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6.1 esistenza (ed unicita) di soluzioni

In questi appunti vogliamo studiare il problema di Cauchy per unequazione differenziale ordinaria del primo ordine, ovvero il seguente problema differenziale

61) u’(t) = f(t, u(t)
U(to) =Ug

dove la funzione u é l'incognita del problema, mentre f, ug e tg sono noti. In particolare vogliamo provare che (6.1) possiede un'unica soluzione (ovviamente
se alcune ipotesi sono verificate!) e di tale importante risultato forniremo due differenti dimostrazioni.
Cominciamo con alcuni risultati tecnici utili alla dimostrazione del nostro teorema di esistenza ed unicita.

PROPOSIZIONE 6.1 Sia f una funzione continua, allora u é soluzione di classe C' di (6.1) se e solo se u & una soluzione continua della seguente equazione integrale

t
(6.2) u(t)=ug+ | f(s,u(s))ds

to

DIMOSTRAZIONE.  Supponiamo che u sia una soluzione di classe C' di (6.1), allora per il teorema fondamentale del calcolo integrale abbiamo che

t t
u(t) = u(to) + j u’(s)ds = ug + j f(s, u(s))ds

to to
da cui segue la tesi.

Viceversa se u & una soluzione continua di (6.2) abbiamo che f composta con u & ancora una funzione continua e, sempre per il teorema fondamentale del
calcolo integrale, segue che u & di classe C' essendo una primitiva di una funzione continua, inoltre abbiamo che

t

to d
u(tg) =up + j f(s, u(s))ds = ug e u'(t) = T [Uo +J
t t

0 0

f(s, u(s))ds] = f(t, u(t)

e la dimostrazione é conclusa. n

TEOREMA 6.2 (T.H. GRONWALL) Siano c una costante reale non negativa e u, v : (a,b) — R due funzioni continue e non negative tali che

t
J u(s)v(s)ds
to

v(t) <c+ Vvt e (a,b)

Allora

t
v(t) < celVttto)l dove U(t, to) = J‘ u(s)ds
t

0
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DIMOSTRAZIONE. Cominciamo osservando che la funzione U(t, tg) € la primitiva della funzione continua u nullain t = tg. Il teorema fondamentale del calcolo
integrale garantisce lesistenza di una tale funzione. Consideriamo t > tg e poniamo

t
J u(s)v(s)ds
to

a causa della non negativita di u e v. Dalla precedente definizione, dalla continuita delle funzioni integrande e dall'ipotesi segue che

z(t)=c+

t
=C+ J u(s)v(s)ds
t

0

Z/'(t) = u(t)v(t) < u(t)z(t)

il che implica che

d

o [z(9e™Vt10)] = eVt [7/ (1) —2(1)] < O

Dungque abbiamo provato che z(t)e™U(tto) & una funzione non crescente, da questa informazione ricaviamo che
z(t)e_U(t'tO) <z(tg)=c

da cui la tesi. Il caso t < tg si prova (pil 0 meno) in maniera analoga. ]

TEOREMA 6.3 (DELLE ITERAZIONI SUCCESSIVE (C.E. PICARD & E.L. LINDELOF)) Sia A C R2 un insieme aperto con (tg,ug) € Aef € C(A,R). Sianory,r; > O
due costanti reali tali che il rettangolo R = [tg —1q, tg + 1] X [ug —r7, Ug + ;] sia contenuto nellaperto A e che esista L > O tale che

[f(t, u) —f(t,w)| < Lju—w|

perognit € [tog—r, tg+rleu,w € [ug—ry,ug +ryl.
Posto M = maxg [f(t, u)|, esiste € > O tale che il problema di Cauchy (6.1) possiede unlunica soluzione u € C'[tg —¢, tg + €], con € = min{ry, r,/M}.

DIMOSTRAZIONE. Abbiamo provato precedentemente che (6.1) &€ equivalente allequazione integrale (6.2), sfrutteremo questa caratterizzazione per dimo-
strare lesistenza del problema differenziale mostrando lesistenza di un unico punto fisso dellequazione integrale. La strategia che seguiremo consiste nei
seguenti passi

i. lequazione integrale (6.2) permette di costruire una successione per ricorrenza di soluzioni approssimate,
ii. la successione definita converge uniformemente ad una funzione, soluzione di (6.2),
iii. la soluzione trovata € lunica soluzione del problema di Cauchy (6.1).
i. Definiamo una successione di funzioni per ricorrenza, nel seguente modo
up(t) =ug .
Up,q(t) =ug + J f(s,ui(s))ds
t

0
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e cerchiamo di studiarne le proprieta salienti usando dei ragionamenti per induzione. Prima di tutto dobbiamo mostrare che le funzioni uy sono tutte definite
su uno stesso intervallo non vuoto, su cui studieremo le proprieta di convergenza della successione. Per fare questo dovremo (eventualmente) restringere R in
modo da essere sicuri che il grafico di tutti i termini della successione viva in uno stesso rettangolo, sempre centrato nel punto (tg, ug), interamente contenuto
in A. Osserviamo subito che
t
luit)—ug| < [ [f(s u(s))|ds < Mt—tg| < Me
to

quindi |uy(t) —ug| < rp se € = min{ry, r,/M}, cioé restingendo (solo se necessario) un po' il rettangolo R. Se pensiamo che la precedente disuguaglianza valga
per uy, cioé che |u,(t) —ug| < rp perognit € [tg—¢, tg + €] segue che

t
[Up.q(t) —ug| < J [f(s,ui(s))|ds < Mlt—tg| < Me
to

perché stiamo supponendo che il grafico di u si trovi in R, e poiché tutti i termini della successione (per induzione) verificano la stessa disuguaglianza, abbiamo
provato che tutte le funzioni della successione sono definite in [tg —¢, tg + €], con € = min{ry, r,/M}.
ii. Per provare la convergenza della successione di funzioni proveremo la seguente maggiorazione

LK|t—tg*!

(6.3) |upa(t)—u () <M (k+1)!

per induzione. Osserviamo subito che (6.3), per k = O, si riduce a

t
lm(t)=uol < [ [f(s,up)|ds < M|t—to
to

ed é vera per il conto precedente. Per provare il passo induttivo ragioniamo come segue

t t Lk—1 —t k
|uk(s)—uk_1(s)ds§LJM [s=tol

to

L¥t—to |
ds - mLt=tol

t
[Upq (1) —ug (1)) < LO If (s, u(s))—f(s,u(s))|ds <L i ol

to

(si noti che nella terza disuguaglianza abbiamo usato lipotesi induttiva). A questo punto possiamo provare che la successione converge, mostrando che
converge totalmente la serie degli incrementi successivi. Infatti vale

k
Upa1(t) =ug + Z(qu(t) _Uj(t))

>
allora, grazie alla (6.3), abbiamo che

Lk6k+1

Up,.1—Uu = su Up,1(t)—u, () <M
H k+1 k”OO |t_t0|p§6‘ k1() k( )| (k+1)'
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il che ci permette di ottenere che

k+p

M Le)1*1 v J*‘
e = tiloe < 1kop =Uiepetloe -+ s =ticloe < T )y < T Z
j=k j=k
essendo la serie convergente la sua coda é infinitesima per k >> 1, quindi la successione & di Cauchy in (X, || - ||so) con X = C[tg — ¢, tg + €], che € uno spazio

metrico completo, quindi possiamo concludere che esiste U € X tale che
lug=tlloc — O per k — +00
per concludere che u & soluzione di (6.2) (e quindi di (6.1)) dobbiamo mostrare che si pud passare al limite nella formulazione integrale, sappiamo che
Upaq(t) =ug + Jt f(s, ui(s))ds
to
e che
Upa1(t) — u(t) perognit € [tg—¢,tg + €]
inoltre vale

t
[f(s, uy(s)) —f(s, u(s))]ds| <

t t
[f(s, ui(s)) —f(s,u(s))|ds < J L|ug(s)—u(s)|ds < L|juy—ul|eo|t—to| < Le|lug—U]|oo
to

to to

e siccome la successione converge uniformemente, per k — +oo, troviamo che
t
u(t) =ug + J f(s, u(s))ds
to

e lesistenza di (almeno) una soluzione é provata.
iii. Lunicita della soluzione & una conseguenza del teorema di Gronwall (teorema 6.2): supponiamo che esistano u e w due soluzioni distinte dellequazione
differenziale

u’(t) = f(t, u(t)
con f funzione lipschitziana (di costante L) nella seconda variabile e che soddisfano il dato iniziale
u(tp) =up w(tg) =wg

Possiamo applicare il teorema 6.2 alla funzione h(t) = [u(t) —w(t)| > O. Infatti vale

h(t = [u(t) =w(t)| = [(ug —wg) + [f(s u(s)) —f(s, w(s))Ids

to

< luo- wO+Lf lu(s) —w(s)] ds = Juo ~wo +L

t
J h(s)ds
to
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quindi segue che

lu(t) —w(t)] < Jug —wple-Ittol

Questultima disuguaglianza prova il problema di Cauchy (6.1) (con lipotesi di lipschitzianita) possiede un'unica soluzione, infatti se u(O) = w(O) seguirebbe che
0 < |u(t) —w(t)| < |ug —ug|elttol = O, cioé u(t) = w(t) per ogni !

La precedente disuguaglianza mostra anche che soluzioni aventi dato iniziale "vicino” evolvono restando “ragionevolmente” vicine, infatti se [ug —wg| < ¢
otteniamo che O < |u(t) —w(t)| < ee*"tol. Quindi la soluzione dipende con continuita dal dato iniziale. n

A questo punto inseriamo una seconda versione del teorema di esistenza ed unicita della soluzione del problema di Cauchy.

TEOREMA 6.4 (A.L. CAUCHY & R.O.S. LIPSCHITZ) Sia A C R2 un insieme aperto con (tg,ug) € Aef € C(A, R). Siano ry,r, > O due costanti reali tali che il
rettangolo R = [tg —1y, tg + 1] X [Ug — 17, Ug + ;] sia contenuto nellaperto A e che esista L > O tale che

[f(t, u) —f(t,w)| < Lju—w|

perognit € [tog—r,tg+r]eu,w € [ug —ry, ug +r,] (per brevita nel seguito diremo che f é una funzione lipschitziana nella seconda variabile).
Posto M = max|f(t, u)| in R, allora esiste ¢ > O tale che il problema di Cauchy (6.1) possiede ununica soluzione u € C'(tg—¢, tg +€), con e < min{ry, ry/M, 1/L}.

DIMOSTRAZIONE. La dimostrazione consiste essenzialmente nel provare che la formulazione integrale (6.2) ha ununica soluzione. Introduciamo lo spazio
metrico

X={ueCC[tg—e,tg+e]l:sup|ult)—ug| <r}
dotato della distanza dell'estremo superiore, cioé
d(u, w) = sup |u(t) —w(t)| per ogniu,w € X

Questo spazio metrico & completo perché é un sottoinsieme chiuso di uno spazio metrico completo.
Adesso consideriamo la seguente applicazione definita su X

t
z=T(w) =ug + J f(s, w(s))ds
to
Naturalmente z € una funzione continua e vale
t
|z(t) —ug| < J [f(s,w(s))|ds < Mt—tg| < Me <1y
to

cioé z € X, il che significa che T manda X in sé stesso.
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A questo punto il teorema si riduce a provare che T ha un unico punto fisso, e la tesi segue dal provare che T & una contrazione (si veda il teorema ??). Siano
v,w e Xey=T(v), z=T(w), allora possiamo scrivere

t t
< [f(s, v(s)) —f(s,w(s))|ds <L | |v(s)—w(s)|ds < Led(v,w)

to to

t
[f(s, v(s)) —f(s, w(s))]ds

to

ly(t)—z(t)| =

Si noti che, nel primo membro, t € [tg —¢, tg + €] € totalmente arbitrario, quindi passando allestremo superiore nella disuguaglianza otteniamo
sup |y(t) —z(t)| = d(y,z) < Led(v,w)

cioé
dly,z) =d(T(v), T(w)) < Led(v, w)

e, siccome per ipotesi Le < 1, possiamo affermare che loperatore T possiede un unico punto fisso, cioé che lequazione integrale (6.2) ha un'unica soluzione,
cioé che (6.1) ha ununica soluzione e la tesi & provata. []

| teoremi precedentemente discussi mostrano che, sotto opportune ipotesi, il problema di Cauchy per unequazione differenziale possiede sempre una sola
soluzione. Tale soluzione &, perd, una soluzione locale, cioé una soluzione definita in un intervallo la cui ampiezza dipende (essenzialmente) dalle proprieta
della funzione f e dagli strumenti impiegati nella dimostrazione. In realta & spesso possibile prolungare tale soluzione su intervalli di ampiezza maggiore, una
soluzione che non é ulteriormente prolungabile viene detta globale o massimale. Gli enunciati che seguono mostrano alcuni risultati sulla prolungabilita (o
meno) delle soluzioni locali.

TEOREMA 6.5 Consideriamo il problema di Cauchy (6.1) e sia la funzione f definitain A= (a,b) x R C R2, supponiamo inoltre che per ogni compatto K C (a, b)
esistano due costanti ¢; = ¢;(K), coni=1,2, tali che

[f(t,u)| < cq+cylul perognit € Keperogniu € R

Allora la soluzione é prolungabile ad una soluzione definita in tutto (a, b) (si noti che non é richiesto che lintervallo (a, b) sia limitato)).

TEOREMA 6.6 Sia u una soluzione massimale di (6.1) definita su (a, b). Per ogni compatto K C A C R2 esiste § = 6(K) > O tale che perognite (a+§,b—0)il
punto (t, u(t)) non appartiene a K.

TEOREMA 6.7 Sia u una soluzione del problema di Cauchy (6.1) e sia la funzione f € C'(A)conA=(a,b) x R CR? supponiamo che esista ¢ > O tale che
lu(t)| <c perogni t

allora la soluzione é prolungabile ad una soluzione definita in tutto (a, b).
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6.2 Sistemi lineari di equazioni differenziali

In questa sezione ci interesseremo di sistemi lineari, cioé di sistemi di equazioni differenziali del seguente tipo
(6.4) X'(t) = A(t)x(t) + f(t)

conAe O ((a,b), Mh(R)) e f e co ((a,b), R™), dove abbiamo —co < a < b < +cc.
Osserviamo subito che, per i teoremi provati precedentemente tutte le soluzioni del sistema (6.4) sono globali, cioé hanno come dominio tutto l'intervallo
(a, b). Scriviamo anche il relativo sistema lineare omogeneo

(6.5) x'(t) = A(t)x(t)

come possiamo dedurre dal risultato che segue, i due sistemi sono strettamente collegati tra di loro.
TEOREMA 6.8 Siano x e y due soluzioni di (6.4), allora la funzione (x—y) e soluzione del sistema omogeneo (6.5).

DIMOSTRAZIONE. La dimostrazione dell precedente affermazione &, di fatto, una conseguenza diretta della linearita del sistema e delloperazione di deriva-
zione, infatti abbiamo

(x(1)—y(t)" =X (t) =y’ (t) = A(OIX(1) + F(t) - At)y(t) — f(t) = AD) (x(t) —y (1))
il che conclude la prova. n

Il precedente risultato si rivela di una certa importanza nella risoluzione di sistemi lineari, perché indica la strategia che si & rivelata piu efficacie nella ricerca di
soluzioni, tipicamente la strategia si riconduce a determinare tutte le soluzioni del sistema omogeneo a cui poi aggiungere una qualsiasi soluzione del sistema
completo, in questa maniera si ottengono tutte le soluzioni del sistema completo.

DEFINIZIONE 6.9 Siano {x1,...,Xn} € C'(a, b) un insieme di n funzioni (non tutte nulle), diremo che tali funzioni sono LINEARMENTE DIPENDENTI se esistono n
numeri reali {\, ..., \n} € R" (non tutti nulli), tali che

n
ijxj(t) = MX1(t) + .. + AnXn(t) = O perognit € (a,b)
j=1

Diremo che le funzioni sono LINEARMENTE INDIPENDENTI se la precedente relazione é vera solo nel caso in cui A\ = ...= A\n = O.

Il prossimo risultato che dimostriamo quantifica, in un certo senso, il numero e la struttura delle soluzioni di un sistema lineare ed omogeneo di equazioni
differenziali.

TEOREMA 6.10 Sia W = {x e C'((a, b), R) soluzione di X' (t) = A(t)x(t)}, allora W é un sottospazio vettoriale di dimensione n ed esiste unapplicazione lineare
e biettiva tra W e R".
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DIMOSTRAZIONE. La strategia della dimostrazione & decisamente semplice: verificheremo rapidamente che W & uno spazio vettoriale, per poi costruiremo
lapplicazione richiesta dalla tesi, di cui mostreremo le proprieta di linearita, iniettivita e suriettivita.

Per rivelare la struttura di W consideriamo x,y € W e A, i € R e consideriamo la funzione ¢(t) = Ax(t) + wy(t), per la proprieta di linearita della derivazione e del
prodotto tra matrici otteniamo che

@' (1) = A/ (1) + wy’ (1) = AA(DX() + LAR)Y(t) = ADX(E) + wy()] = Al)p(t)

quindi ¢ € W, e l'insieme si rivela essere un sottospazio vettoriale di c'((a,b), RM).
Assegnato xg € R" e scelto arbitrariamente tg € (a, b), sia x(t) = x(t;tg, Xg) lunica soluzione del problema di Cauchy

x'(t) = A(t)x(t)
X(to) =X

e definiamo la seguente applicazione
T:R" — W
Xo +— Txp)t) :=x(ttg, Xg)

Osserviamo subito che lapplicazione € ben posta, visto che sono soddisfatte tutte le ipotesi del teorema di Picard e Lindelof, per cui ad ogni punto xg dello
spazio possiamo associare ununica funzione di W. Mostriamo che lapplicazione T € lineare: consideriamo due punti distinti xg, x; € R" e le relative soluzioni
T(xo)(t) = x(t; tg, Xo) € T(x¢)(t) = x(t; tg, X1). Mostrare che lapplicazione é lineare significa verificare che

T(Axg + ux7)(t) = AT(xg) (1) + uT(x1)(t) VA ueR Vxg,xp€R"
Siccome, per la linearita delloperazione di derivazione, vale

[AT(x0) (1) + uT0xq)(1)]" = X [T(xo) (0] + w[T(q) (D] = XAWMT(x0) (1) + LAMDT(x1)() = A(t) [AT(x0) (1) + uT(x¢)(1)]
e abbiamo anche che

[AT(x0)(0) + uT(x1)(0)] = Axo + uxq

possiamo concludere che la funzione AT(xg)(0) + . T(x¢)(O) risolve il sistema differenziale (6.5), quindi appartiene allo spazio vettoriale W, inoltre realizza, come
dato iniziale, la combinazione lineare (Axg + tx¢) e per lunicita della soluzione del problema di Cauchy possiamo dedurre che

T(Axg + ux7)(t) = AT(xg) (1) + uT(x)(t)

infine larbitrarieta dei coefficienti A, . e dei punti xq, x; prova la linearita delloperatore T.

Lunicita della soluzione del problema di Cauchy (o la linearita delloperatore) implica anche che se xg = O allora T(O)(t) = O perogni t € (a, b) e questa proprieta
equivale all'iniettivita di T, quindi non resta che provare la suriettivita, per poter affermare che abbiamo costruito un isomorfismo tra spazi vettoriali.

Sia x(t) = x(t;tg, Xg) € W una soluzione del sistema (6.5), ovviamente esiste una n-pla di scalari {1, .., An} tale che xg = x(tg) = A\ + .. Anen, dove i vettori
{ey,...,en} costituiscono la base canonica di R". Allora possiamo considerare in W i vettori {T(e;)(t),..., T(en)(t)}, per definizione sappiamo che risolvono il
sistema di equazioni differenziali lineare, e per i precedenti ragionamenti anche ogni loro combinazione lineare, per cui possiamo scrivere

MT(e)(t) +...+ AnT(en)(t) = T(\eq + ... + Anen)(t) = T(xg)(t)
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e (come prima!) lunicita della soluzione del problema di Cauchy ci permette di dire che x(t) = A\T(e)(t) + ... + \nT(en)(t) = T(xg)(t) ovvero di provare che T &
suirettivo, e quindi un isomorfismo. Si noti che dalla dimostrazione deduciamo anche che

dim(W) =n e che W = span{T(e)(t), ..., T(en)(t)}

Osserviamo che il precedente risultato mostra che linsieme delle soluzioni di un sistema omogeneo di equazioni differenziali lineari ha una naturale struttura
di spazio vettoriale reale di dimesione pari al numero delle equazioni (o al numero delle funzioni incognite), e abbiamo gia osservato che la conoscenza di
una qualsiasi soluzione del sstema completo ci permette di ottenere tutte le soluzioni del sistema non omogeneo. In un linguaggio un poco piti geometrico
possiamo dire che W € uno spazio vettoriale e costituisce la giacitura di uno spazio affine rappresentato dalle soluzioni di (6.4).

Osserviamo anche che, in generale, non siamo in grado di risolvere un sistema di equazioni differenziali lineare, tranne il caso in cui la matrice & a coefficienti
costanti, cioé A(t) = A € Mnp(R). Il precedente teorema ci dice che se troviamo n soluzioni del sistema linearmente indipendenti allora abbiamo una base per
lo spazio vettoriale delle soluzioni.

DEFINIZIONE 6.11 Siano {Xy, ..., Xn } un insieme di n soluzioni del sistema omogeno (6.5), la matrice che si ottiene affiancando le soluzioni x; come colonne di
una matrice

X(8) = (x1(8)] .. [xn (1))

viene detta matrice di soluzioni.

DEFINIZIONE 6.12 Un sistema di n soluzioni di (6.5) linearmente indipendenti costituiscono un SISTEMA FONDAMENTALE di soluzioni. La matrice di soluzioni
composta da un sistema fondamentale viene detta MATRICE FONDAMENTALE, se tale matrice verifica la relazione X(tg) = In € Mn(R) diremo che é una
MATRICE FONDAMENTALE SPECIALE al tempo tg. A volte indicheremo una tale matrice usando la notazione U(t; tg).

Proviamo alcuni risultati utili,

TEOREMA 6.13 Se {x1(t), ..., xn(t)} sono n soluzioni di (6.5), allora la relativa metrice di soluzioni X(t) risolve la seguente equazione differenziale matriciale
X' (t) = A(t)X(t)

Analogamente se si considera una matrice X(t) soluzione della precedente equazione differenziale, ogni sua colonna x(t) & soluzione del sistema omogeneo
(6.5).

DIMOSTRAZIONE. La dimostrazione di questo risultato segue facilmente dalle definizioni di prodotto tra matrici e tra matrice e vettore (il prodotto riga per
colonna, per intenderci) e dal fatto che loperatore di derivazione lavora su ogni singola componente di una matrice, per linearita. Quindi possiamo scrivere

Alt) = [Ajk(t)]j,k=1,...,n X(t) = [Xik(t)]j,k=1,...,n X'(t) = [Xi/k(t)],-,k=1,...,n
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da cui segue che

X 0] = X0 = AwX(t) = [Ag®)] [X(0)] =

) AOX(t)
i=1

Larelazione ottenuta € la dimostrazione delle affermazioni contenute nella tesi. Infatti nel primo caso € sufficiente pensare che la matrice di soluzioni & costruita
affiancando le soluzioni come colonne per cui X;, = (x); € il j-simo elemento della k-sima soluzione, e osservando che la relazione € soddisfatta per k fissato e
resta vera al variare dell'indice. La seconda affermazione segue dal fissare l'indice k nella precedente uguaglianza matriciale. ]

TEOREMA 6.14 Una famiglia di soluzioni {x4(t), ..., xn(t)} del sistema omogeneo (6.5) é linearmente dipendente in C'((a,b), R") se e solo se esiste un tempo
T € (a,b) tale che i vettori {x(T), ..., xn(T) } sono linearmente dipendenti in R".

DIMOSTRAZIONE. Siano 7 € (a,b) e {\1,.., A\n} C R (non tutti diversi, ma al contempo non tutti nulli) tali che A\x¢(7) + ... + Anxn(7) = O. Allora, per lunicita
della soluzione del problema di Cauchy, possiamo dedurre che la funzione x(t) = [A\xq(t) + ... + A\nXn(t)] € soluzione di (6.5) e assume come dato iniziale, per
t = 7, il vettore nullo, quindi x(t) = O per ogni t € (a, b). Limplicazione opposta & semplicemente una riscrittura della condizione di dipendenza lineare per
t="7. [

TEOREMA 6.15 La matrice fondamentale speciale U(t;tg) del sistema omogeneo (6.5) é lunica soluzione del seguente problema di Cauchy

X' (t) = A(t)X(t)
X(to) = In

Inoltre, per ogni xg € R", la funzione x(t) = U(t; tg)xg € lunica soluzione del problema di Cauchy

X' (t) = A(t)x(t)
X(to) =Xp

DIMOSTRAZIONE. La prima affermazione segue facilmente dalla definizione di matrice fondamentale speciale, infatti essendo fondamentale risolve lequa-
zione differenziale matriciale, il fatto che U(tg; tg) = X(tg) = I € una conseguenza del significato di speciale. Infine lunicta segue (come sempre) dal teorema di
Picard e Lindeldf, visto che il sistema é lineare e quindi il campo vettoriale localmente lipschitziano.

Per provare la seconda parte dellenunciato € sufficiente effettuare un paio di semplici verifiche. Per definizione

x(t) = U(t; to)xo allora X(tg) = U(tg;to)Xo = InXo = X0
e anche
X' (1) = [U(tto)xo] = U'(t;to)xo = AlU(t to)xo = A(t)x(t)

il che conclude la dimostrazione. ]
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PROPOSIZIONE 6.16 Sla X(t) una matrice fondamentale speciale del sistema omogeneo (6.5), allora segue che
Ut to) = X)X (to)
DIMOSTRAZIONE. Anche questa proposizione non & particolarmente difficile da dimostrare, infatti dobbiamo verificare che la matrice U(t;tg) = X(t)X (to)
risolve lequazione differenziale matriciale e, ricordando il teorema 6.13, abbiamo
U'(t:t0) = X' ()X (to) = AX(DX ' (to) = A U(t:to)
inoltre vale
Ultoito) = X(to)X(to) = In

e il ragionamento & concluso. n

TEOREMA 6.17 (FORMULA DI .M.C. DUHAMEL) La soluzione del sistema (6.4)

X' (t) = A(t)x(t) + f(t)
X(to) =Xp

dove A € CO((a,b), Mn(R)) ef € CO((a, b), RM) {con —oo < a < b < +o0), si puo rappresentare tramite la seguente espressione
t
x(t) = X()X(to)xo + f X)X (s)f(s)ds
to

dove X e una qualsiasi matrice fondamentale del sistema omogeneo associato (6.5).

DIMOSTRAZIONE. Sappiamo che, detta X(t) una matrice fondamentale del sistema omogeneo, tutte le soluzioni di (6.5) possono essere descritte dalla
seguente formula

Xom(t) = XX (to)xo

in cui abbiamo usato i risultati precedenti per avere una matrice fondamentale speciale ed un'espressione che contenga anche l'informazione del dato iniziale
del problema di Cauchy che ci interessa risolvere.

Dunque il problema & completamente risolto se riusciamo a costruire una soluzione del sistema completo con dato iniziale nullo. Per fare questo cerchiamo
una soluzione imponendo la seguente forma

s(t) = X(t)c(t) da cui s’(t) = X' (t)c(t) + X(t)c' (t)
ricordando che X(t) & una matrice fondamentale e imponendo che la soluzione del sistema completo abbia questa espressione, otteniamo

s'(t) = X/ ()c(t) + X(1)c’ (t) = A@)X(H)c(t) + X(B)c' (1) = AR)X(t)c(t) + (1)
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semplificando otteniamo il seguente sistema per il vettore incognito c(t)

t
M) =X"f(t) cioé c(t)=f X1(s)f(s)ds
t

0
il che conclude la dimostrazione. n

| risultati raccontati in questo paragrafo sono, per necessita, solo lessenziale dello studio dei sistemi lineari omogenei, dove essenziale significa lo stretto
necessario per affrontare la teoria che sara presentata nelle pagine che seguiranno. Il lettore interessato puo, naturalmente, consultare i testi nella bibliografia
per soddisfare la sua sete di sapere.

6.3 Sistemi lineari autonomi

Sappiamo che R" € uno spazio di Banach, lo spazio delle applicazioni lineari e limitate (o continue) dello spazio in sé € in genere indicato dal simbolo £(R"), in
realta ogni operatore dello spazio puo essere rappresentato tramite una matrice quadrata appartenente allo spazio M(R"), e nel seguito penseremo sempre
gli operatori identificati con una matrice.

OSSERVAZIONE 6.18 Sia A € Mu(RR") e definiamo una successione nello spazio delle matrici nel seguente modo
L k _ O 1,2 i
Aj:=kZHA =A%+A+ oA+ jEN
=0

notiamo che si tratta di una successione di Cauchy, infatti vale

L Ly Ly
IR DTS EDI A B 16
k=0 k=0

k=0

da cui segue che

P ) i RN y
1A= Aupll = ;HA <) A S;EHM
= =) =

lultima sommatoria scritta & la coda di una serie convergente, il cui limite & elAl, essendo la maggiorazione indipendente dall'indice j e infinitesima per N che
tende a +co, laffermazione é provata.
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DEFINIZIONE 6.19 Definiamo il limite della successione {A}, introdotta nellosservazione precedente, come MATRICE ESPONENZIALE di A

PROPOSIZIONE 6.20 (PROPRIETA DELLA MATRICE ESPONENZIALE) Sia A € Mp(R") e e la matrice esponenziale risultante, allora
i. €O =1 € Mn(R"),

ii. A,B € Mn(IR") matrici che commutano (cioé AB = BA) allora e
-A

A'B _ oAgB

. . N , _ -1

iii. la matrice esponenziale e” & sempre invertibile e [eA] =e
. _ - _

iv. A,C,C" € Mnp(R) allora A€ = CeAC™.

DIMOSTRAZIONE. i. Ricordando la definizione di matrice esponenziale e scrivendola, in particolare, per la matrice nulla Op, otteniamo che
1 2 1 j ..
O]-=In+On+§On+...+j—|On=In perognije N

il che prova laffermazione.
ii. Sempre ricorrendo alla definizione di matrice esponenziale, ricordando la formula di Newton delle potenze di un binomio e grazie al fatto che AB = BA,

possiamo scrivere

come prima, passando al limite per j — +o0, si ottiene la tesi.
iii. Siccome vale O = A—A, e siccome A e —A commutano, per il punto ii abbiamo che

-
Ih = eOn = ehe™A - A [eA]
iv. Sempre dalla definizione discende che

%(CAC'1)2+...+]_1'(CAC'1) In+(CACT) + = (CAC"’)(CAC'1) jll(CAC'1)...(CAC"1)

(CACT); =In+(CACT) +
=ln+(CACTY) + %CAZC'1 M jl'CAjC‘1 =ClaC'+ (CACT) + 5CA2C'1 P mCANC'1

1
=Cln+A+§A2 JA‘ C'=cAC  perognije N
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la tesi si ottiene per j — +o0. n

PROPOSIZIONE 6.21 Sia M € M (R"), allora loperatore e”t & derivabile in tutto R e vale
d
_eAt - AeAt
dt

Si noti che e*t & la matrice fondamentale speciale (con tg = O) del precedente sistemal In generale si ha che U(t;tg) = eAt-t0),

DIMOSTRAZIONE. Per quanto dimostrato nella proposizione precedente possiamo scrivere

v kp k=1
EAh_
k=1

quindi il limite del rapporto incrementale esiste e vale la formula della tesi. Si noti che abbiamo usato il fatto che At e Ah sono delle matrici che commutano.
[

+0O
A= [All+ Z AN ||eAt = [A(I+ Mh)]eAt — Aet
jk—1=1

eAlth) _ At [Ah_|
h h

TEOREMA 6.22 (FORMA CANONICA DI M.E.C. JORDAN) Sia A € My(R) allora é sempre vero che esiste un cambio di base (indicato con C) tale che M = cBC!
con

B ... O A1 0
B=| : . dove By=| : .
O ... By 0 ... N

con ) € C (gli 1 compaiono solo quando mg(};) < ma(;)). Se (%) = O allora esiste un indice i per cui vale \; = Xj.

commenti vari, particolare spiegare la questione del rapporto tra martici in Mnp(R) e in Mp(C) e relativa diagonlizzazione in blocchi (triangolari in C, "semi-
triangolari” in R).

LEMMA 6.23 Data A € My (R), risultano equivalenti le seguenti affermazioni
. . At _
i lim [[e™|z=0,

t—>+00

ii. lim x(t) = O per ogni soluzione del sistema x’(t) = Ax(t).
t—+00
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TEOREMA 6.24 (CRITERIO DI STABILITA) Sia A € Mn(R), allora sono equivalenti le seguenti proprieta
i . lim x(t) = O per ogni soluzione del sistema x'(t) = Ax(t),
—+00

ii. Re(X\) < O per ogni X € o(A).

TEOREMA 6.25 (CRITERIO DI LIMITATEZZA) Sia A € Mn(R), allora ogni soluzione del sistema x'(t) = Ax(t) é limitata se valgono le seguenti,
i. Re(\) < O perogni X € o(A),
ii. ogni autovalore X € o(A) con Re()\) = O é regolare.

TEOREMA 6.26 (CRITERIO DI INSTABILITA) Sia A € Mn(R), allora sono equivalenti le seguenti proprietd

i . lim |x(t)| = +oo per (quasi) ogni soluzione non banale del sistema x'(t) = Ax(t),
—+00
ii. Re(X\) > O per almeno un X\ € o(A).

6.4 Equazioni lineari del secondo ordine a coefficienti costanti

In questo paragrafo vogliamo tentare di descrivere la dinamica generata da un sistema differenziale lineare planare (cioé un sistema di due equazioni in due
incognite), quindi un sistema del tipo

x(t) = Ax(t) con A € M;(R)

La discussione si svolgera in vari punti, analizzando i differenti modi in cui pud presentarsi lo spettro della matrice.
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PROPOSIZIONE 6.27 Data A € M>(R) e o(A) = {\1, A\, } abbiamo che
i. Se A\ # Xy 0 \1 = A\ = \ ma esiste una base di autovettori (lautovalore \ ha molteplicita algebrica e geometrica pari a 2), allora nella opportuna base di R?
(quella composta dagli autovettori della matrice) vale A = CBC™" e

At _ Bt~ (M O B[ et O
e =Ce”'C dove B-( 0 >\2) e e -( 0 et

ii. Se M\ = \; = X e la molteplicita geometrica vale solo 1, allora nella opportuna base di R vale A= CBC ' e

At _ ~ Bt~ N Bt atf 1t
e =Ce"'C dove B_(OA) e e-e(o1)

iii. Se \y = a+ib e X\, = a—ib, allora nella opportuna base di R? vale A = CBC' e

a -b ) . eBt=eat( cos(bt) —sin(bt) )

At _ Bt ~—1 =
et = CeP'C dove B—( b a sin(bt)  cos(bt)

DIMOSTRAZIONE. da scrivere u

6.5 Sistemi non lineari

In queste pagine intendiamo fornire una traccia di studio riguardo alcuni argomenti affrontati a lezione, di carattere un po' piti avanzato, che non sempre sono
presenti nei testi didattici. In ogni caso tutti gli argomenti dati per noti sono reperibili nei testi citati in bibliografia (in particolare in [?]). Il protagonista indiscusso
delle nostre attenzioni sara il seguente sistema di equazioni differenziali ordinarie autonome

(6.6) X'(t) = f(x(t)) conxeR"ete(a,b)

di volta in volta scriveremo le ipotesi pili specifiche sul campo vettoriale f € C'(A, R") (con A C R aperto), sulla dimensione n € IN del sistema e sull'intervallo
(a,b) € R. In alcuni casi € possibile che le ipotesi possano essere leggermente indebolite, ma eviteremo di accanirci nella ricerca della massima generalita...
Osserviamo anche che alcune definizioni della sezione precedente si estendono, senza alcuna fatica, a sistemi di dimensione maggiore, in particolare il concetto
di regione positivamente invariante, si punto stabile o instabile per linearizzazione e le definizioni di w-limite e attrattore. Il lettore &, in ogni caso, invitato a
riscrivere le definizioni con la notazione corretta.

DEFINIZIONE 6.28 [l punto p € R" si dice punto di equilibrio o punto critico (o anche punto singolare) per il campo vettoriale f se f(p) = O, mentre si dice punto
regolare se f(p) = O.
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Si noti che i punti critici del campo vettoriale f corrispondono alle soluzioni stazionarie di (7.1), sono esattemente i punti di equilibrio del sistema di equazioni
differenziali.

TEOREMA 6.29 (DI RETTIFICABILITA LOCALE) Sia xg € A un punto regolare per f € Cc'(A, RM), allora esistono un aperto V C A contenente il punto xg ed un
diffeomeorfismo v tra V e un opportuno intorno W di O tale che, per ogni § € V, la funzione z(t) = ¥ (x(t, £)) risulta essere [unica soluzione del problema di
Cauchy

Z/(t) =€
(6.7) { 2(0) = ()

DIMOSTRAZIONE. Si consulti [?]. [ ]

TEOREMA 6.30 Un punto stabile (per linearizzazione) é asintoticamente stabile.

TEOREMA 6.31 (P. HARTMAN E D.M. GROBMAN) Sia Xg € A un punto singolare per f. Se la matrice jacobiana [f(xq) é iperbolica, allora esistono un intorno
V C Adel punto xg ed un omeorfismo 1 tra V e un opportuno intorno W di O tale che, per ogni & € V, la funzione z(t) = 1 (x(t, £)) risulta essere [unica soluzione
del problema di Cauchy

Z/(t) = Jf(xo)z(t)
{4l { 2(0) = (¢

DIMOSTRAZIONE. Si veda, per esempio, [13]. ]

6.6 Alcuni sistemi planari quadratici

Continuiamo lo studio di alcuni (particolarmente significativi) esempi di sistemi di due equazioni differenziali con campo vettoriale (al piti) quadratico studiando
i modelli di Lotka-Volterra. Nella sezione successva, facendo tesoro delle osservazioni fatte, cercheremo di inquadrare lo studio di sistemi planari in un quadro
teorico pili organico e strutturato, per quanto possibile.

Le equazioni di Lotka-Volterra descrivono un sistema ecologico di interazione tra una specie di predatori e una specie di prede su cui facciamo le seguenti
ipotesi:

i. la preda é lunica risorsa del predatore, in assenza di prede i predatori tendono allestinzione;

ii. la velocita di crescta della popolazione dei predatori € legata alla possibilita di predazione, quindi supponiamo che sia proporzionale al numero di incontri tra
prede e predatori, cioé al prodotto del numero di prede per il numero di predatori;

320



AV EM

iii. la velocita con cui diminuisce la popolazione delle prede a causa dei predatori € (come sopra) proporzionale al numero di incontri tra prede e predatori, cioé
alla possibilita di essere predati;

iv. il cibo disponibile per le prede & costante (e positivo) in assenza di predatori, quindi la crescita della popolazione di prede € proporzionale alla popolazione
stessa (crescita malthusiana).

Indicando con x(t) il numero di prede e con y(t) il numero di predatori all'istante t, e supponendo di poter operare con funzioni sufficientemente regolari, ci
riconduciamo a studiare il seguente sistema planare

(6.9) x'(t) = f(x(t), y(t)) = x(t)[a—by(t)]
' y'(t) = g(x(t), y(t) = y(t)[cx(t) —d]

Tutti i parametri biologici di proporzionalita coinvolti nel sistema sono positivi, cioé a, b, c,d > 0, ma difficilmente misurabili in natura: daltronde & vero che
tutti gli ecosistemi reali possiedono una complessita maggiore di quello che descrivono le due equazioni differenziali di sopra...

Ricordiamo che siamo interessati esclusivamente a soluzioni non negative e limitate, cioé tali che esista M > O per cui siano soddisfatte le disequazioni
0 < x(t), y(t) < M per ogni valore di t, quindi ci interessa la dinamica del sistema ristretta nel primo quadrante del piano.

Cominciamo identificando i punti di equilibrio del sistema, cioé le soluzioni (ci interessano solo quelle non negative, ma non ce ne sono altre) del seguente
sistema algebrico

{ x[a—by]=0

d a
ylex—d]=0 che sono 0=(0,0) e E=(E’B)

Chiaramente i due equilibri sono due soluzioni stazionarie del sistema (7.4), O é il sistema in assenza di popolazioni mentre E descrive un sistema in cui
c'é coabitazione delle due specie biologiche. Notiamo che, al contrario di quanto visto per le singole equazioni del primo ordine, la conoscenza di soluzioni
stazionarie non ci permette di dedurre stime a priori sulle altre soluzioni, questo perché la topologia di R2 & piti ricca (e complicata) di quella di R e avere un
risultato analogo al teorema della barriera per sistemi (teorema ??) é piu difficile.

Per studiare la natura dei punti critici trovati calcoliamo la matrice jacobiana del campo vettoriale del sistema nei punti di equilibrio

) a_by —bx _ a (0] _ (0] —bd/C
J(XYY)-( ey cx—d) J(O)‘( 0 —d) J(E)_( acb O )

E immediato accorgersi che O & un punto di sella, visto che la matrice & diagonale e gli autovalori sono discordi, quindi ha un carattere genericamente repulsivo
(tranne rispetto alla direzione individuata dal autovettore relativo allautovalore —d, cioé e;) rispetto alla dinamica del sistema.

J(E) ha due autovalori immaginari (coniugati) puri: per un sistema lineare questo implicherebbe che intorno al punto critico il sistema genera delle traiettorie
ellittiche, ma per un sistema non lineare due autovalori immaginari puri non permettono di concludere nulla: il fatto che la parte reale degli autovalori sia nulla
rende cruciale leffetto dei termini di ordine superiore al primo. Per cui non possiamo dire altro, se non che la natura del punto critico deve essere studiata con
strumenti piu raffinati.

Per il momento effettuiamo alcuni esperimenti numerici, sperando che il calcolatore suggerisca qualcosa di interessante relativamente alla dinamica generata
da (7.4). In particolare produciamo alcune orbite e alcuni grafici delle soluzioni del sistema.
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Le immagini ottenute sembrano indicare che il sistema generi, pitl 0 meno sempre, soluzioni periodiche e, conseguentemente, orbite chiuse nel piano delle fasi,
che si svolgono intorno ad un punto di equilibro che deve essere necessariamente E: questo suggerisce anche che E sia un centro, dinamicamente parlando.
Questa osservazione non € in contrasto con quanto detto prima, infatti le orbite non sembrano ellissi, quindi i termini non lineari hanno un ruolo importante
nella dinamica del sistema.

Per dimostrare la precedente affermazione possiamo procedere nel seguente modo: consideriamo un generico punto p € (0, +c0)? C R? e consideriamo
il problema di Cauchy relativo a (7.4) con p come dato iniziale. Osserviamo che, lungo tutti i punti di una traiettoria non stazionaria, almeno una delle due
componenti del campo vettoriale tangente deve essere non nulla. Allora, per il teorema della funzione implicita, possiamo supporre che la traiettoria della
soluzione sia (intorno a p) il grafico di una funzione y(x), e, per il teorema di derivazione della funzione inversa, possiamo scrivere la seguente equazione a
variabili separabili

d

c—_
dy y'(t) y()lex—d] y(x)[ex—d] [ X} : B o )
dx X xa-by()] xa-by()] [E—b] dacui  aln(y)=by+dln(x)-cx=Co  (x,y) € (0, +00)

Y

La relazione ottenuta é lequazione cartesiana dellorbita percorsa dalle traiettorie del sistema (7.4), la costante d'integrazione C € determinata scegliendo
esplicitamente il punto iniziale p: si noti che le curve ottenute sono ben definite ovunque, questo perché non hanno punti singolari ed & sempre possibile
(localmente) poterle descrivere come grafici di funzioni, sempre per il teorema di Dini.

In alternativa & possibile supporre che le orbite siano linee di livello di una funzione H(x, y) = F(x) + G(y) e procedere come segue

% [Hx(t), y(1)] = [F(X +G(y(1)] = F'(x(0)x(t) + G (y(1)y' (t) = F'(x(t))x(t)[a— by(t)] + G’ (y(t) y(t)[cx(t) —d] = O

e dal precedente calcolo ricaviamo che, a meno di una costante, deve valere la seguente relazione

(0 v
) oy =~ VO 2y !
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da cui possiamo ottenere che

F(x) = cx—dIn(x) e

Gly) =by—aln(y)

(x,y) € (0, +0)?

riottenendo lespressione precedente, che descrive analiticamente le curve di livello di H su cui si svolgono le traiettorie del sistema.
Per uno studio pit puntuale osserviamo che esistono quattro rette, dette nullocline, lungo le quali una delle componenti del campo vettoriale si annulla:
precisamente i due assi e le rette {x = d/c} e {y = a/b}, queste due rette costituiscono il luogo dei punti in cui le orbite hanno vettore tangente orizzontale o

verticale e la cui intersezione & il punto critico E

. Disegnando alcuni vettori tangenti allimmagine di una soluzione si ottiene un grafico qualitativamente simile

al successivo, che da un'idea del perché le soluzioni abbiamo orbita chiusa.

4

Y

N

x =d/c
/T

E 1
l y=a/b
\ SN /

Proviamo a formalizzare i ragionamenti fatti finora: consideriamo il problema di Cauchy relativo a (7.4) con dato iniziale (x(0), y(O)) = (py,p;) con p; > d/ce

p, > a/b, finché la traiettoria resta nel quadrant

X' (t)

x(t)

esplicitando lespressione abbiamo che

d
ammm=

géﬂﬂ§m€”

=a—by(t) <a-bp,=-r< O

e individuato dalle relazioni {x > d/c,y > a/b} abbiamo che x/(t) < O e y’(t) > O, e da questo ricaviamo che

e integrando In(x(t)) = n(py) < -rt

quindi, in tempo finito, x raggiunge il valore d/c e la traiettoria passa nella semistriscia {O < x < d/c,y > a/b}. Ripetendo questo argomento & possibile

dimostrare che la soluzione ruota, in senso an

tiorario, intorno ad E e siccome deve muoversi su una curva di livello chiusa della funzione coercitiva H, deve

descrivere unorbita chiusa, percorrendo una traiettoria periodica. Il calcolo precedente ha un'ulteriore implicazione, poiché vale

dt

d In(x(t)) =a—by(t) e integrando troviamo In(x(t)) —n(p,) = at— bj

t
y(s)ds
0
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,
scegliendo t = 7 il periodo della traiettoria, per cui vale x(7) = p;, otteniamo la media della popolazione dei predatoriy := % J y(s)ds = E.
0]

In modo analogo, sfruttando laltra equazione del sistema, & possibile calcolare la media x.

6.7 Sistemi non lineari planari

Consideriamo il sistema planare del primo ordine

x'(t) = f(x(t), y(1)

(6.10) { y'(t) = g(x(t), y(t))

Classificare il punto di equilibrio O significa determinare se le soluzioni generate dal problema di Cauchy con un dato iniziale vicino al punto critico tendono ad
avvicinarsi o meno allequilibrio. In generale possiamo ragionare nel seguente modo: supponiamo di avere a che fare con un sistema del tipo

x'(t) = f(x(t), y(t)
y'(t) = g(x(t), y(t)

con f,g € C(R), che possieda un equilibrio P(xg, y,). Il fatto che P sia un punto critico del campo vettoriale, cioé un equilibrio del sistema, significa che risolve
il sistema di equazioni, f(xp,yg) = g(xo0.Yo) = O. Sia (x«,y,) un dato iniziale tale che (xq —x;)2 + (Yo —y*)2 < g e x(t), y(t) la soluzione del problema di Cauchy,
allora possiamo scrivere

X' (t) = f(x(t), y(t) = f(x(1), y(t)) = f(x0.Yo) ~ Vf(X0.Yo) - (X(t) —xo. Y(t) —yo)
y'(t) = g(x(t), y(1) = g(x(t), y(t) — g(x0. Yo) ~ V&(x0.Yo) - (X() =x0. ()~ yo)

dove abbiamo approssimato la differenza usando lespansione in polinomio di Taylor al primo ordine e trascurando gli ordini successivi. Ovviamente questa
approssimazione € ragionevole solo per tempi piccoli, cioé fino a quando possiamo pensare la traiettoria vicina allequilibrio. Introducendo le variabili £(t) =
x(t) —xg e n(t) = y(t) —yq il precedente sistema diventa

¢'(t) = 81f(x0, yo)&(t) + 85 f(x0. yo)n(t)
n'(t) = B1g8(X0. Yo)(t) + Ba8(X0. yo)n(t)

0, in notazione matriciale,

¢ £(t)
( n(t) ) =J(f,g)(XOYYO)( nlt) )

Diremo che lequilibrio P & stabile se (£(t), n(t)) — P, e siccome il sistema & lineare € facile verificare che il comportamento asintotico della traiettoria
(£(t), n(t)) dipende dagli autovalori di ) 5) (X0, Yg). Questa definizione di stabilita non é lunica presente in letteratura ed &, piu precisamente, detta stabilita
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per linearizzazione, in particolare vale che lequilibrio € stabile se gli autovalori della matrice hanno parte reale negativa, altrimenti lequilibrio pud non essere
stabile.

Nello studio di equazioni differenziali in una sola incognita € frequente ottenere esistenza di soluzioni globali grazie al teorema della barriera (vedi il teorema 7?),
cioé tramite una stima a priori che ci assicura che l'immagine della soluzione € contenuta in un insieme della retta reale su cui il secondo membro dellequazione
é globalmente lipschitziano.

Avendo a che fare con sistemi di equazioni differenziali questa idea deve essererivisitata e opportunamente generalizzata. In particolare vedremo come concetti
quali limitatezza delle soluzioni, stime a priori e proprieta di positivita delle soluzioni sono differenti sfaccettature di una stessa idea: tutti queste proprieta
qualitative di alcune traiettorie dei sistemi richiedono che la soluzione abbia valori in opportuni sottoinsiemi di IR2. Una possibile strategia che dimostra la
validita di questo genere di proprieta si basa sul concetto di regione invariante. Nel seguito delle note ci concentreremo (quasi esclusivamente) su sistemi
planari.

DEFINIZIONE 6.32 Un sottoinsieme D C R2 & POSITIVAMENTE INVARIANTE per un sistema di equazioni differenziali se ogni soluzione (x(t), y(t)) che verifica
(x(to), y(to)) € D per qualche tg é tale che (x(t), y(t)) € D per ognit > to.

Analogamente é possibile definire insiemi negativamente invarianti. Un sottoinsieme é invariante se € positivamente e negativamente invariante. Lintersezione
e lunione di insiemi positivamente (o negativamente) invarianti & ancora positivamente (o negativamente) invariante. In quel che segue, siamo interessati
allevoluzione per tempi successivi all'istante iniziale e quindi ci interesseremo solo di insiemi positivamente invarianti.

DEFINIZIONE 6.33 [l luogo dei punti {(x,y) : f(x,y) = 0} o {(x,y) : g(x,y) = O} si dice NULLOCLINA del sistema e individua i punti dello spazio in cui il campo f
é parallelo ad uno degli assi coordinati. Si noti che le intersezioni di 2 nullocline (relative alle differenti componenti del vettore f) individuano punti di equilibrio
del sistema.

TEOREMA 6.34 (1.O. BENDIXSON E H.C.R. DULAC) SiaD C R2 aperto semplicemente connessoe (f,g) € c'(D, R2)un campo vettoriale, se esiste una funzione
h di classe C'(D) tale che

div (h(x, y)f(x,y), h(x,y)g(x,y)) = O perogni (x,y) € D
allora non esistono orbite periodiche di (7.5) contenute nellaperto D.
DIMOSTRAZIONE. Supponiamo, per assurdo, che esista unorbita chiusa semplice (x(t), y(t)) di (7.5) con sostegno -y contenuto nellaperto D. Essendo il dominio
semplicemente connesso sappiamo che «y = 9E con E C D aperto, dal teorema della divergenza segue che
b
J [01(hf)(x, y)+0, (hg)(x, y)]dxdy = L h(f(x,y).g(x,y))-nds = J h(x(t), y(t)) (f(x(t), y(t)), g(x(t), y(t)))-n(t)ds = j h(x(t), y(t)) (F(x(t), y(1)), g(x(), y(1)))-(y' (t), =%/ (t))dt = O
E E ¥ a

La relazione ottenuta € in contraddizione con le ipotesi, infatti il campo h(x, y)(f(x, y), g(x, y)) ha divergenza sempre differente da O in D, quindi il suo integrale
in E deve risultare o positivo o negativo. u
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DEFINIZIONE 6.35 Nel seguito chiameremo ciclo limite la traiettoria (o orbita) di una soluzione periodica di un sistema di equazioni differenziali.

TEOREMA 6.36 (J.H. POINCARE E 1.O. BENDIXSON) Sia (f,g) € C'(D) un campo vettoriale nel piano con punti singolari isolati e supponiamo che D C R? sia
positivamente invariante. Allora le traiettorie determinate dalle soluzioni di (7.5) con dato iniziale in D tendono

i. 0o a un punto singolare,

ii. 0 a unorbita periodica,

iii. o allunione di punti singolari e di curve fomocline e/o eterocline) che connettono tali punti.

Noi dimostreremo una versione parziale di questo importante risultato, cioé il seguente enunciato.

TEOREMA 6.37 (J.H. POINCARE E .O. BENDIXSON) Lorbita descritta da una soluzione periodica di un sistema planare contenuta in un dominio D
semplicemente connesso contiene almeno un punto critico.

DiMosTRAZIONE. DA SCRIVERE ]
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