MKT

equations of motion, which is a constant of motion, is given by:

EMKT = H +
∑k
i=1

h2
i

2Qhi

( )

+ kBT0

∫t
0

3N
h1

Qh1

+
∑k
2

hi

Qhi

[ ]
dt. (62)

Like the NH thermostat, the dynamical variables of an MKT
thermostatted system may be linked with the thermodynamic
quantities:

Ė = Q̇ =
∑3N
i=1

∂F

∂xi
ẋi + pi

m
ṗi

( )
=
∑3N
i=1

−h1p
2
i

mQh1

,

Ṡ = − Q̇
T0

= −h1

mQh1

∑3N
i=1

p2i
T0

,

L = −3N
h1

Qh1

−
∑k
i=2

hi

Qhi

(63)

Recalling that in steady-state:

d
dt

∑
i=1k

h2
i

2Qh1

( )〈 〉
= 0, (64)

〈Q̇〉 and 〈Ṡ〉 may be written as:

〈Q̇〉 = −kBT0 3N
〈h1〉
Qh1

+
∑k
2

〈hi〉
Qhi

[ ]
,

Ṡ
kB

〈 〉
= − Q̇

kBT0

〈 〉
= 3N

〈h1〉
Qh1

+
∑k
2

〈hi〉
Qhi

[ ]
= −〈L〉

(65)

Note that like the NH thermostat, the formulation of the MKT
thermostat shown in Equation (60) satisfies Equations (65) in
equilibrium and non-equilibrium states where the desired temp-
erature T0 does not change. In cases where T0 is position-depen-
dent, the MKT equations require a modification similar to that
shown in Equation (57). Again, like the NH thermostat, 〈L〉 is
zero in equilibrium and non-zero in non-equilibrium. In both
the situations, 〈L〉 can be related to

∑
Li. However, unlike the

NH thermostat, the MKT thermostat does not have any known
Hamiltonian fromwhich the equations of motion can be derived.

The most popular variant of the MKT thermostat is the
two-chain variant, for which the equations of motion are:

ẋi = pi
m

,

ṗi = ∂F

∂qi
− pi

h

Qh
,

ḣ =
∑3N
i=1

p2i
mi

− 3NkBT0

[ ]
− hj

Qj
,

j̇ = h2

Qh
− kBT0

[ ]
.

(66)

These equations of motion may be solved using the Runge-
Kutta technique for small-scale systems like a harmonic oscil-
lator. However, for large systems, the symplectic technique,
based on Lie-Trotter factorisation and Liouville’s operators,
developed by Martyna and coworkers [68] is more suitable.

We will explore the ergodic and the dynamical character-
istics of the MKT thermostat later in this review.

4.2.4. Hoover-Holian thermostat
The two-variable Hoover-Holian (HH) thermostat takes a
different approach than the MKT thermostat to improve the
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ergodic characteristics. It is based on the kinetic-moments
method [52], wherein the first two moments of the kinetic
energy (see Equation (18)) are controlled to remove the errors
associated with them. Each moment is controlled through a
different heat-bath variable, and hence the extended phase-
space, G = (x, p, h, j), comprises 6N+2 dimensions. Note
that for a system to follow the ‘true’ Maxwell-Boltzmann dis-
tribution, errors associated with all moments must be
removed. However, doing so would result in very stiff differen-
tial equations. If the dynamics is ergodic, it is expected that
given sufficient time, the dynamics is sampled in a manner
that errors associated with the higher-order moments get
removed as well.

The HH thermostat may be developed using a modified
form of the guessing method. We begin with the coupling:

ẋi = pi, ṗi = Fi − hpi − j(K/K0)pi. (67)

Here, K0 = (3N/2)kBT0, is the desired kinetic energy, and K,
the instantaneous kinetic energy. Solving the steady-state
Liouville’s equation with the extended phase-space distri-
bution,

fex G( )/ exp −b H + K0Qhh
2 + K0Qjj

2[ ]( )
, (68)

gives the equation of motion:

ẋi = pi

ṗi = Fi − hpi − j
K
K0

( )
pi

ḣ = 1
Qh

K
K0

− 1

[ ]

j̇ = 1
Qj

K
K0

K
K0

− 1− 2
3N

[ ]
(69)

The coupling shown in Equation (67) may be viewed as two
independent thermal reservoirs simultaneously acting on the
system – one for controlling the first moment of kinetic energy
(η) and the other for controlling the second moment (ξ). These
equations are applicable to equilibrium and nonequilibrium
many-body simulations. They are time-reversible, ergodic,
conform with the different laws of thermodynamics and easy
to implement. However, a Hamiltonian basis for these
equations of motion is yet to be discovered, even though a con-
stant of motion exists:

EHH = F(x)+
∑3N
i=1

p2i
2m

+ K0 Qhh
2 + Qjj

2( )

+
∫t
0
2K0h+ Kj 1+ 2

3N

( )[ ]
dt

(70)

In comparison to the MKT thermostat, the equations of
motion are stiffer as they involve a term containing K2. Con-
sequently, a smaller time-step may be required to solve them
accurately. These equations can be readily modified to incor-
porate higher order moments of kinetic energy, but the result-
ing differential equations become very stiff (since they have K3

or higher-order terms), necessitating small integration time-
steps and increasing the computational cost. Just like in the

MKT thermostat, where additional thermostat variables are
introduced to control the fluctuations of thermostat variables,
the Hoover-Holian thermostat can be generalised to include
additional thermostat variables to control the fluctuations of
η and ξ [70].

A closely related approach to the HH thermostat is the
algorithm that controls the first two even moments of velocity,
for which the temperatures being controlled are as per
Equations (14) and (18). When this thermostat is coupled
with an SHO, the resulting equations of motion are identical
to that shown in Equations (101), and consequently all ther-
modynamic properties are identical. However, for a multi-par-
ticle system, the equations of motion for the two thermostats
are different.

The ergodic characteristics of the HH thermostat along
with its response in different non-equilibrium problems are
discussed later in this review.

4.2.5. Campisi-Zhan-Talkner-Hangii thermostat
All extended-system based thermostats described so far rep-
resent further developments of the Nosé thermostat. Campisi
et al. [53,54] recently proposed a new Hamiltonian based ther-
mostat that possesses infinite heat capacity, and does not
involve time-scaling variables. This thermostat, also known
as the log thermostat, comprises an oscillator of mass ms gov-
erned by the Hamiltonian:

HCZTH = p2s
2ms

+ kBT0

2
log s2 + d

( )
, (71)

where, s and ps denote the position and momentum of the
oscillator, respectively. In order to prevent singularity of the
potential energy at the origin, a small constant δ is usually
added. The kinetic temperature of the oscillator is independent
of the total energy of the oscillator, and is always equal to kBT0.
This can be easily proved by employing the Virial theorem
under the assumption that d ≪ 1:

ps
∂HCZTH

∂ps

〈 〉
= s

∂HCZTH

∂s

〈 〉
⇒ p2s

m

〈 〉
= kBT0. (72)

Further, the momentum-space sampled by the dynamics is
according to the Maxwell-Boltzmann distribution. Being
Hamiltonian, the dynamics is time-reversible as well. So, the
log thermostat satisfies several properties of a good thermostat
– it’s time reversible, possesses a Hamiltonian and samples the
phase-space according to the Maxwell-Boltzmann
distribution.

Let the physical system to be thermostatted compriseN par-
ticles and possess an Hamiltonian H = ∑

p2i /2m+F(x).
When coupled to the log thermostat through a coupling func-
tion h(x, s), an extended system comprising the physical sys-
tem and the log thermostat is obtained. The extended system
is, therefore, governed by the Hamiltonian:

Hex = HCZTH + H(x, p)+ h(x, s). (73)

The coupling function, h(x, s), ensures the interaction between
the system and the log thermostat. In its absence, the system
and the log thermostat undergo microcanonical dynamics
independently. Ideally, h(x, s) should be chosen such that
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ergodicity is imparted within the system. However, the selec-
tion of appropriate coupling functions remains a problem
open to research. The equations of motion obtained from
Hex are:

ẋi = pi
m , ṗi = − ∂F

∂xi
− ∂h(x, s)

∂xi
,

ṡ = ps, ṗs = kBT0s
s2+d − ∂h(x, s)

∂x .
(74)

These equations can be integrated using the Velocity-
Verlet algorithm (see Equation (3)). Note that the presence
of δ, which was added to HCZTH to prevent any singularity as
s � 0, causes deviation of the momentum distribution from
the Maxwell-Boltzmann distribution [54]. The deviation is
more pronounced as N increases. This limits the usefulness
of log thermostat to systems comprising very few particles.

Despite the theoretical advantages of the log thermostat,
several problems emerge when one tries to employ it in stan-
dard MD simulations:

(1) The log thermostat does not conform with the Zeroth Law
of thermodynamics [71]. When an SHO, in thermal equi-
librium at T0, is coupled using harmonic springs with two
log thermostats, also kept at T0, the temperature of the log
thermostats no longer remains at T0, which is a clear viola-
tion of the Zeroth Law of thermodynamics. Such a pro-
blem is not observed in other thermostats.

(2) The log thermostat fails to promote heat flow [72]. When a
one-dimensionalF4 chain is coupled to two log thermostats
kept at different temperatures, no heat flow occurs, which is
a clear violation of the Second Law of thermodynamics.

(3) The configurational temperature associated with the log
thermostat is negative in one dimension and zero in two
dimension [73], which is an unphysical situation.

(4) The log thermostat violates the equipartition theorem
along with the virial theorem for strong coupling to the
system. [74].

Because of these problems, the thermostat has not gained
wide acceptability in the MD community. We will explore
some of these issues towards the later part of this review.

5. Rugh’s temperature and its control

So far, we have discussed kinetic temperature and its control.
The kinetic temperature relates β with only the momentum
variables. A careful look at the Maxwell-Boltzmann distri-
bution, shown in Equation (16) suggests that β is associated
with both momentum and configurational variables. So, intui-
tively one may expect β to be related to all the phase-space
variables. Rugh’s temperature precisely does this – in Rugh’s
approach, the temperature is determined from the global geo-
metric structure of the total energy surface [75,76]. It was later
observed that the Rugh’s temperature is a particular case of a
more generalised situation: consider a continuous differenti-
able phase functional, B, the temperature of a system in equi-
librium is related to it through [77]:

1
kBT

= ∇.∇B
∇B.∇H
〈 〉

;
〈∇.∇B〉
〈∇B.∇H〉 . (75)

Here, ∇ is the gradient with respect to both configurational
and momentum variables. This expression of temperature is
independent of the choice of ensemble, and is equally appli-
cable to microcanonical, canonical and MD ensembles [77].

Under very general conditions, it has been shown that, in
equilibrium, the choice of B does not influence the numerical
value of the temperature. It is, therefore, possible to obtain a
family of temperature definitions by choosing an appropriate
functional form of B. For example, the different measures of
kinetic temperature can be obtained from Equation (75): the
usual kinetic temperature (Equation (14)) is obtained by
choosing B = ∑

p2i /2, while choosing B = ∑
p4i /4 leads to

Tk,2. Likewise, one can obtain TK,2 by choosing B = K2.
The Rugh’s temperature, TR, is obtained by choosing

B = H = K +F in (75):

1
kBTR

= 〈∇2K + ∇2F〉
〈(∇K)2 + (∇F)2〉 . (76)

Apart from taking into account the momentum variables
through the terms ∇K and ∇2K, TR, separately considers the
configurational variables through the terms ∇F and ∇2F. A
closer look at Equation (76) reveals a dimensional inconsis-
tency that can be corrected by multiplying a unit constant of
appropriate dimensions to both numerator and denominator
[78]. Extension of equilibrium Rugh’s temperature to nonequi-
librium cases also exists [78].

The need to control TR arises from the requirement of cor-
rectly simulating the near-equilibrium problems, where the
local thermodynamic equilibrium (LTE) hypothesis holds.
Under LTE conditions, all postulates of equilibrium thermo-
dynamics are applicable locally, including: (i) the agreement
of the local velocity distribution with the Maxwell-Boltzmann
distribution, and (ii) the numerical agreement locally between
the different ways of defining the temperature. In near-equili-
brium problems simulated using the kinetic thermostats,
although the velocity distribution agrees with the Maxwell-
Boltzmann distribution locally, there is a significant difference
between Tk and TR [72,79,80]. MD simulations of isothermal
Couette flow reveal that a heat flow occurs even in the absence
of any temperature gradient when the kinetic thermostats are
used [81]. To accurately account for the heat flow, one needs to
bring in Rugh’s temperature [82]. Further, the dynamical
properties of a microscopic system subjected to near-equili-
brium conditions depend on the definition of temperature
being controlled [83,84].

As of now, only two approaches are available for controlling
TR – the Patra-Bhattacharya thermostat and the Bauer-Bulgac-
Kusnezov thermostat, both based on the extended-system
method described previously. Let us briefly describe these
algorithms.

5.1. Patra-Bhattacharya thermostat

The Patra-Bhattacharya (PB) thermostat uses two thermostat
variables – η and ξ – for separately controlling both momen-
tum and configurational variables such that TR gets con-
trolled. Choosing h1(j) = j, Ci(xi, pi) = ∂F

∂xi
, h2(h) = h and

Di(xi, pi) = pi in Equation (37) provides the equation of
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motion of the PB thermostat:

ẋi = pi
m

− j
∂F

∂xi
,

ṗi = − ∂F

∂xi
− hpi,

j̇ = 1
Qj

∑3N
i=1

∂F

∂xi

( )2

−kBT0
∂2F

∂x2i

[ ]
,

ḣ = 1
Qh

∑3N
i=1

p2i
m

− kBT0

[ ]
.

(77)

The extended phase-space distribution corresponding to the
PB thermostat is given by:

fex G( )/ exp −b H + Qhh
2

2
+ Qjj

2

2

[ ]( )
. (78)

Like other extended-system based thermostats, the rate at
which a system approaches a canonical ensemble is depen-
dent on Qh and Qj [51,85]. The fluctuation of TR is signifi-
cantly influenced by these parameters. It is important to
note that for a large-system, Qh = Qj, since the changes in
the configurational variables occur over a longer time-scale
than the momentum variables. So depending on the problem
being simulated, Qj can be one (or more) order of magnitude
different from Qh. Similar to the HH and the MKT thermo-
stats, the PB thermostat does not possess a Hamiltonian, but a
pseudo-energy, which is a constant of motion, exists:

EPB = F(x)+
∑3N
i=1

p2i
2m

+ Qhh
2

2
+ Qjj

2

2

+ kBT0

∫t
0

3Nh+
∑3N
i=1

∂2F

∂x2i

( )
dt

(79)

While the equations of motion (77) do not result in:
〈Ṡ〉/kB = 〈L〉 for non-equlibrium cases with position-depen-
dent T, modifications performed similar to the NH thermostat
can resolve the issue. Apart from giving more consistent results
in non-equilibrium thermal conduction, the Patra-Bhatta-
charya thermostat can be utilised for creating a thermal gradi-
ent between the configurational and the kinetic degrees of
freedom. Such unique thermostatting capability provides an
ability to engineer thermal rectification [86].

The PB thermostat satisfies several properties of a good
thermostat – it is time-reversible, conforms to the different
laws of thermodynamics, including the spontaneous flow of
heat between a hotter and a colder thermostat, and is simple
to implement for systems with pair-wise interacting particles.
However, the dynamics of a single-particle system coupled
to this thermostat is non-ergodic, the details of which will be
seen later in this review. Further, for systems with multi-
body interactions or where the analytical form of interaction
potential is not readily available, the PB thermostat is compu-
tationally more expensive than the kinetic temperature based
thermostats. This is because of the need to numerically com-
pute the diagonal elements of the Hessian matrix, ∇2F,
which requires O(N3) operations. As of now, symplectic

algorithms for integrating the PB equations are not available.
The equations may be integrated using Gear’s predictor-cor-
rector algorithm [87].

5.2. Bauer-Bulgac-Kusnezov thermostat

The Bauer-Bulgac-Kusnezov (BBK) thermostat traces its ori-
gin to the early 1990s, before the concept of Rugh’s tempera-
ture arose. The objective of Bauer and coworkers was to
clarify and generalise the origins of the NH thermostat
[16,55]. They sought a better coupling than the NH method
for improving its ergodic characteristics. As it turns out,
their approach can be used for controlling Rugh’s temperature
as well. The basic equations of the BBK thermostat are dis-
cussed before (see Equations (37) and (40)), and hence, not
described in details in this section.

The BBK thermostat shows that the dynamics is sampled
from a canonical ensemble by controlling the ratio of two
quantities: ∂Ci/∂xi

Ci.∂F/∂xi
and ∂Di/∂pi

Di.∂F/∂pi
. For example,

kBT0
∂Di

∂ pi

〈 〉
= 1

Z
kBT0

∫
∂Di

∂pi
exp −bH

( )
dx dp

= − 1
Z
kBT0

∫
Di.

∂

∂pi
exp −bH

( )
dx dp

= Di.
∂F

∂pi

〈 〉
.

(80)

The Rugh’s temperature may be controlled with the following
choice of the variables C and D:

C(xi, pi) = ∂F

∂xi
and D(xi, pi) = pi (81)

The benefit of this thermostat is that it enables the choice of
coupling functions that enhance phase-space mixing charac-
teristics, and consequently, have improved ergodic properties
over the PB thermostat. For example, with a cubic coupling
the equations of motion become:

ẋi = pi
m

− j3
∂F

∂xi
,

ṗi = − ∂F

∂xi
− h3pi,

j̇ = 1
Qj

∑3N
i=1

∂F

∂xi

( )2

−kBT0
∂2F

∂x2i

[ ]
,

ḣ = 1
Qh

∑3N
i=1

p2i
m

− kBT0

[ ]
.

(82)

The Bauer-Bulgac-Kusnezov thermostat permits coupling of
any arbitrarily higher order, but that comes at a price – the
equations of motion become stiff. They require very small
time steps for an accurate solution. Overall, this thermostat
has only been used for pedagogical purposes, despite it being
time-reversible and showing improved ergodic characteristics.
Being a part of the Nosé-Hoover family, it satisfies the different
laws of thermodynamics, and is able to show heat flow from a
hotter thermostat to a colder thermostat spontaneously.
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6. Configurational temperature and its control

The generalised temperature-curvature relationship, shown in
Equation (75), opened up the possibility of defining the tempera-
ture of a microscopic system solely in terms of the configurational
variables. If B in Equation (75) is chosen such that it is a scalar
functional of only the particles’ coordinates and not momenta,
the temperature of the system depends only on the microscopic
configuration of the particles. Hence, this temperature is called
the configurational temperature. Perhaps, the most common
way of defining configurational temperature, TC, is obtained by
choosing B = F(x) [77,88,89]:

1
kBTC

= 〈∇2F〉
〈(∇F)2〉 , (83)

Remarkably, the same expression appears almost half a century
ago in Landau and Lifshitz’ textbook on statistical physics [90],
where it is shown that TC can be obtained through a single inte-
gration by parts of the expression:

〈∇2
xH〉C = 〈 ∇xH( )2〉C

kBTC
, (84)

where, 〈. . .〉C denotes the averaging performed with respect to the
canonical distribution.

Other common ways of defining the configurational temp-
erature draw inspiration from higher order measures of the
kinetic temperature. If we take B = F2 in the generalised
temperature-curvature relationship we obtain the second
order configurational temperature:

1
kBTC,2

= 〈F∇2F+ (∇F)2
∥∥ ∥∥〉

〈F (∇F)2
∥∥ ∥∥〉 , (85)

Likewise, one can obtain even higher order measures of confi-
gurational temperature.

Computation of the configurational temperature and its
control are necessary for situations where controlling the kin-
etic temperature, Tk, results in spurious results, such as, non-
equilibrium problems of shockwave propagation, non-equili-
brium MD simulations of certain heat-driven processes
[40,91] and flowing systems with spatial and possibly time-
varying streaming velocity. During shockwave propagation,
the kinetic temperature in one direction is significantly higher
than the rest two [92,93], and consequently, thermostatting the
entire simulation domain at a fixed kinetic temperature may
not be correct. The breakdown of the equipartition theorem
here renders Tk to behave as a tensorial quantity which is
difficult to reconcile with the thermodynamic definition of
temperature. Controlling TC is superior in this situation as
the equipartition theorem is not necessary to define TC.
Using TC over Tk is advantageous in another class of non-equi-
librium problems – shear flow. Here, the streaming velocity
must be known beforehand for calculating the peculiar kinetic
energy, which serves as an input to Tk. The inability of cor-
rectly determining the streaming velocity leads to several pro-
blems like stabilisation of string phases [40,91,94], creation of
anti-symmetric stress components [95], etc. Using TC is also
advantageous in thermostatting biological molecules, which
are usually geometrically constrained, and more often than

not, comprise several non-translational degrees of freedom,
like planar rotation, bond rotation, etc. In such cases, thermo-
statting the three translation degrees of freedom, as is done for
Tk, may not be sufficient [96]. While in equilibrium, control-
ling any one kind of temperature necessary implies an auto-
matic control of all other measures of temperature, in non-
equilibrium, there is no theory which suggests that the differ-
ent measures of temperature should agree with each other. In
fact, in strongly non-equilibrium problems, Tk = TR = TC,
and it is not known which of the three gives a closer approxi-
mation to the ‘reality’.

Note that calculating TC is challenging in systems
where the particles are non-interacting or interact negligi-
bly, such as in perfect gases. In these cases, both the
numerator, 〈(∇F)2〉) and the denominator, 〈∇2F〉, of
TC � 0, making TC indeterminate. The Rugh’s tempera-
ture, TR, as well the kinetic temperature, Tk, in the limit
of perfect gases, are finite, though. For systems interacting
with complex interatomic potentials, the computation of
TC requires numerically calculating the Hessian matrix,
which is computationally expensive.

The first configurational thermostat was developed on the
lines of the GIK thermostat by Delhommelle and Evans
[44,97]. Gauss’ principle of least constraint was used with
the holonomic constraint (without the average) shown in
equation (83). However, the utility of this thermostat is
found to be low since the equations of motion contain terms
involving the third-order gradient of F(x). The equations of
motion are stiff as well. In a bid to alleviate these problems,
a separate configurational thermostat was created for thermo-
statting the slow configurational variables selectively [98]
through the Smoluchowski equation. Under the assumption
that the momentum variables relax much faster than the confi-
gurational variables, the momentum evolution equations were
completely dropped.

We will now discuss the development of the Braga-Travis
thermostat, the C12 thermostat and the virial thermostat,
which are based on the extended system method.

6.1. Braga-Travis (BT) thermostat

Braga andTravis [96,99,100] adopted the route of theNHthermo-
stat for controlling the configurational temperature. Based on the
extended system method, the BT thermostat uses an additional
reservoir variable so that the extended phase-space comprises
6N+1 degrees of freedom. Choosing h1(j) = j, Ci(xi, pi) =
∂F
∂xi

, h2(h) = 0 and Di(xi, pi) = 0 in Equation (37) provides the
equation of motion of the BT thermostat:

ẋi = pi
mi

− j
∂F

∂xi
,

ṗi = − ∂F

∂xi

j̇ = 1
Qj

∑3N
i=1

∂F

∂xi

( )2

−kBT0
∂2F

∂x2i

[ ]
.

(86)

In equilibrium, where 〈j〉 = 0, 〈j̇〉 must also equal zero, from
which it is trivial to show that the desired temperature, T0, equals
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the configurational temperature TC. The extended phase-space
distribution function satisfied by the BT equations of motion is
given by:

fex G( )/ exp −b H + Qjj
2

2

[ ]( )
. (87)

The BT equations of motion are time-reversible, easy to
implement for microscopic systems with pair-wise inter-
action potential and satisfy the Zeroth Law and the Second
Law of thermodynamics. These equations, however, do not
have any Hamiltonian associated with them, and like
the NH thermostat, result in non-ergodic dynamics for a
single-particle system. The BT thermostat is gaining popu-
larity for simulating non-equilibrium problems described
before.

The BT thermostat has seen many improvements over
the years, and now, several variants exist, such as, the
thermostat which includes bond-length constraints [100]
suited for long-chain molecules, a stochastic analog
[101], and the Braga-Travis chain thermostat which is
the configurational counterpart of the Nosé-Hoover
chain thermostat [102].

6.2. C1,2 thermostat

The C1,2 thermostat was proposed to improve the ergodic
characteristics of the BT thermostat [103]. It is an extension
of the BT thermostat for simultaneously controlling the first
two orders of configurational temperature. This is achieved
by introducing two heat-bath variables. The algorithm is
similar to the HH thermostat, where two thermostat vari-
ables are employed for controlling the first two moments
of kinetic energy. Controlling the second-order configura-
tional temperature, TC,2, shown in Equation (85), along
with the first order configurational temperature, TC, shown
in Equation (83) removes the errors associated with the
incorrect sampling of the phase-space especially in very
small-scale systems.

The equations of motion are given by:

ẋi = pi
mi

− j
∂F

∂xi
− 2hF

∂F

∂xi
,

ṗi = − ∂F

∂xi
,

j̇ = 1
Qj

∑3N
i=1

∂F

∂xi

( )2

−kBT0
∂2F

∂x2i

[ ]
,

ḣ = 1
Qh

∑3N
i=1

F
∂F

∂xi

( )2

−kBT0 F
∂2F

∂x2i
+ ∂F

∂xi

( )2
( )[ ]

,

(88)

and the corresponding extended phase-space distribution is:

fex x, p, h, j
( )/ e

−b H+Qhh2

2 +Qjj
2

2

[ ]
. (89)

Like the BT thermostat, the C12 equations of motion do not
have a Hamiltonian basis, however, the following function:

EC12 = F(x)+
∑3N
i=1

p2i
2m

+ Qj
j2

2
+ Qh

h2

2

+
∑3N
i=1

h F+ kBT0( ) ∂F

∂xi

( )2

+jkBT0
∂2F

∂x2i

[

+hkBT0 F+ ∂2F

∂x2i

( )]
,

(90)

is a constant of motion.
While the C12 thermostat improves upon the ergodic prop-

erties vis-á-vis the BT thermostat, its numerical implemen-
tation also requires the computation of the diagonal
elements of the Hessian matrix, a computationally expensive
task. The C12 thermostat can be extended for controlling the
first three orders of configurational temperature, however,
the resulting equations of motion become stiffer. Overall,
this thermostat has mostly been used for pedagogical purposes
and has seen limited use in large-scale systems.

6.3. Virial thermostat

Long before the development of the generalised temperature-
curvature relation, the virial theorem provided the only means
for relating the kinetic energy of a system with its configurational
variables. The virial theorem has been proved both in the frame-
work of the classical thermodynamics and statistical mechanics
[90]. Its validity does not require ergodicity of the underlying
dynamics, so long as the kinetic energy is not related to the temp-
erature. Mathematically, the theorem can be expressed as:

∑
xi
∂F

∂xi

〈 〉
t

=
∑ p2i

m

〈 〉
t

(91)

where, 〈. . .〉t denotes time average. Note that the expression (91)
remains valid in equilibrium as well as in non-equilibrium steady
states. If one now brings the equipartition theorem, the
expression may be rewritten as:

∑
xi
∂F

∂xi

〈 〉
= 3NkBT (92)

The same expression for the temperature may be obtained from
the generalised temperature-curvature relationship, (75), with
B = ∑

x2i /2. A careful look at Equation (92) shows that the
mathematical expression of temperature is devoid of any
momentum terms and involves only the configurational vari-
ables. In other words, the virial temperature may be treated as
a special case of the configurational temperature.

The first attempt of controlling the Virial temperature
began in the early 1990s. Hamilton and coworkers [104,105]
developed the extended-system based equations of motion:

ẋi = pi
m

− hxi, ṗi = − ∂F

∂xi
,

ḣ = 1
Qh

∑
xi
∂F

∂xi
− 3NkBT0

[ ]
,

(93)
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to control the virial temperature. These equations of motion
satisfy the generalised BBK Equations (37) and (40). It is inter-
esting to note that these equations of motion have a Hamil-
tonian basis [106]. Consider the Hamiltonian:

H = e−m
∑ p2i

2m
+ e−mF(emÅx)+ em

�h2

2Qh

− 3e−mNkBT0m, (94)

where the canonical variables �x and �h are connected with the
real variables x and η, respectively, through the transform-
ations:Åx = emx and �h = e−mQhh. The Hamiltonian generates
the equations of motion provided the constant of motion:
I = ∑

p2i /2m+F(x)+ 0.5Qhh
2 + 3NkBT0m = 0, where

m = �
hdt.

A strong form of Equation (92), where the virial of forces∑
xi ∂F∂xi is equal to 3NkBT0 at every time step, may be used

to develop an isovirial thermostat [98]. The isovirial thermo-
stat is analogous to the GIK thermostat but for the ‘slow’ confi-
gurational variables. The resulting dynamics, however, does
not sample from a canonical distribution. The virial thermo-
stat has not received widespread attention from researchers,
and to the best of our knowledge, its applications have been
limited to very small-scale systems. In our opinion, for larger
systems, the virial thermostat is superior to the BT or the
C12 thermostats, since the virial thermostat does not require
the computation of the Hessian matrix.

7. Case studies

In this section, we subject the following systems – an SHO, a
chain of anharmonic oscillators and a soft-sphere system –
to the different thermostats in order to elucidate their features.

7.1. Equilibrium phase-space characteristics using an
SHO

An SHO of unit mass and stiffness is kept in contact with a
thermostat at kBT0 = 1. This pedagogical system serves as
the best example to study the ergodic characteristics of a ther-
mostat, and the relationship between the thermodynamic and
dynamical quantities. The equations of motion are solved
using the the 4th order Runge-Kutta method where the incre-
mental time step is chosen as 0.001.

Velocity Rescaling: The equations of motion of an SHO sub-
jected to the velocity rescaling thermostat are:

ẋ = p, ṗ = −x, p � 1. (95)

Figure 2 depicts the phase-space trajectory when the rescaling
is performed every 1000 time steps. As is evident, the trajectory
fails to sample from the correct canonical ensemble (see
Equation (11)). The phase-space trajectory is also dependent
on the frequency of velocity rescaling.

Gaussian Isokinetic Thermostat: A GIK thermostatted SHO
is governed by the following equations of motion:

ẋ = p, ṗ = 0, l = −x
p

(96)

Without any numerical computation, the characteristics of the
dynamics can be understood. Since ṗ = 0, the position of the
oscillator keeps increasing, resulting in an unphysical situ-
ation. It is evident that for this problem, the GIK dynamics
does not sample the configurational space canonically. Obtain-
ing an isokinetic distribution requires the presence of at least
two particles in the system. For even larger systems, it has
been shown that a single GIK trajectory accurately samples
from an isokinetic distribution [32].

Nosé Thermostat: The Nosé thermostat, with Qs = 1, when
coupled to an SHO, is governed by the equations:

ẋ′ = p/s2, ṗ = −x′, ṡ = p′s, ṗ′s =
1
s

p2

s2
− 1

( )
. (97)

Nosé dynamics represented by (97) is non-ergodic [17], and
does not sample the phase space according to the canonical
distribution. With initial conditions as (x′, p, s, p′s) =
(1, 1, 1, 0), the phase space plot (see Figure 3(a)) indicates
that the dynamics is limited to a torus and the distribution is
not gaussian (see Figure 3(b)).

Nosé-Hoover Thermostat: Like the Nosé thermostat, the NH
thermostat is also non-ergodic [17]. An SHO coupled to an

Figure 2. (Colour online) The phase space trajectory for the velocity-rescaling
algorithm. The velocities are rescaled every 1000 time-steps. Notice that the vel-
ocity jumps between +1 and −1 depending on if the instantaneous velocity is
positive or negative. It is clear that the dynamics does not sample from a cano-
nical ensemble.

Figure 3. (Colour online) Non-ergodicity of Nosé dynamics for the initial con-
dition (x′, p, s, p′s) = (1, 1, 1, 0) - (a) position-velocity plot of the oscillator and
(b) probability distribution functions of the position and velocity/s. Notice the
hole present in the dynamics in (a) and non-canonical nature of the distributions
in (b).
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NH thermostat with Qh = 1 is governed by the equations of
motion:

ẋ = p, ṗ = −x− hp, ḣ = p2 − 1
( )

. (98)

The Poincaré section plot at h = 0 cross-section, for three
different initial conditions, are shown in Figure 4: case (a)
with (x, p, h) = (1, 1, 0), case (b) with (x, p, h) = (2, 2, 1),
and case (c) (x, p, h) = (3, 3, 3). For cases (a) and (b), two
kneaded tori are obtained, while in case (c) the dynamics is
chaotic. The plot clearly indicates that the phase-space can
be easily partitioned into multiple non-communicating
regions, and hence, the dynamics is not ergodic.

Although there is chaoticity in the dynamics for different
initial conditions, the chaotic space makes up for only 6% of
the entire phase-space [107]. In fact, none of the initial con-
ditions sample the phase-space as per Equation (10). The
poor ergodic characteristics of the NH thermostat may be
explained by the periodic dynamics of the variable η [108],
and the presence of conserved quantities that cause the energy
of the system to be bounded [18].

Martyna-Klein-Tuckerman Thermostat: A two-variable
MKT thermostatted SHO is governed by:

ẋ = p, ṗ = −x− hp
Qh

,

ḣ = p2 − 1− hj
Qj
, j̇ = h2

Qh
− 1.

(99)

The ergodic characteristics here are dependent on the choice of
Qh and Qj [20,109,110]. For MKT thermostatted dynamics to
be ergodic, the following conditional joint probability distri-
bution functions (PDFs) hold true:

f (x, p|h = h0, j = j0) / exp − x2

2

( )
exp − p2

2

( )

f (h, j|x = x0, p = p0) / exp − h2

2Qh

( )
exp − j2

2Qj

( )
.

(100)

The physical meaning of Equation (100) is that the joint PDF
of x and p is a bivariate standard normal distribution at the
Poincaré section (h = h0, j = j0) while that of η and ξ is a
bivariate normal distribution with variances equalling Qh

and Qj, respectively, at the Poincaré section (x = x0, p = p0).

As Qh and Qj deviate from unity, an appreciable difference
is observed between the joint PDFs obtained from theory and
numerical simulations. Figure 5 shows the Poincaré section
plot at |h| = |j| , 0.001 cross-section for: (a) Qh = Qj = 2
and (b) Qh = Qj = 10. It is evident that in case (a) the
dynamics is ergodic while in case (b) the dynamics is non-
ergodic. Figure 6 shows the joint PDFs for these cases, where
the difference from a joint normal distribution is clearly visible
for Qh = Qj = 10. Rather than looking at the joint PDFs, if
one looks at the marginal distributions, the dynamics erro-
neously looks ergodic even with Qh = Qj = 10 as can be
seen in Figure 7.

An in-depth numerical investigation was performed by
Hoover and coworkers [21] to understand the ergodic charac-
teristics when Qh = Qj = 1. With millions of different initial
conditions, they searched for an initial condition that results
in a conservative hyper-dimensional torus. The resulting Lya-
punov spectrum is: 〈L1〉 = +0.0665, 〈L2〉 = +0.0000, 〈L3〉 =
−0.0000, 〈L4〉 = −0.0665 [21], with none of the initial con-
ditions resulting in statistically significant deviation from
these values. Thus, it can be concluded that with
Qh = Qj = 1, the ergodic characteristics of the MKT thermo-
stat become superior to the NH thermostat.

The results emphasise the importance of correctly choosing
Qh and Qj while studying the MKT thermostatted dynamics in

Figure 5. (Colour online) Poincaré section at |h| = |j| , 0.001 cross-section for:
(a) Qh = Qj = 2 and (b) Qh = Qj = 10. As is evident, for case (b) the dynamics is
non-ergodic while for case (a) the dynamics is ergodic.

Figure 6. (Colour online) Joint PDF of MKT thermostatted oscillator at the Poin-
caré section given by |h| = |j| , 0.001 with: (a) Qh = Qj = 2 and (b)
Qh = Qj = 10. The deviation from normality is obvious in case (b).

Figure 4. (Colour online) Poincaré section plots for the Nosé-Hoover dynamics at
h = 0 cross-section for three different initial conditions: (a) black =
(x, p, h) = (1, 1, 0), (b) red = (x, p, h) = (2, 2, 1), and (c) blue =
(x, p, h) = (3, 3, 3). The different initial conditions result in different nature of tra-
jectories, with none being phase-space filling. The lack of ergodicity, and conse-
quently the inability of NH thermostat to thermalise the SHO is self-evident.
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a small-scale system. Some questions still remain open,
though, – for what values of Qh and Qj, the dynamics of an
MKT thermostatted oscillator is ergodic, and the exact value
of Qh and Qj at which the stable periodic orbit disappears.

Hoover-Holian Thermostat: Now let us look at the phase-
space characteristics of the HH thermostatted SHO. An equiv-
alent form of the equations of motion, for this case, are:

ẋ = p, ṗ = −x− hp− jp3,
ḣ = 1

Qh
p2 − 1

( )
, j̇ = 1

Qj
p4 − 3p2

( )
.

(101)

Choosing Qh = Qj = 1 results in a scenario where the oscil-
lator comes to thermal equilibrium at a temperature of
unity, and the extended phase-space distribution becomes a
product of four independent standard normal variables. The
HH thermostatted SHO correctly samples the phase-space
from a canonical distribution both in the projected space as
well as at Poincaré sections, similar to the MKT thermostatted
SHO with Qj = Qh � 1, and hence, not shown here.

The marginal distribution of x at the Poincaré section of
|h| = |j| , 0.001 has been plotted in Figure 8. The results cor-
respond to the initial conditions (x, p, h, j) = (1, 0, 0, 0). The
equivalence of the PDF with that of a standard normal PDF

suggests that that the HH thermostat is ergodic from statistical
perspective.

A similar conclusion can also be reached from the dynamical
perspective. Working with millions of different initial conditions,
Hoover and coworkers [21] made an exhaustive search for an
initial condition that would result in a conservative hyper-dimen-
sional torus. Their findings suggest that no initial condition
within their search domain results in the Lyapunov spectrum
to be different from the average Lyapunov spectrum:
〈L1〉=+0.0680,〈L2〉=+0.0000,〈L3〉=−0.0000,〈L4〉=−0.0680.
But, it must be noted that this brute-force method of ascertaining
ergodicity is not full proof, and there may still exist an initial con-
dition for which the largest Lyapunov exponent is zero.

Campisi-Zhan-Talkner-Hängii Thermostat: When the SHO
is coupled to a log thermostat through a Hookean spring
h(x, s) = 0.5k(x− s)2, the equations of motion are:

ẋ = p, ṗ = −x− k(x− s),
ṡ = ps, ṗs = s

s2+d + k(x− s). (102)

The phase-space characteristics for different choice of the par-
ameters k and δ are shown in Figure 9 : black –
k = 0.1, d = 0.001, red – k = 0.1, d = 0.01, blue –
k = 0.01, d = 0.001, and green – k = 0.01, d = 0.01. Notice
that none of the cases resulted in a situation where the entire
phase-space is filled. Consequently, the dynamics is not ergodic.

The dependence of the phase-space characteristics on the
choice of the coupling function and the magnitude of k pre-
sents a problem – as the coupling function changes, the dyna-
mical properties change as well. The choice of a good coupling
function remains an area open to research.

Patra-Bhattacharya Thermostat: We now subject the SHO
to the PB thermostat to show that it is non-ergodic. If the ther-
mostat masses are such that Qh = Qj = 1, the equations of
motion are given by:

ẋ = p− jx, ṗ = −x− hp, ḣ = p2 − 1.0,

j̇ = x2 − 1.0
(103)

Numerically solving these equations shows the presence of
hyper-dimensional tori distributed within a chaotic sea.
The double Poincaré section plot at |h| = |j| , 0.001 for
three different initial conditions are shown in Figure 10:

Figure 8. (Colour online) PDF of x of the HH thermostatted SHO at the Poincaré
section |h| = |j| , 0.001 when it is subjected to kBT0 = 1. The initial conditions
are (x, p, h, j) = (1, 0, 0, 0). Notice the good agreement of the PDF of x with the
standard normal distribution.

Figure 7. (Colour online) Marginal distribution of x obtained by projecting all tra-
jectory points and its comparison with a standard normal distribution. Notice the
good agreement between the two distributions. A similar conclusion can be
reached from the marginal distribution of p as well.

Figure 9. (Colour online) Plot of position and velocity for: (a) log thermostat and
(b) SHO. The different colours correspond to: black – k = 0.1, d = 0.001, red –
k = 0.1, d = 0.01, blue – k = 0.01, d = 0.001, green – k = 0.01, d = 0.01.
Notice that for none of the cases, the trajectory of the SHO is such that the entire
phase-space is filled. Consequently, the dynamics is not ergodic.
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green – (x, p, h, j) = (1, 0, 0, 0), red – (x, p, h, j) = (4, 1, 0, 0)
and blue – (x, p, h, j) = (0, 1, 0, 1). The trajectories corre-
sponding to green and blue dots represent hyper-dimensional
tori, while that corresponding to red is chaotic. Clearly, for
none of these three initial conditions the dynamics samples
from the distribution

fex x, p, h, j
( )/ e−

x2
2+ p2

2 +h2

2 +j2

2

[ ]
, (104)

and hence, is not ergodic. Further, the phase-space can be parti-
tioned into non-communicating regions and the entirety of the
phase-space is not accessible from a single trajectory.

Bauer-Bulgac-Kusnezov Thermostat: As discussed pre-
viously, the BBK thermostat provides improved ergodic
characteristics than either the NH or the PB thermostat. We
will deal with the specific case of cubic coupling, for which,
the SHO has the following equations of motion:

ẋ = p− j3x, ṗ = −x− h3p,
ḣ = 1

Qh
p2 − 1

[ ]
, j̇ = 1

Qj
x2 − 1
[ ]

.
(105)

Choosing Qj = Qh = 1, the equations have a stark resem-
blance with the PB thermostatted SHO. However, in presence
of cubic coupling the SHO is able to sample more allowable
phase-space as the cubic nature of the coupling aids in
phase-space mixing.

For the same initial conditions chosen for the PB thermo-
stat, the BBK thermostatted oscillator shows improved ergodic
characteristics, as shown in Figure 11.

Note that the extended phase-space density for this specific
coupling type is given by:

fex / exp − p2

2
+ x2

2
+ j4

4
+ h4

4

( )[ ]
. (106)

So, the dynamics is still not ergodic with the cubic coupling.
However, the BBK formalism allows the development of

arbitrary coupling functions that could result in an ergodically
thermostatted SHO.

Braga-Travis / Virial and C12 Thermostats: For the SHO
coupled with the BT thermostat, the equations of motion are:

ẋ = p− jx, ṗ = −x, j̇ = 1
Qj

x2 − 1
[ ]

. (107)

These equations of motion bear stark resemblance with the
NH thermostatted SHO (having x and p interchanged). So,
similar to the NH thermostat, the BT thermostat displays
non-ergodicity. The Poincaré section plot at |j| , 0.001 with
Qj = 1 is shown for three initial conditions in the Figure 12.
Again, as expected, the Poincaré section plots are similar to
that of the NH thermostat, with x and p interchanged. Due

Figure 12. (Colour online) Poincaré section plots for the Braga-Travis dynamics at
|j| , 0.001 cross section for three different initial conditions: (a) green =
(x, p, h) = (1, 1, 0), (b) red = (x, p, h) = (2, 2, 1), and (c) blue =
(x, p, h) = (3, 3, 3). The different initial conditions result in different nature of tra-
jectories, with none being phase-space filling. These figures are reminiscent of
the Nosé-Hoover dynamics with x and p interchanged. Like the Nosé-Hoover ther-
mostat, the lack of ergodicity, and consequently the inability of Braga-Travis ther-
mostat to thermalise the SHO is self evident.

Figure 10. (Colour online) Plot of position and velocity of the Patra-Bhattacharya
thermostatted SHO at the double Poincaré section |h| = |j| , 0.001 for three
different initial conditions: green – (x, p, h, j) = (1, 0, 0, 0), red –
(x, p, h, j) = (4, 1, 0, 0) and blue – (x, p, h, j) = (0, 1, 0, 1). The trajectories cor-
responding to green and blue colours are such that hyper-dimensional tori are
formed, while that corresponding to red is chaotic. However, the entire phase-
space is not filled by a single trajectory, and consequently, the dynamics is
non-ergodic.

Figure 11. (Colour online) Plot of position and velocity for the Bauer-Bulgac-Kus-
nezov thermostatted SHO at the double Poincaré section |j| = |h| , 0.001 for
three different initial conditions: green – (x, p, h, j) = (1, 0, 0, 0), red –
(x, p, h, j) = (4, 1, 0, 0) and blue – (x, p, h, j) = (0, 1, 0, 1). Although all trajec-
tories are chaotic, the entire phase-space is not filled by a single trajectory,
and consequently, the dynamics is non-ergodic. Note, however, that the ergodic
characteristics have shown a marked improvement over the Patra-Bhattacharya
thermostat for the same initial conditions.
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to the similarity with the NH thermostatted SHO, all discus-
sions on the NH thermostatted SHO are valid for the BT ther-
mostatted SHO as well. Note that the SHO thermostatted
using the Virial thermostat is identical to the equations of
motion (107), and hence, not probed any further.

The SHO coupled with the C12 thermostat is defined by the
equations of motion:

ẋ = p− hx− jx3, ṗ = −x,

ḣ = 1
Qh

x2 − 1
( )

, j̇ = 1
Qj

x4 − 3x2
( )

.
(108)

Assuming, Qh = Qj = 1, the dynamics bears resemblance
with the HH thermostatted oscillator. The dynamics, there-
fore, has similar ergodic properties like the HH thermostat
as well. The non-ergodicity observed with the BT thermostat
disappears under the C12 thermostat.

From the equilibrium response of an SHO, we see that some
of the thermostats behave similarly – the BT and the C12 ther-
mostats are equivalent to the NH and the HH thermostats,
respectively. Likewise, the virial thermostat is identical to the
BT thermostat. When it comes to ergodic thermostats – the
HH, the MKT and the C12 thermostats – the phase-space prop-
erties are non-distinguishable. However, the scenario will
change in non-equilibrium cases, which we look next.

7.2. Non-equilibrium phase-space characteristics using
an SHO

In order to understand robust heat flow in an SHO, we subject
the SHO to a position-dependent temperature field, as shown
in Equation (13). As has been explained previously, a robust
heat flow is associated with the loss of phase-space volume,
and therefore, serves as the check of the Second Law of ther-
modynamics. The governing equations of motion of the ther-
mostatted oscillator remain the same as that in the equilibrium
case, with the exception of the position-dependent tempera-
ture. The equations are integrated using the the 4th order
Runge-Kutta method with an incremental time step of 0.001.

Gaussian Isokinetic Thermostat: When subjected to a pos-
ition-dependent temperature field with e = 0.1, the GIK ther-
mostatted shows an unstable behaviour, as can be seen in
Figure 13. With the initial conditions chosen as (x, p) =
(0, 1), the instability occurs primarily because of the large feed-
back from the Lagrange multiplier l = −xp/(1+ 0.1 tanh (x)).
As will be evident from the later case studies, the instabilities dis-
appear for larger systems.

Nosé-Hoover Thermostat:We now couple the SHO with the
NH thermostat. The resulting equations of motion according
to Equations (49) and (57) with Qh = 1, are, respectively:

ẋ = p, ṗ = −x− hp, ḣ = p2 − kBT(x)
( )

;

ẋ = p, ṗ = −x− hp, ḣ = p2

kBT(x)
− 1

( )
.

(109)

where, kBT(x) = 1.0+ 0.30 tanh (x). The two equations of
motion enable us to illustrate the situation where the thermo-
dynamic quantities are in agreement with the dynamical quan-
tities. We use the same initial conditions as that in the
equilibrium SHO case. The phase-space portrait, at the

Poincaré section defined by h = 0, is shown in Figure 14.
The plots differ from that of equilibrium as well as with each
other.

The different thermodynamic quantities, for the two types
of evolution and the three initial conditions, are summarised
in Table 1. In stationary states, when net work is absent, the
total time-averaged rate of heat flow must vanish, which
implies 〈Q̇〉 = 0. The results indicate that all cases satisfy this
fundamental argument. However, some of the NH trajectories
are conservative for which 〈Ṡ〉 = 〈L〉 = 0, while others are dis-
sipative for which 〈Ṡ〉 = 〈L〉 , 0. This is evident from the

Table 1. Different thermodynamic quantities for the three sets of initial
conditions: black = (x, p, h) = (1, 1, 0), red = (x, p, h) = (2, 2, 1), and blue =
(x, p, h) = (3, 3, 3). 〈Q̇〉 denotes the average rate of heat flow, 〈Ṡ〉 is the
average rate of heat-flow entropy and 〈L〉 is the average phase-space
compression. Each quantity has a subscript: T denotes the equations of motion
with ḣ = (p2 − kBT(x)), while B is for the evolution with ḣ = ( p2/[kBT(x)]− 1).
Notice that while 〈ṠT 〉 = 〈LT 〉, 〈ṠB〉 = 〈LB〉, as has been discussed in the text.

〈Q̇T 〉 〈Q̇B〉 〈ṠT 〉 〈ṠB〉 〈LT 〉 〈LB〉
Set (a) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Set (b) 0.0000 0.0000 −0.0061 −0.0002 −0.0114 −0.0002
Set (c) 0.0000 0.0000 −0.0061 −0.0002 −0.0113 −0.0002

Figure 14. (Colour online) Poincaré plot of Nosé-Hoover dynamics subjected to a
position dependent temperature field: kBT(x) = 1+ 0.30 tanh (x) at the cross-
section h [ [− 0.001, 0.001] for three initial conditions: black =
(x, p, h) = (1, 1, 0), red = (x, p, h) = (2, 2, 1), and blue = (x, p, h) = (3, 3, 3).
Figure (a) corresponds to the evolution where ḣ = (p2 − kBT(x)), while figure
(b) is for the evolution where ḣ = ( p2/[kBT(x)]− 1).

Figure 13. (Colour online) Instability in dynamics of GIK thermostatted oscillator
when subjected to a position-dependent temperature field. The initial conditions
are: (x, p) = (0, 1). Because of the large feedback from the GIK multiplier λ, the
dynamics becomes unstable.
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phase-space plot as well – the conservative trajectory with a
three-dimensional torus occurs for initial conditions
(x, p, h) = (1, 1, 0) while dissipative trajectories occur for
the remaining two initial conditions. The co-existence of the
conservative and the dissipative features [12] is a unique fea-
ture of the NH dynamics which occurs due to its non-ergodi-
city. The time-averaged heat-flow entropy rate agrees with the
average phase-space compression only under the evolution
ḣ = ( p2/[kBT(x)]− 1), as has been discussed previously.

Martyna-Klein-Tuckerman Thermostat: We now subject the
SHO to the two-chain MKT thermostat with Qh = Qj = 1 and
kBT(x) = 1.0+ 0.2 tanh (x). Like the NH thermostat, two sets of
equations of motion can be written – (i) the usual equations of
motion, where 〈Ṡ/kB〉 = −〈L〉 (Set 1):

ẋ = p, ṗ = −x− hp,

ḣ = p2 − kBT(x)− hj, j̇ = h2 − kBT(x),
(110)

and (ii) the modified equations of motion, where 〈Ṡ/kB〉 = −〈L〉
(Set 2):

ẋ = p, ṗ = −x− hp,

ḣ = p2/[kBT(x)]− 1− hj, j̇ = h2 − 1,
(111)

The Poincaré section plots at the cross-section |h| = |j| , 0.001
are shown in Figure 15. Notice that the phase-space filling nature
of the equilibrium dynamics has given way to a complicated
multi-fractal for both the equation sets. The presence of such a
multi-fractal is a signature of satisfying the Second Law of ther-
modynamics [111–114].

For the two sets, the different thermodynamic variables are
summarised in Table 2. The time-averaged Lyapunov expo-
nents are: 〈L1〉 = 0.0692, 〈L2〉 = 0, 〈L3〉 = −0.0159, 〈L4〉 =
−0.0856 such that

∑〈Li〉 , 0. The negative sum indicates

that the phase-space volume has contracted and the Kaplan-
Yorke dimension (= 3.624), which is calculated by linearly
interpolating between the last positive sum of Lyapunov expo-
nents and the first negative sum, is not equal to the embedding
dimension (= 4.0). Thus, the MKT thermostat has improved
ergodic characteristics along with the ability to show phase-
space compression and heat flow in non-equilibrium. Its
ease of implementation has made the MKT thermostat very
popular for investigating a variety of equilibrium and non-
equilibrium situations. In fact, the two-chain MKT thermostat
is now a standard library function in several well-known MD
software such as LAMMPS [115], Gromacs [116], etc.

Hoover-Holian Thermostat: The equilibrium properties of
the HH thermostat are identical to that due to the MKT ther-
mostat. However, in presence of the position-dependent temp-
erature field: kBT(x) = 1.0+ 0.2 tanh (x), the differences start
to emerge. The equations of motion of the HH thermostat in
this case is identical to that of the equilibrium SHO equations
with temperature replaced by kBT(x).

As is expected from a good thermostat, Figure 16 shows
that under the imposed temperature field, the dynamics is
multi-fractal. The presence of a multi-fractal is a signature of
the information dimension being smaller than the embedding
dimension (in this case 4) and conformity with the Second Law
of thermodynamics. A comparison with the MKT thermo-
statted SHO suggests that the: (i) the nature of the multi-fractal
is significantly different for the HH thermostatted SHO (see
Figure 15), (ii) the spectrum of Lyapunov exponents, which
in the case of HH thermostatted SHO is: 〈L1〉 = +0.0650,
〈L2〉 = +0.0003, 〈L3〉 = −0.0012, 〈L4〉 = −0.0702, is different,
and (iii) the Kaplan-Yorke dimension is 3.913, which is differ-
ent as well. These differences make us ask the question – which
of the two thermostats result in a closer approximation of
reality. The question remains open for answering.

Figure 15. (Colour online) Poincaré section plot of the Martyna-Klein-Tuckerman
thermostatted oscillator subjected to the position dependent temperature field:
kBT(x) = 1+ 0.2 tanh (x) at the cross-section |h| = |j| , 0.001. The initial con-
ditions are (x, p, h, j) = (1, 0, 0, 0). Notice the multifractral nature of the
dynamics. The multifractal nature indicates that the phase-space volume has
‘shrunk’.

Table 2. Different thermodynamic quantities for the two equation sets with
initial conditions (x, p, h, j) = (1, 0, 0, 0). Each quantity has a subscript: 1
denotes the equations of motion (110), while 2 is for the denotes the
equations of motion (111). Notice that while 〈Ṡ1〉 = 〈L1〉, 〈Ṡ2〉 = 〈L2〉.
〈Q̇1〉 〈Q̇2〉 〈Ṡ1〉 〈Ṡ2〉 〈L1〉 〈L2〉
0.0000 0.0000 −0.0164 −0.0038 −0.0322 −0.0038

Figure 16. (Colour online) Poincaré section plot of the Hoover-Holian thermo-
statted oscillator subjected to the position dependent temperature field:
T(x) = 1+ 0.2 tanh (x) at the cross-section |h| = |j| , 0.001. The initial con-
ditions are (x, p, h, j) = (1, 0, 0, 0). The dynamics is multifractral like the MKT
thermostatted oscillator, but the nature of the multifractal is different. Addition-
ally, 〈L〉 and the information dimension of the multifractal are different from
those of the MKT thermostatted oscillator.
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Patra-Bhattacharya Thermostat: A robust heat flow is
obtained in the PB thermostatted SHO as well when
kBT(x) = 1+ 0.2 tanh (x). However, due to non-ergodicity,
not all initial conditions result in dissipative trajectories – con-
servative trajectories co-exist with dissipative trajectories,
especially when ε is small. For the same initial conditions as
that in the equilibrium case, the double Poincaré section is
shown in Figure 17. The multifractal nature of the dynamics
is evident, suggesting a robust heat flow.

Due the similarity of the response, the remaining thermo-
stats are not discussed.

7.3. A F4 chain under thermal conduction

So far the two case studies discussed involve a system compris-
ing a single particle. While these case studies are quite instruc-
tive and allow easy reproduction of the results, MD
simulations typically involve several thousand particles. There-
fore, we now look a relatively larger system of a one-dimen-
sional F4 chain comprising N=256 particles. The chain
comprises N particles, each of mass m, arranged on a one-
dimensional line and separated by a distance leq, as depicted
in Figure 18. Each particle is connected with its nearest neigh-
bour by means of a harmonic spring and to its initial

equilibrium position by a quartic tethering spring. As a result,
the harmonic and tethering potentials take the form:
VH(Dxi−1,i) = 1

2 k(xi−1 − xi − leq)
2 and U(xi) = 1

4 c(xi − xi,0)
4,

respectively. Here, xi and xi,0 are the instantaneous and equili-
brium positions of the ith particle, respectively. The boundary
conditions may be taken as fixed, wherein a fixed particle of
similar characteristics is placed at the either ends, or periodic,
wherein the Nth particle is connected with the first particle. For
a F4 chain with fixed boundaries, and m = k = leq = 1.0, the
Hamiltonian becomes:

HF4 =
∑N
i=1

p2i
2

[ ]
+
∑N+1

i=1

1
2
xi − xi−1 − 1.0( )2

[ ]

+
∑N
i=1

c
4

xi − xi,0
( )4[ ]

.

(112)

Note that x0 = −1 and xN+1 = N, and these boundary par-
ticles remain fixed to their initial coordinates throughout the
simulation.

The first and the last 25 particles (=NT) of the chain are sub-
jected to two thermostats kept at different temperatures (TH

and TC, where TH . TC). The middle particles evolve accord-
ing to the standard Newtonian evolution. For any of these
middle site i, the instantaneous local heat current can be
obtained from the time derivative of the local energy density,
ei, [117]:

ėi = ∂ei
∂t

+ ji−1,i − ji,i+1
[ ]

. (113)

In Equation (113), ji,j represents the energy current flowing
from the ith to the jth particle:

ji,j = 1
2

fi,j(vi + vj)
[ ]

, (114)

where fi,j is force acting on the jth particle due to the ith par-
ticle. At steady-state, Equation (113) simplifies to
〈ji−1,i〉 = 〈ji,i+1〉 and Equation (114) becomes:

〈ji−1,i〉 = 〈1
2
(vi + vi−1)fi−1,i〉 = 〈vifi−1,i〉. (115)

The time averaged value of heat flux, 〈J〉, may now be com-
puted as:

〈J〉 =
∑N−NT

i=NT
ji,i−1

N − 2NT

〈 〉
, (116)

from which the thermal conductivity, κ, is given by:

k = 〈J〉(N − 2NT)
DT

. (117)

Here, DT/(N − 2NT) is the temperature gradient with

Figure 17. (Colour online) Plot of position and velocity of the Patra-Bhattacharya
thermostatted SHO at the double Poincaré section |h| = |j| , 0.001 for three
different initial conditions: green – (x, p, h, j) = (1, 0, 0, 0), red –
(x, p, h, j) = (4, 1, 0, 0) and blue – (x, p, h, j) = (0, 1, 0, 1). The multifractal
nature of the dynamics is evident suggesting a robust heat flow in the Patra-Bhat-
tacharya thermostatted oscillator.

Table 3. Thermal conductivity, κ, due to the different thermostats and different
DT .

DT Rescale GIK NH MKT HH PB BT BBK

0.2 2.481 2.732 2.645 2.630 2.682 2.727 2.594 2.743
0.5 2.727 2.678 2.707 2.678 2.682 2.796 2.628 2.684
1.0 2.910 2.941 2.848 2.906 2.857 2.995 2.941 2.986

Figure 18. (Colour online) Pictorial representation of aF4 chain subjected to two
thermostats at the end. The anharmonic springs tether the particles to their equi-
librium positions and provide force only along the x direction.
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DT = TH − TC. Our results for κ,shown in Table 3, suggests
that κ can be clustered into three distinct groups depending
on the type of temperature being controlled. For example,
the kinetic temperature controlling thermostats (NH, MKT
and HH) provide similar κ at different DT values. Likewise,
the two full phase-space thermostats (PB and BBK) result in
similar values of κ. The κ due to the configurational BT ther-
mostat is different from that of the kinetic or the full phase-
space thermostats. Unlike the cases involving SHO, the differ-
ences between the different kinetic (or configurational or full
phase-space) thermostats disappear for this large system and
the results are comparable. This is because the effect of non-
ergodicity is superseded by the (prohibitively) large Poincaré
recurrence time for this moderately large system.

While κ for the velocity rescaling and the GIK thermostats
are not too different from the other kinetic temperature based
thermostats, the temperature profiles due to these two thermo-
stats show unphysical jumps, as can be seen in Figure 19. The
jumps are present when DT � 0. The similarity between the
values of κ occurs because of the similarity of the temperature
gradient.

It appears to us that the full phase-space thermostats should
be preferred over either the kinetic or the configurational ther-
mostats for studying thermal conduction. Apart from provid-
ing results as per expectation for κ and kinetic temperature
profiles, the full phase-space thermostats offer an additional
advantage over the other thermostats – the equality of the kin-
etic and the configurational temperatures locally in problems
related to thermal conduction [118,118].

7.4. Planar shear flow

We now study a different class of non-equilibrium problem
wherein the system is subjected to a planar shear flow. This
problem is amongst the first to be studied through homo-
geneous non-equilibrium MD (NEMD) simulations. Consider
a 2-dimensional system comprising N=625 particles and sub-
jected to a planar shear flow along the x direction. The simu-
lation box is a square whose each side equals L=25 units. The

particles are initially placed on a square lattice such that the
distance between the nearest neighbour is 1 units. Let the par-
ticles of the system interact through the soft-sphere potential:

F(rij) = 100(1− r2ij)
4; r2ij = (xj − xi)

2 + (yj − yi)
2, (118)

when rij ≤ 1 andF(rij) = 0 for rij . 1. Under the planar shear
flow, the velocity gradient of a particle has the form:

∇u = 0 0
ġ 0

( )
, (119)

where, ġ is the shear rate that drives the system. Assuming the
mass of each particle to be unity, the SLLOD equations of
motion for simulating the planar flow in the absence of a ther-
mostat are:

ẋi = px,i + yiġ

ṗx,i = Fx,i − py,iġ

ẏi = py,i
ṗy,i = Fy,i

(120)

Note that here the momenta p are peculiar with respect to the
hydrodynamic streaming velocity u = u(y) in x-direction. To
ensure homogeneity, periodic boundary conditions formu-
lated by Lees and Edwards [120] need to be adopted. Appro-
priate modifications to the minimum image convention also
need to be incorporated. In absence of thermostats, the shear
flow is adiabatic with continuous heating. Therefore, a ther-
mostat is necessary to ensure a steady state.

In the limit, ġ � 0, the NEMD results may be post-pro-
cessed for calculating the shear viscosity, μ:

m = lim
t�1 lim

ġ�0
−〈Pxy〉

ġ
, (121)

where, 〈. . .〉 denotes time average, and Pxy is the off-diagonal
(xy) term of the pressure tensor:

Pxy = 1
L2

∑N
i=1

px,ipy,i +
∑
j,i

Fx,ijyij

[ ]
. (122)

Note that Fx,ij denotes the x component of the force acting on
the particle i due to the particle j, and yij = yj − yi.

When coupled with four different thermostats – the GIK,
the NH, the PB and the BT thermostats, the equations of
motion get modified accordingly. We integrate these equations
of motion for 5 million time steps using the 4th order Runge-
Kutta method with Dt = 0.001, of which the last 2.5 million
time steps have been taken as the production runs. The results
of 〈Pxy〉 for different values of ġ are shown in the Table 4. At
smaller ġ, 〈Pxy〉 due to the different thermostats agree with

Table 4. The time averaged value of the xy component of the pressure tensor,
〈Pxy〉, for the different thermostats at different ġ. At smaller ġ, Pxy due to the
different thermostats agree with each other. With increasing ġ, the disparity
between the thermostats increase.

ġ GIK NH PB BT

0.5 −0.647 −0.645 −0.637 −0.640
1.0 −1.121 −1.210 −1.178 −1.194
5.0 −2.473 −2.527 −3.603 −4.964

Figure 19. (Colour online) The temperature profile due to the different thermo-
stats when DT = 0.20. Notice the jumps at the boundaries between the thermo-
statted and the non-thermostatted particles.
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each other, and match with previously reported values [121].
However, as ġ increases, the disparity between 〈Pxy〉 increases
as well.

Using a hard-sphere system, Erpenback in 1984 [91] found
that at large shear rates, the particles organise themselves into
‘strings’ when the kinetic temperature is controlled. The pres-
ence of such string phases reduces the entropy production rate
in the system. A similar behaviour is observed in the soft-shere
system exemplified here. Figure 20 shows the presence of
string phases in the GIK and the NH thermostatted systems
for ġ = 10. These string phases occur because the thermostats
employed assume the stability of the linear streaming velocity
profile, even at large shear rates. When Reynolds number is
high, which is what happens in cases with large shear rates,
the laminar flow is unstable and eddy currents develop in
the streaming velocity of the particles. The two kinetic thermo-
stats (GIK and NH) treat these eddies as local heating and
withdraw this heat from the system by suppressing the eddy
formation [35]. The PB thermostat, which controls both the
kinetic and the configurational temperatures, also shows string
phases.

The string phases disappear when the system is thermo-
statted through the profile-unbiased forms of GIK and NH
thermostats. These profile-unbiased forms do not assume
any stable streaming velocity profile, but calculate the stream-
ing velocity locally on the fly as it is not known apriori.
Numerically one can achieve this by dividing the simulation
box into a number of cells, and calculating their center of
mass velocities [122]. Controlling only the configurational
temperature, as is done in the BT thermostat, provides a
unique way of resolving the issue of string phases without
the apriori knowledge of the local streaming velocity
[99,123]. As the thermostat controls the temperature based
on the configurational variables, there is no necessity to

separately account for the streaming velocity and the peculiar
momentum. At large strain rates, the BT thermostat does not
hinder eddy formation and the string phases are broken. This
is evident from Figure 20 where the snapshot for the BT ther-
mostat shows no string phase. All in all it seems to us that the
configurational temperature based thermostats work the best
for this class of problems.

8. Summary & challenges ahead – open questions

In this review, we have presented different deterministic temp-
erature control algorithms typically used in MD simulations.
While most of the algorithms are offshoots of the extended sys-
tem method of Nosé and Hoover, each algorithm has different
advantages and disadvantages. Apart from the philosophy
behind their development, we highlight – (i) the situations
where they are useful, (ii) the constant of motion and Hamil-
tonian, if any, from which the equations of motion can be
obtained, (iii) the ergodic characteristics in equilibrium
using an SHO, (iv) the ability to ensure non-equilibrium ther-
mal transport in an SHO, and (v) the transport properties in
relatively larger systems. When it comes to equilibrium and
small-scale systems, some of the thermostats behave similarly,
for example, Nosé-Hoover, Braga-Travis, Virial, Bauer-Bul-
gac-Kusnezov and Patra-Bhattacharya thermostat are all
non-ergodic. On the other hand, Martyna-Klein-Tuckerman,
Hoover-Holian, and C1,2 thermostats are ergodic. In fact, for
an SHO, some of the thermostats have similar equations of
motion.

We now discuss some of the outstanding challenges and
open questions associated with thermostatted dynamics:

. Almost all deterministic thermostats discussed in this
review, satisfy the extended phase-space Liouville’s
equation. In most of the cases, the Liouville’s measure is a
product of the usual canonical distribution with indepen-
dent normally distributed thermostatted variables. For
example, in the Nosé-Hoover thermostat, Liouville’s
measure is the product of the canonically distributed confi-
gurational and momentum variables with the normally dis-
tributed thermostat variable. Consider a situation where the
system comprises of particles interacting harmonically with
each other. For such a case, the extended phase-space distri-
bution is the sum of independent normal variables. A phi-
losophical issue exists with the extended phase-space
distribution being the sum of independent normal distri-
butions – the momentum evolution equation of any particle
in this case is: ṗi = − ∂F

∂xi
− hpi. As Φ is a harmonic func-

tion, ∂F/∂xi is linear in x. For the LHS, since pi is a normal
random variate, so is ṗi. However, in the RHS, while ∂F/∂xi
is a normal random variate, hpi is a product of two normal
random variables, which does not yield a normal random
variate. Thus, from a statistical viewpoint, the momentum
evolution equation cannot simultaneously result in
momentum being normally distributed with η being normal
distributed as well. This philosophical issue persists for all
deterministic thermostats that rely on the extended system
method. Analysis of Nosé-Hoover thermostat and its var-
iants discussed here from this statistical viewpoint is yet

Figure 20. (Colour online) The string phases are evident in GIK, NH and PB ther-
mostats when ġ = 10.

MOLECULAR SIMULATION 725



to emerge, and will possibly be able to shed more light on
the ergodic characteristics of this family of thermostats.

. Moving on, one of the important question in thermostatted
dynamics is related to ergodicity. While the question of
ergodicity is less important in larger systems owing to pro-
hibitively large Poincaré recurrence time, it forms the theor-
etical foundation for linking dynamical systems with
statistical mechanics. In this regard, analytical proof of
ergodicity has been given only for a limited number of
cases. To the best of our knowledge, such analytical proof
does not exist for any thermostatted dynamics. A particu-
larly interesting case is that of the two-variable Martyna-
Klein-Tuckerman thermostat, where for large values of Q,
say Qh = Qj = 10, one observes regular trajectories which
disappear for smaller values of Q such as Qh = Qj = 1.
More insights into these can be obtained if the dynamics
is analysed analytically.

. For larger systems, while in equilibrium the different algor-
ithms result in similar dynamical properties since they
satisfy the extended phase-space Liouville’s equation, the
same cannot be said in non-equilibrium. Researchers have
reported non-equilibrium problems wherein thermostat-
dependent properties are obtained even in near-zero non-
linearity. This begs the question – which thermostat yields
correct properties. The question remains wide open for
the research community to investigate, including the reason
why the different thermostats show different properties.
The role of a thermostat in non-equilibrium situations is
to extract the extra heat from the system. So it seems that
the rate at which the heat is extracted plays an important
role in non-equilibrium as this rate is different for the
different thermostats.

. Thermostat algorithms have been designed to control the
temperature of the system to a specific value. However,
researchers have reported that the temperature of a system
fluctuates [124,125]. These temperature fluctuations can
guide in developing better thermostat algorithms, where
apart from controlling the temperature one may control
the fluctuations as well. Further, a comparison of tempera-
ture fluctuations for the different thermostat algorithms in
equilibrium can help in understanding which of the ther-
mostats is, so as to speak, ‘the best’ for controlling tempera-
ture. Exploration in this domain seems limited owing to the
contradicting views concerning the existence of tempera-
ture fluctuations in a canonical ensemble [126].

. How do the usual configurational thermostats differ from
the virial thermostat? This question is at the heart of making
configurational thermostats more popular. The knowledge
of Hessian is must for configurational thermostats, and
computing it is extremely time-consuming of the order of
� N3. Virial thermostat, on the other hand, uses the infor-
mation of only forces. Thus, if the Virial thermostat per-
forms comparably to the other configurational
thermostats in different equilibrium and non-equilibrium
problems, one can use Virial thermostats in lieu of the
configurational thermostats. A starting point could be to
compare the auto-correlation functions of velocity and
energy in equilibrium and non-equilibrium scenarios. On
a related note, a comparison of auto-correlation functions

due to the kinetic and configurational thermostats could
also shed light on the rate at which the fast (momentum)
and the slow (configurational) degrees of freedom are
thermostatted.

. A separate set of questions arise related to temperature
measurement – (i) can one measure the configurational
temperature dynamically in real-time instead of post-pro-
cessing the snapshots of configurations [127,128], (ii) is it
possible to uniquely measure kinetic and configurational
temperatures of a system in equilibrium, and (iii) what do
we measure in experiments using thermometers in away-
from-equilibrium scenario. While researchers have been
working towards answering these questions, satisficatory
answers are yet to emerge.

. Several thermostats have a Hamiltonian associated with
them – Nosé, Nosé-Hoover, Gaussian isokinetic and Virial
thermostats – in the sense that the equations of motion can
be derived from the usual Hamilton’s equations upon suit-
able substitution. It is not necessary for the canonical vari-
ables to be the same as that of the real variables. The
existence of Hamiltonian makes it easy to relate thermo-
statted dynamics with the rich physics of dynamical sys-
tems. However, several thermostats, especially the multi-
variables one, do not have any Hamiltonian. An interesting
line of exploration is to create suitable Hamiltonians for
these thermostats.

. Gaussian isokinetic thermostat can be derived from both
Gauss’ principle of least constraint (the usual method) as
well as the Gauss’ principle of least action (through the
Hamiltonian route). This suggests that the Gauss’ principle
of least constraint is related to Gauss’ principle of least
action. While the relationship between them for holonomic
constraints is straight forward to show, such is not the case
for non-holonomic constraints. Establishing the relation-
ship between the two principles will pave way for an
improved understanding of thermostatted dynamical
systems.

. Lyapunov exponents are closely linked with time-reversibil-
ity – in an irreversible dynamical system, the sum of the
Lyapunov exponents is less than zero. For a thermostatted
system, apart from irreversibility, Lyapunov exponents
also relate (in almost all cases) the heat-transfer entropy
with the phase-space compressibility. However, such a
link has only been (dis)proved for pedagogical systems.
Exploration with realistic systems is yet to be observed.

Interesting progress along these and newer lines can be
expected in the near future.
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