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Abstract: A detailed analysis of the classic Stern–Gerlach experiment is presented. An analytical
simple solution is presented for the quantum description of the translational and spin dynamics
of a silver atom in a magnetic field with a gradient along a single z-direction. This description is
then used to obtain an approximate quantum description of the more realistic case with a magnetic
field gradient also in a second y-direction. An explicit relation is derived for how an initial off center
deviation in the y-direction affects the final result observed at the detector. This shows that
the “mouth shape” pattern at the detector observed in the original Stern–Gerlach experiment is
a generic consequence of the gradient in the y-direction. This is followed by a discussion of the spin
dynamics during the entry of the silver atom into the magnet. An analytical relation is derived for a
simplified case of a field only along the z-direction. A central question for the conceptual understanding
of the Stern–Gerlach experiment has been how an initially unpolarized spin ends up in a polarized
state at the detector. It is argued that this can be understood with the use of the adiabatic approximation.
When the atoms first experience the magnetic field outside the magnet, there is in general a change
in the spin state, which transforms from a degenerate eigenstate in the absence of a field into one of
two possible non-degenerate states in the field. If the direction of the field changes during the passage
through the device, there is a corresponding adiabatic change of the spin state. It is shown that an
application of the adiabatic approximation in this way is consistent with the previously derived
exact relations.

Keywords: Stern–Gerlach experiment; quantum description and interpretation; adiabatic approximation;
spin dynamics; spin density matrix, relaxation

1. Introduction

In 1922, Stern and Gerlach published a paper [1] reporting experimental findings on how silver
atoms could be deflected when travelling through a magnet with a field gradient in the direction
of the main component of the field. They observed that the silver atoms followed one of two paths
corresponding to a deflection of equal size but of opposite sign.

Figure 1 shows a schematic view of the experiment. The result was surprising to the authors,
but they immediately understood that they had observed another manifestation of the quantum world
that was in the process of being unraveled at that time. Stern even sent a postcard to Bohr the day after
the observation to congratulate him for a successful theoretical prediction! It would soon turn out,
however, that Bohr’s analysis didn’t provide the correct explanation of the observation. A fascinating
historical account of the Stern–Gerlach (SG) experiment and the scientific discussion it initiated was
recently published by Schmidt-Böcking et al. [2]. It was later realized that the observation of a splitting

Entropy 2017, 19, 186; doi:10.3390/e19050186 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19050186
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 186 2 of 13

into two paths was due to an interaction between the spin of the unpaired electron in the ground s state
of the silver atom. It was also concluded that the measured deflection was consistent with a g-factor
of 2 for the electron spin. The calculation was based on treating the interaction spin–magnetic field
in a quantum formalism, while treating the dynamics of the atom using classical mechanics.

Figure 1. A schematic picture of the Stern–Gerlach experimental set up.

The report by Stern and Gerlach was soon followed by other investigations using the same
concept. Studies were made on alkali and hydrogen atoms [3,4] and the experimental results followed
the established expectations supporting the original interpretations. At this stage, the SG experiment
was scientifically established and was no longer a part of the research front. It was, however,
one of the rare experiments that were considered to be fundamental enough to take a role in forming
a conceptual understanding. Consequently, a large fraction of textbooks of quantum mechanics makes
use of the experiment to illustrate the spin concept in quantum theory [5–17]. In these textbook
accounts, one typically keeps the classical description of the translational motion and remarks that
the fundamental quantum effect is that the silver atoms behave as if their spin takes one of two possible
values. Some authors point out [13,14] that there is a question of how the initially unpolarized spins
transform into adopting one of two possible states. A further complication addressed by D. Bohm [5],
for example, is that a gradient in the field must, according to Maxwell’s equations, have at least
two vectorial components so one along the z-direction requires one also along the y-direction.

Considering its conceptual importance, it took a long time before the SG experiment was analyzed
using a more complete quantum description. A. Bohm [17], Scully et al. [18,19] and Utz et al. [20]
and Gomis and Perez [21] have shown that, using a Hamiltonian accounting for translation and a
field in the z-direction, it is possible to derive the basic SG observation of a splitting into two separate
signals at the detector without invoking further approximations. Even though the authors of these
papers provide a formal description of the experiment, they refrain from addressing some of the
interpretation problems. How is the polarization of the spin created? For a spin polarized in the
x, y-plane, there is no force generated on the atom. There is, however, still a force transmitted by the
gradient. What happens with the spin on the entry to the magnetic field? What is the effect of the
gradient in the perpendicular direction? In the present paper, we aim at getting more insight into these
questions by combining a more realistic description of the magnetic field with an ambition to push
the quantum treatment of the problem as far as is feasible. The final description is developed in three
steps. In Section 2, we first present a formally exact solution to the problem of a spin one half particle
traveling initially in the x-direction in a magnet with a field B = (0, 0, B0 + βz). This problem has been
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solved previously [18–22], but we present an alternative formally simple derivation. It has the dual
advantage of providing both a more obvious connection to the semi-classical text-book description and
a basis for a generalization including also the effect of the field gradient in the y-direction. In Section 3,
the latter case is analyzed considering the extra term in the Hamiltonian as a perturbation. The third
step is in Section 4 where we consider the dynamics of the particle and its spin associated with the
entrance of the particle into the magnet. The magnetic field has a complex space dependence in
this region, and we consider explicitly only the situation when a particle enters the magnet with
z = 0 strictly. In Section 5, the formal results are then discussed in terms of possible interpretations.
The observations of the original SG experiment are quantitatively accounted for, including the role
of the spread in the initial position and momentum in the y-direction. Section 6 concludes that the
formal results are consistent with the validity of the adiabatic approximation applied to spin dynamics
from the point where the spin enters the magnetic field, to its exit from the magnet. Section 7 gives
a discussion of alternative descriptions based on spin relaxation and decoherence concepts and final
conclusions are summarized in Section 8 .

2. Silver Atom inside a Magnet with Field Exclusively in the z-Direction

Discussions of the SG experiment are typically based on the simplifying assumption that
the magnetic field, B, is strictly along the z-axes, with a main component and a gradient β ≡ ∂Bz

∂z, which
is a measure of the strength of the gradient:

Bz = B0 + βz. (1)

The Hamiltonian of the silver atom in the field is then

H =
p2

2m
+ h̄ω0sz + γeβh̄zsz. (2)

Here, ω0 ≡ γeBz, where the electron gyromagnetic ratio for the 5 s electron is
γe = −1.7608× 1011(s−1T−1), and sz is the dimensionless spin angular momentum operator. In the
following derivations, we simplify the notation using γ ≡ h̄γeβ.

This is valid inside the magnet 0 < x < L , where L is the length of the magnet. In order to obtain
manageable boundary conditions, it is assumed that, at t = 0, the silver atoms enter the magnet with
a momentum, px, solely along the x-direction. In reality, there has to be a distribution of momenta also
in the other directions. In the original experiment, two slits were used to keep py(0) and pz(0) small,
while simultaneously having y(0) and z(0) as well-defined as possible. The Hamiltonian Equation (2)
and the initial conditions specifies a quantum mechanical problem.

Below, we present a solution to this problem that differs formally, but not fundamentally,
from previously reported solutions [17–22]. The starting point is the general equation of motion
of an observable Ô involving the commutator of Ô and H

h̄
d
dt
〈Ô〉 = i〈[H, Ô]〉. (3)

Since the spin operator sz in the z-direction commutes with H it follows that

d
dt
〈sz〉 = 0, (4)

and sz is a constant of the motion. The other central operator in the problem is the momentum pz

describing the translational motion in the z-direction. One has

d
dt
〈pz〉 = iγ〈[zsz, pz]〉 = −γ〈sz〉. (5)
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Since sz is a constant of the motion it follows that the derivative

d
dt
〈pz〉 = −γ〈sz〉0 (6)

is time independent. This describes the time evolution of the mean value of pz. However, to have
a more complete description, we need information on how the distribution of pz develops. Thus, consider

d
dt
〈p2

z〉 = iγ〈[zsz, p2
z]〉 = −2γ〈sz pz〉. (7)

It follows that the evolution of p2
z is determined by the correlation between sz and pz, which could

appear difficult to calculate. However,

d
dt
〈sz pz〉 = iγ〈[zsz, sz pz]〉 = −γ〈s2

z〉 = −γ/4. (8)

This operator has a constant time derivative and

〈sz pz〉 = 〈sz pz〉0 − γt/4. (9)

Inserting this result into Equation (7) yields, since 〈pz〉0 = 0,

〈p2
z〉t = 〈p2

z〉0 + γ2t2/4. (10)

Note that this result is independent of the initial state of the spin system. Equations (6) and (8)
give explicit expressions for how the mean and the root mean square values of pz change during
the passage through the magnet. In Equation (6), there is a dependence on the initial state of the spin.
Consider first a spin that is polarized in the z-direction so that 〈sz〉 = 1/2 and use pz(0) = 0, and then

〈pz〉t = −γt/2; 〈p2
z〉t = γ2t2/4. (11)

Thus, if there is no initial spread in the distribution of pz, the motion through the magnet doesn’t
give rise to such a spread since

〈pz〉2t = 〈p2
z〉t. (12)

Note that the expression for pz in Equation (11) is identical to the one obtained in a semi-classical
description. For the case when 〈sz〉0 = 0 and there is no spin polarization in the z-direction, Equation (6)
shows that the average momentum 〈pz〉 remains at zero if it is initially zero. For 〈p2

z〉, on the other
hand, Equation (10) still applies and the mean square average of pz evolves as for the fully polarized
case. Experimentally, one never observes deviations in the z-direction that exceed those for fully
polarized spins. On both experimental and theoretical grounds, one has the relation |pz| ≤ |γt/2|.
Combined with the two conditions

〈p2
z〉t = γ2t2/4, 〈pz〉0 = 0, (13)

this can only be realized by a distribution

f (pz) =
1
2

δ(pz + γt/2) +
1
2

δ(pz − γt/2). (14)

Equation (14) implies that a spin system, initially with no net polarization, behaves with a probability
1
2 as does a system with 〈sz〉 = 1/2 and with the same probability as a system with 〈sz〉 = −1/2. This
conclusion is consistent with the textbook account of the SG experiment. There is, however, a remaining
question of how to interpret these probabilities. For a pure spin state, 〈sz〉 = 0 implies that the spin
is polarized in the x, y-plane. The magnetic field in the z-direction gives rise to an in plane Larmor
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precession and there is formally no net force on the silver atom. The formalism still gives that 〈p2
z〉 is

time dependent according to Equation (10). This issue will be discussed more in Section 5. To obtain a
better basis for the discussion of this conceptual problem and to get a more complete description of the
SG experiment, we consider two circumstances that have been ignored by the use of the Hamiltonian
of Equation (2).

3. Silver Atom inside a Magnet Including Also the y-Component of the Field

A virtue of the formalism used in the previous section is that it can provide a basis for a feasible
treatment of a more general case. To make the magnetic field of Equation (1) consistent with Maxwell’s
equations, it is necessary to add a gradient also in the y-direction. Then, there is an additional term
in the Hamiltonian

H1 = −γsy y. (15)

With this term in the Hamiltonian, the spin sz is no longer a constant of the motion and

h̄
d
dt
〈sz〉 = γ〈y sx〉. (16)

Equation (5) for the time derivative of the momentum pz remains the same as well as Equation (7)
for the evolution of p2

z . We no longer get a closed set of equations, however, since, instead of
Equation (8), one has

d
dt
〈sz pz〉 = −γ/4+

γ

h̄
〈y pzsx〉. (17)

To make progress, it seems necessary to introduce approximations into the calculations utilizing
the fact that deviations of y from zero are small making H1 a weak perturbation. Consider the case
where initially py = 0. There is a force on the atom in the y-direction, but it is much smaller than
the force in the z-direction, and it is assumed that one can ignore the change in the y-coordinate during
passage through the magnet. Then, one can replace y by y(0) in the equations. The time dependence
of pz is no longer linear and, to find the correction, one can take the time derivative of Equation (5)

d2

dt2 〈pz〉 = −γ
d
dt
〈sz〉 = −

γ2

h̄
〈y sx〉 ≈ −

γ2y0

h̄
〈sx〉. (18)

The time variation in sx is

d
dt
〈sx〉 = ω0〈sy〉+

γ

h̄
〈(zsy + ysz)〉. (19)

By assumption, we have h̄ω0/γ >> |z|, |y| . If one then neglects the last term in Equation (19),
one is back to a normal Larmor precession in a magnetic field B0 and

〈sx〉 ≈ 〈sx〉0 cos(ω0t). (20)

Using this relation, Equation (18) can be integrated to yield

〈pz〉t = −γ〈sz〉0 + (
γ

h̄ω0
)2y0〈sx〉. (21)

There is, thus, in addition to the leading term proportional to t, also an oscillating correction term
in the expression for pz(t). We can now evaluate the correction term in Equation (17) as approximately

〈ypz sx〉 ≈ y0{〈(−γt〈sz〉0 + ( γ
h̄ω0

)2y0sx)sx〉}

= −y0γt〈sz〉0〈sx〉+ y2
0(

γ
h̄ω0

)2〈s2
x〉 ≈ y2

0(
γ

h̄ω0
)2/4.

(22)
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Here, the last equality follows from the circumstance that 〈sx〉t oscillates rapidly so it averages
to zero over a short time. Using Equation (22), the derivative in Equation (17)

d
dt
〈sz pz〉 =

γ

4
[1− (

y0γ

h̄ω0
)2] (23)

is time independent as in the absence of a y-component of the field, but with a somewhat smaller value.
After integrating the equation using the initial condition 〈sz pz〉 = 0, one has

d
dt
〈p2

z〉 =
γ2

2
[1− (

y0γ

h̄ω0
)2]t. (24)

Thus, the presence of a gradient in the y-direction has only a limited influence on the dynamics
of the silver atoms. This conclusion was reached by more qualitative arguments by Bohm [5] and
Le Bellac [14]. However, as not shown previously, a deviation in the initial y-value from zero has
the effect of reducing p2

z and thus the deviation in the z-coordinate of the atoms during the passage.
Integration of Equation (24) results in our final expression for the dynamics of the silver atoms
in a realistic magnetic field

〈p2
z〉t = 〈p2

z〉0 + γ2/4[1− (
y0γ

h̄ω0
)2]t2. (25)

This result is, as for the corresponding Equation (10), independent of the initial spin polarization.
In Section 2, it was concluded that Equation (10) was only compatible with a delta function

distribution of 〈pz〉 . Is a similar argument valid for Equation (25)? For a position with y 6= 0,
the magnetic field is not along the z-direction. If one assumes that there initially is a perfect polarization
of the spin along the z-direction 〈sz〉 = ±1/2, there will be a rapid precession and 〈sz〉 will have
a component that averages to zero over a short time. The net force on the atom in the z-direction is
then reduced by a factor cos(θ), where θ is the angle between the field and the z-axes. Similarly, if one
assumes that the spin is polarized along the direction of the field, the net force in the z-direction is also
reduced by a factor cos(θ). For ω0 >> |γz, γy|, it follows that

cos(θ) = 1− 1
2
(

y0γ

h̄ω0
)2. (26)

Thus, the maximum/minimum value of pz is

〈pz〉t = ±
γt
2
[1− 1

2
(

y0γ

h̄ω0
)2]. (27)

Comparing Equations (25) and (27), it follows that, to the leading order,

〈p2
z〉1/2 = 〈pz〉max,min

t . (28)

Thus, also for the case y 6= 0, the atoms move as if they follow one of two trajectories where
the force is maximal. This behavior is independent of the initial condition for the spin.

4. Spin Dynamics on Entering the SG Magnet

In the previous sections, the description was focused on the events once the silver atoms had
entered the magnet. The initial conditions were chosen at t = 0 and x = 0. A somewhat bewildering
formal result was that the behavior inside the magnet was partly independent of the initial condition for the
spin state. This concerns in particular how the square of the momentum in the z-direction developed.

In most accounts of the SG experiment, one avoids an explicit discussion of the behavior
of the system prior to the entry into the magnet. It is remarked that there is a narrow zone of the same
order as the gap width where the magnetic field goes from essentially zero to the value inside
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the magnet. The magnetic field outside the magnet isn’t controlled explicitly. The experimental
result can, however, be accounted for solely on the basis of the events inside the magnet, and this
suggests that what happens outside the magnet is irrelevant. Below, we scrutinize this somewhat
optimistic assumption.

The fact that the outcome of the experiment seems to be independent of the detailed
properties of the entrance magnetic field suggests that one can use a model magnetic field in the
discussion of entrance effects. The field inside the magnet is known from Equations (1) and (15).
Outside the magnet, the field can be estimated (see Appendix A) by integrating the dipolar contribution
from a magnet with uniform gap D. Then, for x < 0,

Bz(x, z) ≈ B0

π
{arctan(

z + D
x

)− arctan(
z− D

x
)},

Bx(x, z) ≈ − B0

2π
ln{ x2 + (z + D)2

x2 + (z− D)2 },

By ≈ 0.

(29)

Due to the presence of the gradient in the z, y plane inside the magnet, there is not a perfect fit
between the expressions for the field around x = 0, but we ignore this complication.

It is a substantial challenge to solve the dynamic quantum equations for a silver atom moving
across such a field. Even though the transition zone is narrow, the residence time of the silver atoms
is still much larger than the inverse of the varying Larmor frequency. There is no obvious basis
for assuming that the spin state is, in general, conserved during the entrance into the magnet.

To obtain some information on what can happen to the spins in the entrance zone, consider
the idealized case where silver atoms enter along z = 0. In this limit, Equation (29) shows that there is
only a field in the z-direction. It varies strongly with the position x and there is a coupling between
the sz component of the spin and the translational motion along the x-direction. In a semi-classical
approximation, the Hamiltonian is

H = h̄ω(x)sz, (30)

where the varying Larmor frequency is given by ω(x) ≡ Bz(x, 0)γe. If the spin is initially polarized
along the the z-direction in the spin up state, Equation (30) implies that the spin energy is h̄ω(x)/2. It is
increasing in time as x increases and, by conservation of energy, there has to be a corresponding loss
of kinetic energy of the atoms. With a spin in the opposite state, the spin energy decreases, resulting
in an increase of the kinetic energy of the atoms. For the case of an initial polarization of the spin
in the x, y-plane so that 〈sz〉 = 0, it follows from the Hamiltonian of Equation (30) that the average spin
energy 〈H〉 is zero throughout the entrance phase. Analogous with the analysis of the properties of the
momentum pz in the previous section, it is revealing to consider the mean square energy of the spin
system and

〈H2〉 = h̄2ω(x)2〈s2
z〉 = [h̄ω(x)/2]2. (31)

This value is independent of the character of the spin state. For a pure spin up, or spin down,
this is fully consistent with the value for 〈H〉. All other initial spin states behave as if they were either
spin up or spin down with probabilities given by the diagonal elements of the spin density matrix.
Note that, by making the semi-classical approximation by treating the translational motion classically,
the spin state, for example, represented by a density matrix, need not correspond to a pure state.

5. Quantitative Interpretation of the SG Observations

In Sections 2–4, we have derived a number of exact and approximate relations valid
for the SG experiment, but without explicitly addressing the question concerning the pattern observed
on the detector. Equation (11) in Section 2 shows how the momentum in the z-direction evolves in time
for a spin system that is initially spin polarized along the z-direction. This dependence is derived from
a quantum formalism. To find a predicted pattern on the detector placed at the exit of the magnet,
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a relation between position and momentum is needed. This, in turn, involves an interpretation step.
By inserting the quantum result for the momentum into a classical trajectory calculation, one obtains
the prediction that the silver atom with mass m is deflected to

zmax,min =
∫ t

0

Pmax,min

m
(t′)dt′ = ± 1

m

∫ t

0

γt′

2
dt′ = ±γt2/(4m) (32)

in full accordance with observations and with the standard description. It thus appears that
the position-momentum relation for the atoms can be seen as fully classical in this particular case.
For a system that is initially unpolarized in the z-direction, the mean of pz is zero, but, according
to Equation (14), this reflects the fact that pz is distributed into two values corresponding to the ones
found for the two fully polarized states. There are two main possibilities for interpreting this
situation. One possibility (see, for example, Utz et al. [20]) is to see the particle state as a superposition
of the two space/spin combinations and there is then a reduction of the wavefunction on the detector.
The other possibility (see, for example, Schmidt-Böcking et al. [2] is to, analogously with the case
for an initially polarized situation, consider two separate classical trajectories where each particular
atom follows one of these trajectories with equal probability. Schmidt-Böcking et al. argue in detail
in favor of this interpretation.

The main result of Section 3 was the conclusion that an initial deviation of the position in
the y-direction, from zero, results in a reduction of the increase in momentum during the passage
through the magnet. If one also in this case applies a classical relation between momentum and
position, one has at the detector in position yd

z f inal = ±
γ

4m
t2[1− 1

2
(

y0γ

h̄ω0
)2]. (33)

Thus, as the y0-value increases, the gradient in the y-direction consequently decreases the gap
between the two final z-positions. This conclusion explains semi-quantitatively the observed
“mouth-like” pattern on the detector in the original experiment. In reality, we expect that there
is also a contribution from an initial spread in the momentum py around its average value of zero.
First, when this effect is also considered, it is possible to determine the initial deviations in y and py

from their mean value of zero based on the observed pattern on the detector. It emerges from the
calculations, however, that the observed “mouth-like” pattern on the detector (see Figure 1) is a generic
consequence of the necessary presence of a magnetic field gradient also in the y-direction [23].

In Section 2, it was concluded that the evolution of the momentum in the z-direction squared
p2

z has a time evolution that is independent of the initial spin state. This poses the question whether
the system behaves is if it was in either a spin up or a spin down state or if the spin actually is in both
of these states. The calculations in Section 4 gave further insight into this question. It was concluded
that the same dilemma appears also for the conditions in the entry zone just outside the magnet.
It was further concluded that there is a covariation between spin coordinate and the momentum in the
x-direction. In this situation, there is also a choice between seeing the state of a particular silver atom
as a superposition of two spin/momentum combinations or considering the atom as adopting one of
two possible states with equal probability.

6. Applying the Adiabatic Approximation

A virtue of considering the dynamics of the silver atoms from a position clearly outside the SG
magnet to the point of exit is that it provides a basis for considering all events from preparation
to detection. Above it was found, from the point of entrance into the magnetic field to the exit
at the detector, the spin of the silver atoms has the property of behaving as if it was polarized
along the z-direction. This property was found to apply irrespective of the initial state of the spin
before entering the magnetic field. It was deducted that this was the case, however, at an early
stage based on the outcome of the experiment. The first to formulate the conceptual problem were
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Einstein and Ehrenfest [24], in a paper from 1922 [25]. In addition, Stern expressed concerns, even
late in life [2] that such a property is hard to understand conceptually. Similar remarks also appear
in textbooks.

A main conclusion from Section 4 is that, in general, the state of the spin evolves already
when entering the magnetic field. Even though one can account for the experimental outcome
by considering the dynamics for position x = 0 and on using an empirical rule for the spin state, this
leaves out a conceptually important aspect. In Section 4, the entry of the silver atoms into the field
was described using a time-dependent magnetic field, which implies a semi-classical approximation.
For such a case, one can apply the adiabatic approximation, which states that a system in an eigenstate
will remain in an eigenstate if the time variation of the Hamiltonian is slow enough. Except at the very
entrance to the field, the Larmor frequency is large relative to the time variation of the Hamiltonian
as measured by px

mD ≈ 105 s−1. The criterion for applying the adiabatic approximation thus seems
to be fulfilled, except at positions clearly outside the magnet. What are the consequences of applying
the adiabatic approximation for the SG experiment?

Consider first the case of an atom with a spin in the sz = 1/2 state before entering the magnet.
Assume also, as in Section 4, that the atoms come in along the x-axis with y, z = 0. The spin
will then interact with a field along the z-axes. Since it is initially in an eigenstate of the spin
Hamiltonian, it will remain so. It will then follow a trajectory and reach the detector at zd = γt2/4m.
This behavior is consistent with the calculations in Sections 2 and 4 as well as with the conventional
analysis of the SG experiment. If we introduce now the complication that the y-coordinate is slightly
off center so that y0 6= 0, but we still have the spin polarized along the z-direction. If we
assume a field as in Equation (15) and adopt the adiabatic approximation, the spin enters the magnet
unchanged. There a y-component to the field appears and, according to the adiabatic approximation,
the polarization changes slightly to follow the direction of the field. Then, the force in the z-direction
on the atom is reduced leading to a smaller deviation in z at the exit. This deviation is quantitatively
consistent with the finding in Section 3. A third case is when the spin outside the magnet is polarized
in the x-direction with sx = 1/2. Since the field is zero, it is in a ( degenerate) spin eigenstate,
but, on entering the field, this is no longer the case. There is a change from a degenerate state
into a situation with two nondegenerate states. The adiabatic approximation doesn’t provide a rule
for which of the two possible states will be populated. Lacking such an explicit rule one can apply
a symmetry argument using the fact that there is no inherent preference for either state connecting
it to a possible final state. The natural assumption is then that they are populated with equal probability.
The prediction is then that the silver atoms reach the detector at +zd or −zd with equal probability
of 1

2 . In addition, for this case, the prediction is consistent with observations using two SG magnet in
series, but with the field direction rotated 90◦.

In the original SG experiment, there was no active preparation of the spin state of the silver atoms
leaving the oven. The initial spin state can then be represented by a spin density matrix of the form

σ =

[
1 0
0 0

]
Ω

(34)

but with a unknown reference direction Ω. To apply the adiabatic approximation, one first transforms
the spin density matrix to a coordinate system along the magnetic field at the entrance

σ =

[
aa∗ ab∗

ba∗ bb∗

]
B

. (35)

An equation was derived for evolution of the momentum pz and its relation to the expectation
value of sz. If one now assumes that also during the entry phase the atoms experience a field strictly
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along the z-axis, consistency with the application of the adiabatic approximation is achieved by
reducing the density matrix of Equation (35) to a diagonal form:

σ =

[
aa∗ 0
0 bb∗

]
B

. (36)

This no longer refers to a pure spin state and it can be interpreted as if the spin up state is adopted
with probability aa∗ and the spin down state with probability bb∗ = 1− aa∗. For the ensemble of silver
atoms, all Ω occurs with equal probability. Thus, on average, spin up and spin down occur with equal
probability and one should have z = ± zmax with equal probability at the detector, which is consistent
with the observations.

The main conclusion of the present section is that one can account for the observations in the
original SG experiment and closely analogous ones by explicitly considering the spin dynamics during
the full passage from oven to detector by adopting the adiabatic approximation. The problem of finding
a selection rule for connecting an initially doubly degenerate spin state with one of two nondegenerate
states inside the field was solved by requiring consistency with exact equations derived for special
conditions of the field. A second implication of the use of the adiabatic approximation is that the silver
atom follows one of two possible trajectories during the passage through the detector. There is no need
to invoke a superposition of the two alternatives.

7. The Relation to Other Interpretations of the SG Experiment

In a previous paper [23], we have analyzed the SG experiment in terms of the motion of the silver
atoms inside the magnet by considering the effects of the spin relaxation. It was concluded that,
by assuming a very rapid T2-relaxation, it was possible to account for the experimental findings.
This includes the qualitative observation that a deviation in the initial y-coordinate, y0, gives rise
to a decrease in the z-coordinate at the detector resulting in a “mouth-like” pattern. The effect
of the T2 relaxation is to reduce a spin density matrix of the form in Equation (35) to the diagonal one
in Equation (36). The thermal fluctuations of the magnetic field were considered to be the main cause
of this relaxation. The effect to reduce the density matrix to a diagonal form is, however, the same as
achieved by applying the adiabatic approximation. It is the conclusion of the present paper that the
coupling between the translational motion and the spin dynamics is more essential for understanding
the SG experiment than the coupling spin–thermally fluctuating field. A complete description would
require considerations of both aspects. In [21], Gomis and Perez discuss the reduction of the spin
density matrix from the form in Equation (35) to the one of Equation (36) in terms of a decoherence
process [26]. They use a Calderia–Legett master equation to describe the coupling between the spin
and a thermal bath. Although formally different, this is conceptually closely analogous to the approach
of [23], where the coupling to the thermal bath was described using the relaxation concept.

In their recent thorough account of the SG experiment and its historical context, Schmidt-
Böcking et al. [2] also discuss how to describe the motion of the silver atoms in the magnet.
They conclude based on a careful argumentation the atom dynamics can, with a good approximation,
be described in terms of classical trajectories. In Section 2, we have provided additional support to this
conclusion, by showing within an exact quantum description that the evolution of the momentum pz

is consistent with the semi-classical picture.
Scully et al. [19], Bohm [17], Utz et al. [20], Gomis et al. [21] and Reddy et al. [22] all treat the case

considered in Section 2 within a full quantum description of spin and translation, but not of the magnetic
field. The specific formalisms differ between these authors, but the main results are the same and
they are in accordance with the formal results of Section 2. Utz et al. also discuss specifically how
the polarization of the spin occurs. They find, starting from t = 0 and x = 0, in the notation used in
Section 2, that an initial spin polarized in the xy-plane is rapidly polarized into a state with a spin
density matrix as in Equation (36), where the off-diagonal elements have decayed to zero. They make
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an interpretation that each silver atom travels as a wave packet with nonzero amplitude around the
two positions of the classical trajectory. At the detector, there is then a “reduction of the wave packet”.
The difficulties associated with this view are discussed in the paper by Schmidt-Böcking et al. [2].

One important application of the SG experiment has been in discussions of coincidence effects
involving the study of an entangled spin system. For two atoms in an initial combined spin singlet state
that are entering two separate SG magnets, one expects a correlation between the measured deviations
at the two detectors. Such a case was analyzed by Bell who arrived at a conclusion, now referred
to as Bell’s theorem [27]. One basis for the argument leading to the theorem is an assumption that the
singlet character of the spin state is preserved during the passage through the magnet. For the
special case of two magnets with the same direction of the field, this implies that if a spin up
is observed at one magnet, this implies that one would observe spin down for the other atom.
A consequence of the discussion in Section 4 above is that the spin state evolves during the entry
to the magnet. Is the singlet character preserved during this evolution? The characteristic feature
of the singlet state is that it is antisymmetric with respect to particle exchange. This symmetry is
preserved only if the two atoms experience identical fields during the entry of the magnet. This can’t
be the case in general. There is thus no conservation rule ensuring the preservation of the singlet
character. It can still be approximately valid, but a theorem based on such an approximation appears
a bit unsatisfactory. By adopting the view expressed in Section 5, that the SG experiment can be
understood by applying the adiabatic approximation, a basis for an analysis of the coincidence
measurement is provided. It was concluded that an atom with an initially polarized spin in the direction
of the field would pass the whole SG device with an unchanged spin state. For the other extreme
with a spin polarized perpendicular to the direction of the field, there is a change of the spin state into
one of two possibilities with equal probability. Lacking an explicit description of this dynamic event,
the most natural way is to consider it as a stochastic event. There is no basis for assuming that there is
a correlation between two such stochastic events in the two magnets of a coincidence measurement.
There is no conservation rule that would ensure such a correlation. When the arguments for these
two limiting cases are applied to an initial singlet system analyzed in two SG devices of the same
orientation, the predicted correlation is −1/3 rather than −1 as assumed by Bell. We have previously
published a more detailed analysis of this argument elsewhere [28].

8. Conclusions

We have discussed above four questions concerning the SG experiment. First, and most significantly,
is the problem of how the initially unpolarized spin can behave as polarized inside the magnet and leave
it in a specified spin state. A second question (related to the first) concerns the possibility of obtaining
a fully quantum description of the dynamics inside the magnet instead of the conventional semi-classical
argument, which requires a separation of the spin dynamics from the translation of the silver atom.
A third issue concerns what happens in the transition zone between the silver atom source and the entry
to the magnet. Finally, a fourth question concerns the significance of the presence of a y-component
of the magnetic field. The answers to the four interpretation issues are:

1. The spins become polarized during the entry to the magnet, where there can occur a transfer
of energy and angular momentum between spin and translational motion.

2. When having only a z-component of the field, it is possible to obtain an exact analytical solution to
the equation of motion. For realistic magnetic fields, however, such a solution remains to be found.

3. The field outside the magnet has a complex structure and there are significant changes in the spin
state occurring during the entry to the magnet.

4. For trajectories deviating from y = 0, the force on the particles is along the field direction,
and for larger y-values, the deviation of the trajectory in the z-direction becomes smaller.
This explains the “mouth-like” shape found on the detector in the original experiment.
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Appendix A. Calculation of the Field outside a Large Magnet with a Uniform Gap of Width D

For a magnet extending, indefinitely in the y-direction, indefinitely for x > 0 and indefinitely
in the z-direction except for a gap at −D/2 < z < D/2, the magnetic field in the free space is
determined by the magnetic dipolar density ρM. Assume a uniform ρM inside the magnet with dipole
oriented in the z-direction. The magnetic field outside the magnet is obtained by integrating the
contributions from the individual dipoles. The field in the y-direction is zero by symmetry, and, for the
z-direction, one has

Bz(x, 0, z) =
∫ −D/2

−∞
Ixy(z′)dz′ +

∫ ∞

−D/2
Ixy(z′)dz′ =

=
∫ ∞

−∞
Ixy(z′)dz′ −

∫ D/2

−D/2
Ixy(z′)dz′ = −

∫ D/2

−D/2
Ixy(z′)dz′,

(A1)

where

Ixy(z′) =
∫ ∞

0

∫ ∞

−∞
(

1
r3 −

3z′2

r5 ) dy′dx′; ~r = (x− x′, y′, z− z′). (A2)

For the field in the x-direction, one has similarly

Bx(x, 0, z) = −
∫ D/2

−D/2
I′xy(z

′)dz′, (A3)

I′xy(z
′) =

∫ ∞

0

∫ ∞

−∞

3rxrz

r5 dy′dx′. (A4)

A tedious but straightforward evaluation of the integrals result in the functional form of the field
in Equation (29). The two components of the field are consistent with the Maxwell equations.
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