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6.1 esistenza (ed unicità) di soluzioni

In questi appunti vogliamo studiare il problema di Cauchy per un’equazione differenziale ordinaria del primo ordine, ovvero il seguente problema differenziale

(6.1)

u′(t) = f(t,u(t))
u(t0) = u0

dove la funzione u è l’incognita del problema, mentre f, u0 e t0 sono noti. In particolare vogliamo provare che (6.1) possiede un’unica soluzione (ovviamente
se alcune ipotesi sono verificate!) e di tale importante risultato forniremo due differenti dimostrazioni.
Cominciamo con alcuni risultati tecnici utili alla dimostrazione del nostro teorema di esistenza ed unicità.

PROPOSIZIONE 6.1 Sia f una funzione continua, allora u è soluzione di classe C1 di (6.1) se e solo se u è una soluzione continua della seguente equazione integrale

(6.2) u(t) = u0 +
Z t

t0
f(s,u(s))ds

DIMOSTRAZIONE. Supponiamo che u sia una soluzione di classe C1 di (6.1), allora per il teorema fondamentale del calcolo integrale abbiamo che

u(t) = u(t0) +
Z t

t0
u′(s)ds = u0 +

Z t

t0
f(s,u(s))ds

da cui segue la tesi.
Viceversa se u è una soluzione continua di (6.2) abbiamo che f composta con u è ancora una funzione continua e, sempre per il teorema fondamentale del
calcolo integrale, segue che u è di classe C1 essendo una primitiva di una funzione continua, inoltre abbiamo che

u(t0) = u0 +
Z t0

t0
f(s,u(s))ds = u0 e u′(t) = d

dt

"
u0 +

Z t

t0
f(s,u(s))ds

#
= f(t,u(t))

e la dimostrazione è conclusa.

TEOREMA 6.2 (T.H. GRONWALL) Siano c una costante reale non negativa e u,v : (a,b)→ � due funzioni continue e non negative tali che

v(t)≤ c +
������

Z t

t0
u(s)v(s)ds

������ ∀t ∈ (a,b)

Allora

v(t)≤ ce|U(t,t0)| dove U(t, t0) =
Z t

t0
u(s)ds
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DIMOSTRAZIONE. Cominciamo osservando che la funzione U(t, t0) è la primitiva della funzione continua u nulla in t = t0. Il teorema fondamentale del calcolo
integrale garantisce l’esistenza di una tale funzione. Consideriamo t> t0 e poniamo

z(t) = c +
������

Z t

t0
u(s)v(s)ds

������ = c +
Z t

t0
u(s)v(s)ds

a causa della non negatività di u e v. Dalla precedente definizione, dalla continuità delle funzioni integrande e dall’ipotesi segue che

z′(t) = u(t)v(t)≤ u(t)z(t)

il che implica che

d
dt

h
z(t)e–U(t,t0)

i
= e–U(t,t0)�z′(t) – z(t)�≤ 0

Dunque abbiamo provato che z(t)e–U(t,t0) è una funzione non crescente, da questa informazione ricaviamo che

z(t)e–U(t,t0) ≤ z(t0) = c

da cui la tesi. Il caso t< t0 si prova (più o meno) in maniera analoga.

TEOREMA 6.3 (DELLE ITERAZIONI SUCCESSIVE (C.E. PICARD & E.L. LINDELÖF)) Sia A⊆ � 2 un insieme aperto con (t0,u0) ∈ A e f ∈ C(A,� ). Siano r1, r2 > 0
due costanti reali tali che il rettangolo R = [t0 – r1, t0 + r1]× [u0 – r2,u0 + r2] sia contenuto nell’aperto A e che esista L> 0 tale che

|f(t,u) – f(t,w)|≤ L|u –w|

per ogni t ∈ [t0 – r1, t0 + r1] e u,w ∈ [u0 – r2,u0 + r2].
PostoM =maxR |f(t,u)|, esiste ε> 0 tale che il problema di Cauchy (6.1) possiede un’unica soluzione u ∈ C1[t0 – ε, t0 + ε], con ε = min{r1, r2/M}.

DIMOSTRAZIONE. Abbiamo provato precedentemente che (6.1) è equivalente all’equazione integrale (6.2), sfrutteremo questa caratterizzazione per dimo-
strare l’esistenza del problema differenziale mostrando l’esistenza di un unico punto fisso dell’equazione integrale. La strategia che seguiremo consiste nei
seguenti passi

i. l’equazione integrale (6.2) permette di costruire una successione per ricorrenza di soluzioni approssimate,

ii. la successione definita converge uniformemente ad una funzione, soluzione di (6.2),

iii. la soluzione trovata è l’unica soluzione del problema di Cauchy (6.1).

i. Definiamo una successione di funzioni per ricorrenza, nel seguente modo


u0(t) = u0
uk+1(t) = u0 +

Z t

t0
fs,uk(s)

�ds
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e cerchiamo di studiarne le proprietà salienti usando dei ragionamenti per induzione. Prima di tutto dobbiamo mostrare che le funzioni uk sono tutte definite
su uno stesso intervallo non vuoto, su cui studieremo le proprietà di convergenza della successione. Per fare questo dovremo (eventualmente) restringere R in
modo da essere sicuri che il grafico di tutti i termini della successione viva in uno stesso rettangolo, sempre centrato nel punto (t0,u0), interamente contenuto
in A. Osserviamo subito che

|u1(t) – u0|≤
Z t

t0
|fs,uk(s)

�|ds≤M|t – t0|≤Mε

quindi |u1(t) – u0| ≤ r2 se ε = min{r1, r2/M}, cioè restingendo (solo se necessario) un po’ il rettangolo R. Se pensiamo che la precedente disuguaglianza valga
per uk, cioè che |uk(t) – u0|≤ r2 per ogni t ∈ [t0 – ε, t0 + ε] segue che

|uk+1(t) – u0|≤
Z t

t0
|fs,uk(s)

�|ds≤M|t – t0|≤Mε

perché stiamo supponendo che il grafico di uk si trovi in R, e poiché tutti i termini della successione (per induzione) verificano la stessa disuguaglianza, abbiamo
provato che tutte le funzioni della successione sono definite in [t0 – ε, t0 + ε], con ε = min{r1, r2/M}.
ii. Per provare la convergenza della successione di funzioni proveremo la seguente maggiorazione

(6.3) |uk+1(t) – uk(t)|≤M
Lk|t – t0|k+1
(k + 1)!

per induzione. Osserviamo subito che (6.3), per k = 0, si riduce a

|u1(t) – u0|≤
Z t

t0
|fs,u0

�|ds≤M|t – t0|

ed è vera per il conto precedente. Per provare il passo induttivo ragioniamo come segue

|uk+1(t) – uk(t)|≤
Z t

t0
|fs,uk(s)

� – fs,uk–1(s)
�|ds≤ L

Z t

t0
|uk(s) – uk–1(s)|ds≤ L

Z t

t0
MLk–1|s – t0|k

k! ds = MLk|t – t0|k+1
(k + 1)!

(si noti che nella terza disuguaglianza abbiamo usato l’ipotesi induttiva). A questo punto possiamo provare che la successione converge, mostrando che
converge totalmente la serie degli incrementi successivi. Infatti vale

uk+1(t) = u0 +
k¼

j≥1

�
uj+1(t) – uj(t)

�

allora, grazie alla (6.3), abbiamo che

∥uk+1 – uk∥∞ = sup
|t–t0|≤ε

|uk+1(t) – uk(t)|≤M
Lkεk+1
(k + 1)!

306



�� ��

il che ci permette di ottenere che

∥uk+p – uk∥∞ ≤ ∥uk+p – uk+p–1∥∞ + ... + ∥uk+1 – uk∥∞ ≤
M
L

k+p¼

j=k

(Lε)j+1
(j + 1)! ≤

M
L

+∞¼

j=k

(Lε)j+1
(j + 1)!

essendo la serie convergente la sua coda è infinitesima per k≫ 1, quindi la successione è di Cauchy in (X,∥ · ∥∞) con X = C[t0 – ε, t0 + ε], che è uno spazio
metrico completo, quindi possiamo concludere che esiste u ∈ X tale che

∥uk – u∥∞ −→ 0 per k−→ +∞

per concludere che u è soluzione di (6.2) (e quindi di (6.1)) dobbiamo mostrare che si può passare al limite nella formulazione integrale, sappiamo che

uk+1(t) = u0 +
Z t

t0
f(s,uk(s))ds

e che

uk+1(t)−→ u(t) per ogni t ∈ [t0 – ε, t0 + ε]

inoltre vale

0≤
������

Z t

t0
[f(s,uk(s)) – f(s,u(s))]ds

������≤
Z t

t0
|f(s,uk(s)) – f(s,u(s))|ds≤

Z t

t0
L |uk(s) – u(s)|ds≤ L∥uk – u∥∞|t – t0|≤ Lε∥uk – u∥∞

e siccome la successione converge uniformemente, per k−→ +∞, troviamo che

u(t) = u0 +
Z t

t0
f(s,u(s))ds

e l’esistenza di (almeno) una soluzione è provata.
iii. L’unicità della soluzione è una conseguenza del teorema di Gronwall (teorema 6.2): supponiamo che esistano u e w due soluzioni distinte dell’equazione
differenziale

u′(t) = f (t,u(t))

con f funzione lipschitziana (di costante L) nella seconda variabile e che soddisfano il dato iniziale

u(t0) = u0 w(t0) = w0

Possiamo applicare il teorema 6.2 alla funzione h(t) = |u(t) –w(t)|≥ 0. Infatti vale

h(t = |u(t) –w(t)| =
������(u0 –w0) +

Z t

t0
[f(s,u(s)) – f(s,w(s))]ds

������≤ |u0 –w0| + L
Z t

t0
|u(s) –w(s)|ds = |u0 –w0| + L

������

Z t

t0
h(s)ds

������
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quindi segue che

|u(t) –w(t)|≤ |u0 –w0|eL|t–t0|

Quest’ultima disuguaglianza prova il problema di Cauchy (6.1) (con l’ipotesi di lipschitzianità) possiede un’unica soluzione, infatti se u(0) = w(0) seguirebbe che
0≤ |u(t) –w(t)|≤ |u0 – u0|eL|t–t0| = 0, cioè u(t) = w(t) per ogni t!
La precedente disuguaglianza mostra anche che soluzioni aventi dato iniziale ”vicino” evolvono restando ”ragionevolmente” vicine, infatti se |u0 – w0| ≤ ε
otteniamo che 0≤ |u(t) –w(t)|≤ εeL|t–t0|. Quindi la soluzione dipende con continuità dal dato iniziale.
A questo punto inseriamo una seconda versione del teorema di esistenza ed unicità della soluzione del problema di Cauchy.

TEOREMA 6.4 (A.L. CAUCHY & R.O.S. LIPSCHITZ) Sia A ⊆ � 2 un insieme aperto con (t0,u0) ∈ A e f ∈ C(A,� ). Siano r1, r2 > 0 due costanti reali tali che il
rettangolo R = [t0 – r1, t0 + r1]× [u0 – r2,u0 + r2] sia contenuto nell’aperto A e che esista L> 0 tale che

|f(t,u) – f(t,w)|≤ L|u –w|

per ogni t ∈ [t0 – r1, t0 + r1] e u,w ∈ [u0 – r2,u0 + r2] (per brevità nel seguito diremo che f è una funzione lipschitziana nella seconda variabile).
PostoM =max |f(t,u)| in R, allora esiste ε> 0 tale che il problema di Cauchy (6.1) possiede un’unica soluzione u ∈ C1(t0 –ε, t0 +ε), con ε<min{r1, r2/M, 1/L}.

DIMOSTRAZIONE. La dimostrazione consiste essenzialmente nel provare che la formulazione integrale (6.2) ha un’unica soluzione. Introduciamo lo spazio
metrico

X = {u ∈ C[t0 – ε, t0 + ε] : sup |u(t) – u0|≤ r2}

dotato della distanza dell’estremo superiore, cioè

d(u,w) = sup |u(t) –w(t)| per ogni u,w ∈ X

Questo spazio metrico è completo perché è un sottoinsieme chiuso di uno spazio metrico completo.
Adesso consideriamo la seguente applicazione definita su X

z = T(w) = u0 +
Z t

t0
f(s,w(s))ds

Naturalmente z è una funzione continua e vale

|z(t) – u0|≤
Z t

t0
|f(s,w(s))|ds≤M|t – t0|<Mε< r2

cioè z ∈ X, il che significa che T manda X in sé stesso.
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A questo punto il teorema si riduce a provare che T ha un unico punto fisso, e la tesi segue dal provare che T è una contrazione (si veda il teorema ??). Siano
v,w ∈ X e y = T(v), z = T(w), allora possiamo scrivere

|y(t) – z(t)| =
������

Z t

t0
[f(s,v(s)) – f(s,w(s))]ds

������≤
Z t

t0
|f(s,v(s)) – f(s,w(s))|ds≤ L

Z t

t0
|v(s) –w(s)|ds≤ Lεd(v,w)

Si noti che, nel primo membro, t ∈ [t0 – ε, t0 + ε] è totalmente arbitrario, quindi passando all’estremo superiore nella disuguaglianza otteniamo

sup |y(t) – z(t)| = d(y,z)≤ Lεd(v,w)

cioè

d(y,z) = d(T(v),T(w))≤ Lεd(v,w)

e, siccome per ipotesi Lε < 1, possiamo affermare che l’operatore T possiede un unico punto fisso, cioè che l’equazione integrale (6.2) ha un’unica soluzione,
cioè che (6.1) ha un’unica soluzione e la tesi è provata.
I teoremi precedentemente discussi mostrano che, sotto opportune ipotesi, il problema di Cauchy per un’equazione differenziale possiede sempre una sola
soluzione. Tale soluzione è, però, una soluzione locale, cioè una soluzione definita in un intervallo la cui ampiezza dipende (essenzialmente) dalle proprietà
della funzione f e dagli strumenti impiegati nella dimostrazione. In realtà è spesso possibile prolungare tale soluzione su intervalli di ampiezza maggiore, una
soluzione che non è ulteriormente prolungabile viene detta globale o massimale. Gli enunciati che seguono mostrano alcuni risultati sulla prolungabilità (o
meno) delle soluzioni locali.

TEOREMA 6.5 Consideriamo il problema di Cauchy (6.1) e sia la funzione f definita inA = (a,b)×� ⊆ � 2, supponiamo inoltre che per ogni compatto K⊆ (a,b)
esistano due costanti ci = ci(K), con i = 1,2, tali che

|f(t,u)|≤ c1 + c2|u| per ogni t ∈ K e per ogni u ∈ �

Allora la soluzione è prolungabile ad una soluzione definita in tutto (a,b) (si noti che non è richiesto che l’intervallo (a,b) sia limitato!).

TEOREMA 6.6 Sia u una soluzione massimale di (6.1) definita su (a,b). Per ogni compatto K ⊆ A ⊆ � 2 esiste δ = δ(K) > 0 tale che per ogni t < (a + δ,b – δ) il
punto (t,u(t)) non appartiene a K.

TEOREMA 6.7 Sia u una soluzione del problema di Cauchy (6.1) e sia la funzione f ∈ C1(A) con A = (a,b)×� ⊆ � 2, supponiamo che esista c> 0 tale che

|u(t)|≤ c per ogni t

allora la soluzione è prolungabile ad una soluzione definita in tutto (a,b).
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6.2 Sistemi lineari di equazioni differenziali

In questa sezione ci interesseremo di sistemi lineari, cioè di sistemi di equazioni differenziali del seguente tipo
(6.4) x′(t) = A(t)x(t) + f(t)
con A ∈ C0 ((a,b),Mn(� )) e f ∈ C0

(a,b),� n�, dove abbiamo –∞≤ a< b≤ +∞.
Osserviamo subito che, per i teoremi provati precedentemente tutte le soluzioni del sistema (6.4) sono globali, cioè hanno come dominio tutto l’intervallo
(a,b). Scriviamo anche il relativo sistema lineare omogeneo
(6.5) x′(t) = A(t)x(t)
come possiamo dedurre dal risultato che segue, i due sistemi sono strettamente collegati tra di loro.

TEOREMA 6.8 Siano x e y due soluzioni di (6.4), allora la funzione (x – y) è soluzione del sistema omogeneo (6.5).

DIMOSTRAZIONE. La dimostrazione dell precedente affermazione è, di fatto, una conseguenza diretta della linearità del sistema e dell’operazione di deriva-
zione, infatti abbiamo

x(t) – y(t)�′ = x′(t) – y′(t) = A(t)x(t) + f(t) – A(t)y(t) – f(t) = A(t)x(t) – y(t)�

il che conclude la prova.
Il precedente risultato si rivela di una certa importanza nella risoluzione di sistemi lineari, perché indica la strategia che si è rivelata più efficacie nella ricerca di
soluzioni, tipicamente la strategia si riconduce a determinare tutte le soluzioni del sistema omogeneo a cui poi aggiungere una qualsiasi soluzione del sistema
completo, in questa maniera si ottengono tutte le soluzioni del sistema completo.

DEFINIZIONE 6.9 Siano {x1, ...,xn} ∈ C1(a,b) un insieme di n funzioni (non tutte nulle), diremo che tali funzioni sono LINEARMENTE DIPENDENTI se esistono n
numeri reali {λ1, ...,λn} ∈ � n (non tutti nulli), tali che

n¼

j=1
λjxj(t) = λ1x1(t) + ... +λnxn(t) = 0 per ogni t ∈ (a,b)

Diremo che le funzioni sono LINEARMENTE INDIPENDENTI se la precedente relazione è vera solo nel caso in cui λ1 = ... = λn = 0.

Il prossimo risultato che dimostriamo quantifica, in un certo senso, il numero e la struttura delle soluzioni di un sistema lineare ed omogeneo di equazioni
differenziali.

TEOREMA 6.10 SiaW =
n
x ∈ C1((a,b),� n) soluzione di x′(t) = A(t)x(t)

o
, alloraW è un sottospazio vettoriale di dimensione n ed esiste un’applicazione lineare

e biettiva traW e � n.
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DIMOSTRAZIONE. La strategia della dimostrazione è decisamente semplice: verificheremo rapidamente che W è uno spazio vettoriale, per poi costruiremo
l’applicazione richiesta dalla tesi, di cui mostreremo le proprietà di linearità, iniettività e suriettività.
Per rivelare la struttura di W consideriamo x,y ∈We λ,µ ∈ � e consideriamo la funzione φ(t) = λx(t) +µy(t), per la proprietà di linearità della derivazione e del
prodotto tra matrici otteniamo che

φ′(t) = λx′(t) +µy′(t) = λA(t)x(t) +µA(t)y(t) = A(t)[λx(t) +µy(t)] = A(t)φ(t)

quindi φ ∈W, e l’insieme si rivela essere un sottospazio vettoriale di C1((a,b),� n).
Assegnato x0 ∈ � n e scelto arbitrariamente t0 ∈ (a,b), sia x(t) = x(t; t0,x0) l’unica soluzione del problema di Cauchy

(
x′(t) = A(t)x(t)
x(t0) = x0

e definiamo la seguente applicazione

T : � n −→ W
x0 7−→ T(x0)(t) := x(t; t0,x0)

Osserviamo subito che l’applicazione è ben posta, visto che sono soddisfatte tutte le ipotesi del teorema di Picard e Lindelöf, per cui ad ogni punto x0 dello
spazio possiamo associare un’unica funzione di W. Mostriamo che l’applicazione T è lineare: consideriamo due punti distinti x0,x1 ∈ � n e le relative soluzioni
T(x0)(t) = x(t; t0,x0) e T(x1)(t) = x(t; t0,x1). Mostrare che l’applicazione è lineare significa verificare che

T(λx0 +µx1)(t) = λT(x0)(t) +µT(x1)(t) ∀λ,µ ∈ � ∀x0,x1 ∈ � n

Siccome, per la linearità dell’operazione di derivazione, vale
�
λT(x0)(t) +µT(x1)(t)

�′ = λ �T(x0)(t)
�′ +µ [T(x1)(t)]′ = λA(t)T(x0)(t) +µA(t)T(x1)(t) = A(t)

�
λT(x0)(t) +µT(x1)(t)

�

e abbiamo anche che
�
λT(x0)(0) +µT(x1)(0)

� = λx0 +µx1
possiamo concludere che la funzione λT(x0)(0)+µT(x1)(0) risolve il sistema differenziale (6.5), quindi appartiene allo spazio vettorialeW, inoltre realizza, come
dato iniziale, la combinazione lineare (λx0 +µx1) e per l’unicità della soluzione del problema di Cauchy possiamo dedurre che

T(λx0 +µx1)(t) = λT(x0)(t) +µT(x1)(t)

infine l’arbitrarietà dei coefficienti λ,µ e dei punti x0,x1 prova la linearità dell’operatore T.
L’unicità della soluzione del problema di Cauchy (o la linearità dell’operatore) implica anche che se x0 = O allora T(O)(t)≡Oper ogni t ∈ (a,b) e questa proprietà
equivale all’iniettività di T, quindi non resta che provare la suriettività, per poter affermare che abbiamo costruito un isomorfismo tra spazi vettoriali.
Sia x(t) = x(t; t0,x0) ∈ W una soluzione del sistema (6.5), ovviamente esiste una n-pla di scalari {λ1, ...,λn} tale che x0 = x(t0) = λ1e1 + ...λnen, dove i vettori
{e1, ...,en} costituiscono la base canonica di � n. Allora possiamo considerare in W i vettori {T(e1)(t), ...,T(en)(t)}, per definizione sappiamo che risolvono il
sistema di equazioni differenziali lineare, e per i precedenti ragionamenti anche ogni loro combinazione lineare, per cui possiamo scrivere

λ1T(e1)(t) + ... +λnT(en)(t) = T(λ1e1 + ... +λnen)(t) = T(x0)(t)
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e (come prima!) l’unicità della soluzione del problema di Cauchy ci permette di dire che x(t) = λ1T(e1)(t) + ... + λnT(en)(t) = T(x0)(t) ovvero di provare che T è
suirettivo, e quindi un isomorfismo. Si noti che dalla dimostrazione deduciamo anche che

dim(W) = n e che W = span{T(e1)(t), ...,T(en)(t)}

Osserviamo che il precedente risultato mostra che l’insieme delle soluzioni di un sistema omogeneo di equazioni differenziali lineari ha una naturale struttura
di spazio vettoriale reale di dimesione pari al numero delle equazioni (o al numero delle funzioni incognite), e abbiamo già osservato che la conoscenza di
una qualsiasi soluzione del sstema completo ci permette di ottenere tutte le soluzioni del sistema non omogeneo. In un linguaggio un poco più geometrico
possiamo dire che W è uno spazio vettoriale e costituisce la giacitura di uno spazio affine rappresentato dalle soluzioni di (6.4).
Osserviamo anche che, in generale, non siamo in grado di risolvere un sistema di equazioni differenziali lineare, tranne il caso in cui la matrice è a coefficienti
costanti, cioè A(t) = A ∈Mn(� ). Il precedente teorema ci dice che se troviamo n soluzioni del sistema linearmente indipendenti allora abbiamo una base per
lo spazio vettoriale delle soluzioni.

DEFINIZIONE 6.11 Siano {x1, ...,xn} un insieme di n soluzioni del sistema omogeno (6.5), la matrice che si ottiene affiancando le soluzioni xi come colonne di
una matrice

X(t) = (x1(t)|...|xn(t))

viene detta matrice di soluzioni.

DEFINIZIONE 6.12 Un sistema di n soluzioni di (6.5) linearmente indipendenti costituiscono un SISTEMA FONDAMENTALE di soluzioni. La matrice di soluzioni
composta da un sistema fondamentale viene detta MATRICE FONDAMENTALE, se tale matrice verifica la relazione X(t0) = In ∈ Mn(� ) diremo che è una
MATRICE FONDAMENTALE SPECIALE al tempo t0. A volte indicheremo una tale matrice usando la notazioneU(t; t0).

Proviamo alcuni risultati utili,

TEOREMA 6.13 Se {x1(t), ...,xn(t)} sono n soluzioni di (6.5), allora la relativa metrice di soluzioni X(t) risolve la seguente equazione differenziale matriciale

X′(t) = A(t)X(t)

Analogamente se si considera una matrice X(t) soluzione della precedente equazione differenziale, ogni sua colonna xj(t) è soluzione del sistema omogeneo
(6.5).

DIMOSTRAZIONE. La dimostrazione di questo risultato segue facilmente dalle definizioni di prodotto tra matrici e tra matrice e vettore (il prodotto riga per
colonna, per intenderci) e dal fatto che l’operatore di derivazione lavora su ogni singola componente di una matrice, per linearità. Quindi possiamo scrivere

A(t) =
h
Ajk(t)

i
j,k=1,...,n X(t) =

h
Xjk(t)

i
j,k=1,...,n X′(t) =

h
X′jk(t)

i
j,k=1,...,n
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da cui segue che

h
X′jk(t)

i
= X′(t) = A(t)X(t) =

h
Ajk(t)

i h
Xjk(t)

i
=


n¼

i=1
Aji(t)Xik(t)




La relazione ottenuta è la dimostrazione delle affermazioni contenute nella tesi. Infatti nel primo caso è sufficiente pensare che lamatrice di soluzioni è costruita
affiancando le soluzioni come colonne per cui Xjk = (xk)j è il j-simo elemento della k-sima soluzione, e osservando che la relazione è soddisfatta per k fissato e
resta vera al variare dell’indice. La seconda affermazione segue dal fissare l’indice k nella precedente uguaglianza matriciale.

TEOREMA 6.14 Una famiglia di soluzioni {x1(t), ...,xn(t)} del sistema omogeneo (6.5) è linearmente dipendente in C1((a,b),� n) se e solo se esiste un tempo
τ ∈ (a,b) tale che i vettori {x1(τ ), ...,xn(τ )} sono linearmente dipendenti in � n.

DIMOSTRAZIONE. Siano τ ∈ (a,b) e {λ1, ...,λn} ⊆ � (non tutti diversi, ma al contempo non tutti nulli) tali che λ1x1(τ ) + ... + λnxn(τ ) = O. Allora, per l’unicità
della soluzione del problema di Cauchy, possiamo dedurre che la funzione x(t) = [λ1x1(t) + ... + λnxn(t)] è soluzione di (6.5) e assume come dato iniziale, per
t = τ , il vettore nullo, quindi x(t) = O per ogni t ∈ (a,b). L’implicazione opposta è semplicemente una riscrittura della condizione di dipendenza lineare per
t = τ .

TEOREMA 6.15 La matrice fondamentale specialeU(t; t0) del sistema omogeneo (6.5) è l’unica soluzione del seguente problema di Cauchy
(
X′(t) = A(t)X(t)
X(t0) = In

Inoltre, per ogni x0 ∈ � n, la funzione x(t) = U(t; t0)x0 è l’unica soluzione del problema di Cauchy
(
x′(t) = A(t)x(t)
x(t0) = x0

DIMOSTRAZIONE. La prima affermazione segue facilmente dalla definizione di matrice fondamentale speciale, infatti essendo fondamentale risolve l’equa-
zione differenziale matriciale, il fatto che U(t0; t0) = X(t0) = In è una conseguenza del significato di speciale. Infine l’unictà segue (come sempre) dal teorema di
Picard e Lindelöf, visto che il sistema è lineare e quindi il campo vettoriale localmente lipschitziano.
Per provare la seconda parte dell’enunciato è sufficiente effettuare un paio di semplici verifiche. Per definizione

x(t) = U(t; t0)x0 allora x(t0) = U(t0; t0)x0 = Inx0 = x0

e anche

x′(t) = �U(t; t0)x0
�′ = U′(t; t0)x0 = A(t)U(t; t0)x0 = A(t)x(t)

il che conclude la dimostrazione.
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PROPOSIZIONE 6.16 SIa X(t) una matrice fondamentale speciale del sistema omogeneo (6.5), allora segue che

U(t; t0) = X(t)X–1(t0)

DIMOSTRAZIONE. Anche questa proposizione non è particolarmente difficile da dimostrare, infatti dobbiamo verificare che la matrice U(t; t0) = X(t)X–1(t0)
risolve l’equazione differenziale matriciale e, ricordando il teorema 6.13, abbiamo

U′(t; t0) = X′(t)X–1(t0) = A(t)X(t)X–1(t0) = A(t)U(t; t0)

inoltre vale

U(t0; t0) = X(t0)X–1(t0) = In
e il ragionamento è concluso.

TEOREMA 6.17 (FORMULA DI J.M.C. DUHAMEL) La soluzione del sistema (6.4)
(
x′(t) = A(t)x(t) + f(t)
x(t0) = x0

dove A ∈ C0((a,b),Mn(� )) e f ∈ C0((a,b),� n) (con –∞≤ a< b≤ +∞), si può rappresentare tramite la seguente espressione

x(t) = X(t)X–1(t0)x0 +
Z t

t0
X(t)X–1(s)f(s)ds

dove X è una qualsiasi matrice fondamentale del sistema omogeneo associato (6.5).

DIMOSTRAZIONE. Sappiamo che, detta X(t) una matrice fondamentale del sistema omogeneo, tutte le soluzioni di (6.5) possono essere descritte dalla
seguente formula

xom(t) = X(t)X–1(t0)x0
in cui abbiamo usato i risultati precedenti per avere una matrice fondamentale speciale ed un’espressione che contenga anche l’informazione del dato iniziale
del problema di Cauchy che ci interessa risolvere.
Dunque il problema è completamente risolto se riusciamo a costruire una soluzione del sistema completo con dato iniziale nullo. Per fare questo cerchiamo
una soluzione imponendo la seguente forma

s(t) = X(t)c(t) da cui s′(t) = X′(t)c(t) + X(t)c′(t)

ricordando che X(t) è una matrice fondamentale e imponendo che la soluzione del sistema completo abbia questa espressione, otteniamo

s′(t) = X′(t)c(t) + X(t)c′(t) = A(t)X(t)c(t) + X(t)c′(t) = A(t)X(t)c(t) + f(t)
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semplificando otteniamo il seguente sistema per il vettore incognito c(t)

c′(t) = X–1(t)f(t) cioè c(t) =
Z t

t0
X–1(s)f(s)ds

il che conclude la dimostrazione.

I risultati raccontati in questo paragrafo sono, per necessità, solo l’essenziale dello studio dei sistemi lineari omogenei, dove essenziale significa lo stretto
necessario per affrontare la teoria che sarà presentata nelle pagine che seguiranno. Il lettore interessato può, naturalmente, consultare i testi nella bibliografia
per soddisfare la sua sete di sapere.

6.3 Sistemi lineari autonomi

Sappiamo che � n è uno spazio di Banach, lo spazio delle applicazioni lineari e limitate (o continue) dello spazio in sé è in genere indicato dal simboloL(� n), in
realtà ogni operatore dello spazio può essere rappresentato tramite una matrice quadrata appartenente allo spazioM(� n), e nel seguito penseremo sempre
gli operatori identificati con una matrice.

OSSERVAZIONE 6.18 Sia A ∈Mn(� n) e definiamo una successione nello spazio delle matrici nel seguente modo

Aj :=
j¼

k=0

1
k!A

k = A0 + A + 12A
2 + ... + 1j!A

j j ∈ �

notiamo che si tratta di una successione di Cauchy, infatti vale




Aj



 =











j¼

k=0

1
k!A

k










≤

j¼

k=0

1
k!



Ak




≤
j¼

k=0

1
k! ∥A∥

k

da cui segue che

∥Aj – Aj+p∥ =











j+p¼

k=j

1
k!A

k










≤

j+p¼

k=j

1
k! ∥A∥

k ≤
+∞¼

k=j

1
k! ∥A∥

k

l’ultima sommatoria scritta è la coda di una serie convergente, il cui limite è e|A|, essendo la maggiorazione indipendente dall’indice j e infinitesima per N che
tende a +∞, l’affermazione è provata.
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DEFINIZIONE 6.19 Definiamo il limite della successione {Aj}, introdotta nell’osservazione precedente, comeMATRICE ESPONENZIALE di A

eA := lim
j−→+∞

Aj =
+∞¼

k=0

Ak
k!

PROPOSIZIONE 6.20 (PROPRIETÀ DELLA MATRICE ESPONENZIALE) Sia A ∈Mn(� n) e eA la matrice esponenziale risultante, allora
i. eOn = In ∈Mn(� n),
ii. A,B ∈Mn(� n)matrici che commutano (cioè AB = BA) allora eA+B = eAeB,
iii. la matrice esponenziale eA è sempre invertibile e

h
eA

i–1 = e–A,
iv. A,C,C–1 ∈Mn(� ) allora eCAC

–1 = CeAC–1.

DIMOSTRAZIONE. i. Ricordando la definizione di matrice esponenziale e scrivendola, in particolare, per la matrice nulla On otteniamo che

Oj = In +On +
1
2O

2
n + ... +

1
j!O

j
n = In per ogni j ∈ �

il che prova l’affermazione.
ii. Sempre ricorrendo alla definizione di matrice esponenziale, ricordando la formula di Newton delle potenze di un binomio e grazie al fatto che AB = BA,
possiamo scrivere

(A + B)j =
j¼

k=0

1
k! (A + B)

k =
j¼

k=0

1
k!

k¼

p=0

 
k
p

!
ApBk–p =

j¼

k=0

k¼

p=0

Ap
p!

Bk–p
(k – p)!

come prima, passando al limite per j−→ +∞, si ottiene la tesi.
iii. Siccome vale On = A –A, e siccome A e –A commutano, per il punto ii abbiamo che

In = eOn = eAe–A = eA
h
eA

i–1

iv. Sempre dalla definizione discende che

(CAC–1)j = In + (CAC–1) +
1
2 (CAC

–1)2 + ... + 1j! (CAC
–1)j = In + (CAC–1) +

1
2 (CAC

–1)(CAC–1) + ... + 1j! (CAC
–1)...(CAC–1)

= In + (CAC–1) +
1
2CA

2C–1 + ... + 1j!CA
jC–1 = CInC–1 + (CAC–1) +

1
2CA

2C–1 + ... + 1
N!CA

NC–1

= C
"
In + A +

1
2A

2 + ... + 1j!A
j
#
C–1 = CAjC–1 per ogni j ∈ �
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la tesi si ottiene per j−→ +∞.

PROPOSIZIONE 6.21 SiaM ∈Mn(� n), allora l’operatore eAt è derivabile in tutto � e vale

d
dte

At = AeAt

Si noti che eAt è la matrice fondamentale speciale (con t0 = 0) del precedente sistema! In generale si ha cheU(t; t0) = eA(t–t0).

DIMOSTRAZIONE. Per quanto dimostrato nella proposizione precedente possiamo scrivere

eA(t+h) – eAt
h =

"
eAh – I
h

#
eAt =



+∞¼

k=1
Akhk–1


e

At =


A


I +

+∞¼

j=k–1=1
Ajhj





e

At = [A(I +Mh)]eAt −→ AeAt

quindi il limite del rapporto incrementale esiste e vale la formula della tesi. Si noti che abbiamo usato il fatto che At e Ah sono delle matrici che commutano.

TEOREMA 6.22 (FORMA CANONICA DIM.E.C. JORDAN) Sia A ∈Mn(� ) allora è sempre vero che esiste un cambio di base (indicato con C) tale cheM = CBC–1
con

B =




B1 . . . 0
... . . . ...
0 . . . Bk




dove BJ =




λj 1 0
... . . . 1
0 . . . λj




con λj ∈ � (gli 1 compaiono solo quando mg(λj)<ma(λj)). Seℑ(λj) , 0 allora esiste un indice i per cui vale λi = λj.

commenti vari, particolare spiegare la questione del rapporto tra martici inMn(� ) e inMn(� ) e relativa diagonlizzazione in blocchi (triangolari in � , ”semi-
triangolari” in � ).

LEMMA 6.23 Data A ∈Mn(� ), risultano equivalenti le seguenti affermazioni
i. lim
t−→+∞

∥eAt∥L = 0,
ii. lim
t−→+∞

x(t) = 0 per ogni soluzione del sistema x′(t) = Ax(t).
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TEOREMA 6.24 (CRITERIO DI STABILITÀ) Sia A ∈Mn(� ), allora sono equivalenti le seguenti proprietà
i. lim
t−→+∞

x(t) = 0 per ogni soluzione del sistema x′(t) = Ax(t),
ii. Re(λ)< 0 per ogni λ ∈ σ(A).

TEOREMA 6.25 (CRITERIO DI LIMITATEZZA) Sia A ∈Mn(� ), allora ogni soluzione del sistema x′(t) = Ax(t) è limitata se valgono le seguenti,
i. Re(λ)≤ 0 per ogni λ ∈ σ(A),
ii. ogni autovalore λ ∈ σ(A) con Re(λ) = 0 è regolare.

TEOREMA 6.26 (CRITERIO DI INSTABILITÀ) Sia A ∈Mn(� ), allora sono equivalenti le seguenti proprietà
i. lim
t−→+∞

|x(t)| = +∞ per (quasi) ogni soluzione non banale del sistema x′(t) = Ax(t),
ii. Re(λ)> 0 per almeno un λ ∈ σ(A).

6.4 Equazioni lineari del secondo ordine a coefficienti costanti

In questo paragrafo vogliamo tentare di descrivere la dinamica generata da un sistema differenziale lineare planare (cioè un sistema di due equazioni in due
incognite), quindi un sistema del tipo

x(t) = Ax(t) con A ∈M2(� )

La discussione si svolgerà in vari punti, analizzando i differenti modi in cui può presentarsi lo spettro della matrice.
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PROPOSIZIONE 6.27 Data A ∈M2(� ) e σ(A) = {λ1,λ2} abbiamo che
i. Se λ1 , λ2 o λ1 = λ2 = λma esiste una base di autovettori (l’autovalore λ ha molteplicità algebrica e geometrica pari a 2), allora nella opportuna base di � 2

(quella composta dagli autovettori della matrice) vale A = CBC–1 e

eAt = CeBtC–1 dove B =
 
λ1 0
0 λ2

!
e eBt =

 
eλ1t 0
0 eλ2t

!

ii. Se λ1 = λ2 = λ e la molteplicità geometrica vale solo 1, allora nella opportuna base di � 2 vale A = CBC–1 e

eAt = CeBtC–1 dove B =
 
λ 1
0 λ

!
e eBt = eλt

 
1 t
0 1

!

iii. Se λ1 = a + ib e λ2 = a – ib, allora nella opportuna base di � 2 vale A = CBC–1 e

eAt = CeBtC–1 dove B =
 
a –b
b a

!
e eBt = eat

 
cos(bt) –sin(bt)
sin(bt) cos(bt)

!

DIMOSTRAZIONE. da scrivere

6.5 Sistemi non lineari

In queste pagine intendiamo fornire una traccia di studio riguardo alcuni argomenti affrontati a lezione, di carattere un po’ più avanzato, che non sempre sono
presenti nei testi didattici. In ogni caso tutti gli argomenti dati per noti sono reperibili nei testi citati in bibliografia (in particolare in [?]). Il protagonista indiscusso
delle nostre attenzioni sarà il seguente sistema di equazioni differenziali ordinarie autonome

(6.6) x′(t) = f (x(t)) con x ∈ � n e t ∈ (a,b)

di volta in volta scriveremo le ipotesi più specifiche sul campo vettoriale f ∈ C1(A,� n) (con A⊆ � n aperto), sulla dimensione n ∈ � del sistema e sull’intervallo
(a,b)⊆ � . In alcuni casi è possibile che le ipotesi possano essere leggermente indebolite, ma eviteremo di accanirci nella ricerca della massima generalità...
Osserviamoanche che alcune definizioni della sezione precedente si estendono, senza alcuna fatica, a sistemi di dimensionemaggiore, in particolare il concetto
di regione positivamente invariante, si punto stabile o instabile per linearizzazione e le definizioni di ω-limite e attrattore. Il lettore è, in ogni caso, invitato a
riscrivere le definizioni con la notazione corretta.

DEFINIZIONE 6.28 Il punto p ∈ � n si dice punto di equilibrio o punto critico (o anche punto singolare) per il campo vettoriale f se f(p) = O, mentre si dice punto
regolare se f(p) ,O.
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Si noti che i punti critici del campo vettoriale f corrispondono alle soluzioni stazionarie di (7.1), sono esattemente i punti di equilibrio del sistema di equazioni
differenziali.

TEOREMA 6.29 (DI RETTIFICABILITÀ LOCALE) Sia x0 ∈ A un punto regolare per f ∈ C1(A,� n), allora esistono un aperto V ⊆ A contenente il punto x0 ed un
diffeomeorfismo ψ tra V e un opportuno intornoW di O tale che, per ogni ξ ∈ V, la funzione z(t) = ψ (x(t,ξ)) risulta essere l’unica soluzione del problema di
Cauchy

(6.7)
(
z′(t) = e1
z(0) = ψ(ξ)

DIMOSTRAZIONE. Si consulti [?].

TEOREMA 6.30 Un punto stabile (per linearizzazione) è asintoticamente stabile.

TEOREMA 6.31 (P. HARTMAN E D.M. GROBMAN) Sia x0 ∈ A un punto singolare per f. Se la matrice jacobiana Jf(x0) è iperbolica, allora esistono un intorno
V⊆ A del punto x0 ed un omeorfismoψ traV e un opportuno intornoW diO tale che, per ogni ξ ∈ V, la funzione z(t) = ψ (x(t,ξ)) risulta essere l’unica soluzione
del problema di Cauchy

(6.8)
(
z′(t) = Jf(x0)z(t)
z(0) = ψ(ξ)

DIMOSTRAZIONE. Si veda, per esempio, [13].

6.6 Alcuni sistemi planari quadratici

Continuiamo lo studio di alcuni (particolarmente significativi) esempi di sistemi di due equazioni differenziali con campo vettoriale (al più) quadratico studiando
i modelli di Lotka-Volterra. Nella sezione successva, facendo tesoro delle osservazioni fatte, cercheremo di inquadrare lo studio di sistemi planari in un quadro
teorico più organico e strutturato, per quanto possibile.
Le equazioni di Lotka-Volterra descrivono un sistema ecologico di interazione tra una specie di predatori e una specie di prede su cui facciamo le seguenti
ipotesi:
i. la preda è l’unica risorsa del predatore, in assenza di prede i predatori tendono all’estinzione;
ii. la velocità di crescta della popolazione dei predatori è legata alla possibilità di predazione, quindi supponiamo che sia proporzionale al numero di incontri tra
prede e predatori, cioè al prodotto del numero di prede per il numero di predatori;
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iii. la velocità con cui diminuisce la popolazione delle prede a causa dei predatori è (come sopra) proporzionale al numero di incontri tra prede e predatori, cioè
alla possibilità di essere predati;
iv. il cibo disponibile per le prede è costante (e positivo) in assenza di predatori, quindi la crescita della popolazione di prede è proporzionale alla popolazione
stessa (crescita malthusiana).
Indicando con x(t) il numero di prede e con y(t) il numero di predatori all’istante t, e supponendo di poter operare con funzioni sufficientemente regolari, ci
riconduciamo a studiare il seguente sistema planare

(6.9)
(
x′(t) = f(x(t),y(t)) = x(t)[a – by(t)]
y′(t) = g(x(t),y(t)) = y(t)[cx(t) – d]

Tutti i parametri biologici di proporzionalità coinvolti nel sistema sono positivi, cioè a,b,c,d > 0, ma difficilmente misurabili in natura: daltronde è vero che
tutti gli ecosistemi reali possiedono una complessità maggiore di quello che descrivono le due equazioni differenziali di sopra...
Ricordiamo che siamo interessati esclusivamente a soluzioni non negative e limitate, cioè tali che esista M > 0 per cui siano soddisfatte le disequazioni
0≤ x(t),y(t)≤M per ogni valore di t, quindi ci interessa la dinamica del sistema ristretta nel primo quadrante del piano.
Cominciamo identificando i punti di equilibrio del sistema, cioè le soluzioni (ci interessano solo quelle non negative, ma non ce ne sono altre) del seguente
sistema algebrico

(
x[a – by] = 0
y[cx – d] = 0 che sono O = (0,0) e E =

 
d
c ,
a
b

!

Chiaramente i due equilibri sono due soluzioni stazionarie del sistema (7.4), O è il sistema in assenza di popolazioni mentre E descrive un sistema in cui
c’è coabitazione delle due specie biologiche. Notiamo che, al contrario di quanto visto per le singole equazioni del primo ordine, la conoscenza di soluzioni
stazionarie non ci permette di dedurre stime a priori sulle altre soluzioni, questo perché la topologia di � 2 è più ricca (e complicata) di quella di � e avere un
risultato analogo al teorema della barriera per sistemi (teorema ??) è più difficile.
Per studiare la natura dei punti critici trovati calcoliamo la matrice jacobiana del campo vettoriale del sistema nei punti di equilibrio

J(x,y) =
 
a – by –bx
cy cx – d

!
J(O) =

 
a 0
0 –d

!
J(E) =

 
0 –bd/c
ac/b 0

!

È immediato accorgersi che O è un punto di sella, visto che la matrice è diagonale e gli autovalori sono discordi, quindi ha un carattere genericamente repulsivo
(tranne rispetto alla direzione individuata dal autovettore relativo all’autovalore –d, cioè e2) rispetto alla dinamica del sistema.
J(E) ha due autovalori immaginari (coniugati) puri: per un sistema lineare questo implicherebbe che intorno al punto critico il sistema genera delle traiettorie
ellittiche, ma per un sistema non lineare due autovalori immaginari puri non permettono di concludere nulla: il fatto che la parte reale degli autovalori sia nulla
rende cruciale l’effetto dei termini di ordine superiore al primo. Per cui non possiamo dire altro, se non che la natura del punto critico deve essere studiata con
strumenti più raffinati.
Per il momento effettuiamo alcuni esperimenti numerici, sperando che il calcolatore suggerisca qualcosa di interessante relativamente alla dinamica generata
da (7.4). In particolare produciamo alcune orbite e alcuni grafici delle soluzioni del sistema.
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Le immagini ottenute sembrano indicare che il sistema generi, più omeno sempre, soluzioni periodiche e, conseguentemente, orbite chiuse nel piano delle fasi,
che si svolgono intorno ad un punto di equilibro che deve essere necessariamente E: questo suggerisce anche che E sia un centro, dinamicamente parlando.
Questa osservazione non è in contrasto con quanto detto prima, infatti le orbite non sembrano ellissi, quindi i termini non lineari hanno un ruolo importante
nella dinamica del sistema.
Per dimostrare la precedente affermazione possiamo procedere nel seguente modo: consideriamo un generico punto p ∈ (0,+∞)2 ⊆ � 2 e consideriamo
il problema di Cauchy relativo a (7.4) con p come dato iniziale. Osserviamo che, lungo tutti i punti di una traiettoria non stazionaria, almeno una delle due
componenti del campo vettoriale tangente deve essere non nulla. Allora, per il teorema della funzione implicita, possiamo supporre che la traiettoria della
soluzione sia (intorno a p) il grafico di una funzione y(x), e, per il teorema di derivazione della funzione inversa, possiamo scrivere la seguente equazione a
variabili separabili

dy
dx =

y′(t)
x′(t) =

y(x)[cx – d]
x[a – by(x)] =

y(x)[cx – d]
x[a – by(x)] =

"
c – dx

#

"
a
y – b

# da cui a ln(y) – by + dln(x) – cx = C0 (x,y) ∈ (0,+∞)2

La relazione ottenuta è l’equazione cartesiana dell’orbita percorsa dalle traiettorie del sistema (7.4), la costante d’integrazione C0 è determinata scegliendo
esplicitamente il punto iniziale p: si noti che le curve ottenute sono ben definite ovunque, questo perché non hanno punti singolari ed è sempre possibile
(localmente) poterle descrivere come grafici di funzioni, sempre per il teorema di Dini.
In alternativa è possibile supporre che le orbite siano linee di livello di una funzione H(x,y) = F(x) + G(y) e procedere come segue

d
dt

�H(x(t),y(t))� = d
dt

�F(x(t)) + G(y(t))� = F′(x(t))x′(t) + G′(y(t))y′(t) = F′(x(t))x(t)[a – by(t)] + G′(y(t))y(t)[cx(t) – d] = 0

e dal precedente calcolo ricaviamo che, a meno di una costante, deve valere la seguente relazione

F′(x(t)) x(t)
[cx(t) – d] = –G

′(y(t)) y(t)
[a – by(t)] = 1
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da cui possiamo ottenere che

F(x) = cx – dln(x) e G(y) = by – a ln(y) (x,y) ∈ (0,+∞)2

riottenendo l’espressione precedente, che descrive analiticamente le curve di livello di H su cui si svolgono le traiettorie del sistema.
Per uno studio più puntuale osserviamo che esistono quattro rette, dette nullocline, lungo le quali una delle componenti del campo vettoriale si annulla:
precisamente i due assi e le rette {x = d/c} e {y = a/b}, queste due rette costituiscono il luogo dei punti in cui le orbite hanno vettore tangente orizzontale o
verticale e la cui intersezione è il punto critico E. Disegnando alcuni vettori tangenti all’immagine di una soluzione si ottiene un grafico qualitativamente simile
al successivo, che dà un’idea del perché le soluzioni abbiamo orbita chiusa.

x

y

y = a/b

x = d/c

E

Proviamo a formalizzare i ragionamenti fatti finora: consideriamo il problema di Cauchy relativo a (7.4) con dato iniziale (x(0),y(0)) = (p1,p2) con p1 > d/c e
p2 > a/b, finché la traiettoria resta nel quadrante individuato dalle relazioni {x> d/c,y> a/b} abbiamo che x′(t)< 0 e y′(t)> 0, e da questo ricaviamo che

d
dt ln(x(t)) =

x′(t)
x(t) = a – by(t)≤ a – bp2 = –r< 0 e integrando ln(x(t)) – ln(p1)≤ –rt

esplicitando l’espressione abbiamo che

d
c ≤ x(t)≤ p1e

–rt

quindi, in tempo finito, x raggiunge il valore d/c e la traiettoria passa nella semistriscia {0 < x < d/c,y > a/b}. Ripetendo questo argomento è possibile
dimostrare che la soluzione ruota, in senso antiorario, intorno ad E e siccome deve muoversi su una curva di livello chiusa della funzione coercitiva H, deve
descrivere un’orbita chiusa, percorrendo una traiettoria periodica. Il calcolo precedente ha un’ulteriore implicazione, poiché vale

d
dt ln(x(t)) = a – by(t) e integrando troviamo ln(x(t)) – ln(p1) = at – b

Z t

0
y(s)ds
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scegliendo t = τ il periodo della traiettoria, per cui vale x(τ ) = p1, otteniamo la media della popolazione dei predatori y :=
1
τ

Z τ

0
y(s)ds = ab .

In modo analogo, sfruttando l’altra equazione del sistema, è possibile calcolare la media x.

6.7 Sistemi non lineari planari

Consideriamo il sistema planare del primo ordine

(6.10)
(
x′(t) = f(x(t),y(t))
y′(t) = g(x(t),y(t))

Classificare il punto di equilibrio O significa determinare se le soluzioni generate dal problema di Cauchy con un dato iniziale vicino al punto critico tendono ad
avvicinarsi o meno all’equilibrio. In generale possiamo ragionare nel seguente modo: supponiamo di avere a che fare con un sistema del tipo

(
x′(t) = f(x(t),y(t))
y′(t) = g(x(t),y(t))

con f,g ∈ C2(� ), che possieda un equilibrio P(x0,y0). Il fatto che P sia un punto critico del campo vettoriale, cioè un equilibrio del sistema, significa che risolve
il sistema di equazioni, f(x0,y0) = g(x0,y0) = 0. Sia (x∗,y∗) un dato iniziale tale che (x0 – x∗)2 + (y0 – y∗)2 < ε e x(t),y(t) la soluzione del problema di Cauchy,
allora possiamo scrivere


x′(t) = f(x(t),y(t)) = f(x(t),y(t)) – f(x0,y0)≃∇f(x0,y0) ·

�
x(t) – x0,y(t) – y0

�

y′(t) = g(x(t),y(t)) = g(x(t),y(t)) – g(x0,y0)≃∇g(x0,y0) ·
�
x(t) – x0,y(t) – y0

�

dove abbiamo approssimato la differenza usando l’espansione in polinomio di Taylor al primo ordine e trascurando gli ordini successivi. Ovviamente questa
approssimazione è ragionevole solo per tempi piccoli, cioè fino a quando possiamo pensare la traiettoria vicina all’equilibrio. Introducendo le variabili ξ(t) =
x(t) – x0 e η(t) = y(t) – y0 il precedente sistema diventa

(
ξ′(t) = ∂1f(x0,y0)ξ(t) + ∂2f(x0,y0)η(t)
η′(t) = ∂1g(x0,y0)ξ(t) + ∂2g(x0,y0)η(t)

o, in notazione matriciale,
 
ξ(t)
η(t)

!′
= J(f,g)(x0,y0)

 
ξ(t)
η(t)

!

Diremo che l’equilibrio P è stabile se (ξ(t),η(t)) −→ P, e siccome il sistema è lineare è facile verificare che il comportamento asintotico della traiettoria
(ξ(t),η(t)) dipende dagli autovalori di J(f,g)(x0,y0). Questa definizione di stabilità non è l’unica presente in letteratura ed è, più precisamente, detta stabilità
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per linearizzazione, in particolare vale che l’equilibrio è stabile se gli autovalori della matrice hanno parte reale negativa, altrimenti l’equilibrio può non essere
stabile.
Nello studio di equazioni differenziali in una sola incognita è frequente ottenere esistenza di soluzioni globali grazie al teorema della barriera (vedi il teorema ??),
cioè tramite una stima a priori che ci assicura che l’immagine della soluzione è contenuta in un insieme della retta reale su cui il secondomembro dell’equazione
è globalmente lipschitziano.
Avendoa che fare con sistemi di equazioni differenziali questa ideadeve essere rivisitata e opportunamente generalizzata. In particolare vedremocomeconcetti
quali limitatezza delle soluzioni, stime a priori e proprietà di positività delle soluzioni sono differenti sfaccettature di una stessa idea: tutti queste proprietà
qualitative di alcune traiettorie dei sistemi richiedono che la soluzione abbia valori in opportuni sottoinsiemi di � 2. Una possibile strategia che dimostra la
validità di questo genere di proprietà si basa sul concetto di regione invariante. Nel seguito delle note ci concentreremo (quasi esclusivamente) su sistemi
planari.

DEFINIZIONE 6.32 Un sottoinsieme D ⊆ � 2 è POSITIVAMENTE INVARIANTE per un sistema di equazioni differenziali se ogni soluzione (x(t),y(t)) che verifica
(x(t0),y(t0)) ∈ D per qualche t0 è tale che (x(t),y(t)) ∈ D per ogni t≥ t0.

Analogamente è possibile definire insiemi negativamente invarianti. Un sottoinsieme è invariante se è positivamente enegativamente invariante. L’intersezione
e l’unione di insiemi positivamente (o negativamente) invarianti è ancora positivamente (o negativamente) invariante. In quel che segue, siamo interessati
all’evoluzione per tempi successivi all’istante iniziale e quindi ci interesseremo solo di insiemi positivamente invarianti.

DEFINIZIONE 6.33 Il luogo dei punti {(x,y) : f(x,y) = 0} o {(x,y) : g(x,y) = 0} si dice NULLOCLINA del sistema e individua i punti dello spazio in cui il campo f
è parallelo ad uno degli assi coordinati. Si noti che le intersezioni di 2 nullocline (relative alle differenti componenti del vettore f) individuano punti di equilibrio
del sistema.

TEOREMA 6.34 (I.O. BENDIXSON E H.C.R. DULAC) SiaD⊆ � 2 aperto semplicemente connesso e (f,g) ∈ C1(D,� 2)un campovettoriale, se esiste una funzione
h di classe C1(D) tale che

divh(x,y)f(x,y),h(x,y)g(x,y)� , 0 per ogni (x,y) ∈ D

allora non esistono orbite periodiche di (7.5) contenute nell’apertoD.

DIMOSTRAZIONE. Supponiamo, per assurdo, che esista un’orbita chiusa semplice (x(t),y(t)) di (7.5) con sostegno γ contenuto nell’apertoD. Essendo il dominio
semplicemente connesso sappiamo che γ = ∂E con E⊆ D aperto, dal teorema della divergenza segue che
Z

E

�
∂1(hf)(x,y)+∂2(hg)(x,y)

�dxdy =
Z

∂E
hf(x,y),g(x,y)�·nds =

Z

γ
h(x(t),y(t))f(x(t),y(t)),g(x(t),y(t))�·n(t)ds =

Z b

a
h(x(t),y(t))f(x(t),y(t)),g(x(t),y(t))�·(y′(t),–x′(t))dt = 0

La relazione ottenuta è in contraddizione con le ipotesi, infatti il campo h(x,y)(f(x,y),g(x,y)) ha divergenza sempre differente da 0 in D, quindi il suo integrale
in E deve risultare o positivo o negativo.
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DEFINIZIONE 6.35 Nel seguito chiameremo ciclo limite la traiettoria (o orbita) di una soluzione periodica di un sistema di equazioni differenziali.

TEOREMA 6.36 (J.H. POINCARÉ E I.O. BENDIXSON) Sia (f,g) ∈ C1(D) un campo vettoriale nel piano con punti singolari isolati e supponiamo che D ⊆ � 2 sia
positivamente invariante. Allora le traiettorie determinate dalle soluzioni di (7.5) con dato iniziale inD tendono
i. o a un punto singolare,
ii. o a un’orbita periodica,
iii. o all’unione di punti singolari e di curve (omocline e/o eterocline) che connettono tali punti.

Noi dimostreremo una versione parziale di questo importante risultato, cioè il seguente enunciato.

TEOREMA 6.37 (J.H. POINCARÉ E I.O. BENDIXSON) L’orbita descritta da una soluzione periodica di un sistema planare contenuta in un dominio D
semplicemente connesso contiene almeno un punto critico.

DIMOSTRAZIONE. DA SCRIVERE
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