ANALISI VETTORIALE
LT FISICA 30046 - A.A. 2025/26
SCHEDA 12 - 20251218

EUGENIO MONTEFUSCO
DIPARTIMENTO DI MATEMATICA
SAPIENZA UNIVERSITA DI ROMA

PIAZZALE ALDO MORO 5 - 00185 ROMA

ESerciziO 1. Assegnato il campo vettoriale

X7 X
F(x1,x2,X3)=(—r§,r—r1,O) dove r2=(x12+x%)

se ne calcoli la circuitazione lungo la circonferenza centrata in O di raggio R > O contenuta nel piano {x3 = 0}, al
variare del parametro n.

EsercizIO 2. Si calcoliil lavoro del campo vettoriale
F(X1,X2,X3) = (2X2 +1, 2X1 - 1,2X3)
lungo una linea che congiunge i punti (0,0, 0) e (1, —1/2,1).

Esercizio 3. Determinare per quali valori del parametro a il campo vettoriale

X1X2
X3

1 X
F(x) = | x5 In(x3) — Ea2x1 In(x7),53 + % In(x3) — é,ax2X3 .

é conservativo nel suo insieme di definizione. In corrispondenza di questi valori calcolare il potenziale di F che si
annullain (1,2,3).

ESERCIZIO 4. Sia F il campo vettoriale
F(x) = (2x1g(x3), 0,x?g(x3))

i. Determinare la funzione g € C'(R, R) tale che g(0) = 1e tale che F sia conservativo nel suo insieme di definizione.
ii. Calcolare il lavoro compiuto da F lungo la curva

x(t) = (t2 cos(t), arctan(t3),t?sin(t))  te [0,7]

ESERCIZIO 5. Sispieghi perché la seguente forma differenziale
1
w= [2x1x2 - —] dxq + x12dx2
X1

é esatta e se ne calcolino tutti i potenziali.

ESERCIZIO 6. Sia A =R%\ {O} ew € C!(A) una forma differenziale chiusa in A e supponiamo che esista una curva
chiusa, semplice, regolare a tratti di parametrizzazione ¢ avente sostegno y = 9D C A, con O € D, e tale che

96w=0
-

Si provi che w é esatta.



Esercizio 7. Calcolare

In(x2
J‘ [xzex‘dx1+[e"1 * ( 2)]dx2]
v X2

dove «y é il sostegno della curva del piano {x3 = O} di parametrizzazione

v+ {x(¥) = (tg(t) + 2sin(t), tg?(1), 0) : t € [m/4, /31

Esercizio 8. Determinare per quali a € R la forma differenziale
W = XX3 (X + 2%1) dXq + X4X3 (2X5 + X1) dX; + [x1x2(x1 +Xg) + ax%] dxz

é esatta. Poi si calcoli, per a = 1, l'integrale della forma differenziale w lungo la curva (t) = (cos(t),sin(t),t2), con
te[—m 7l

Esercizio 9. Dato il campo vettoriale

x% +2X1X9 — x12 x% — 2XyXg — xf)

(Z+x2)2 T (x2+x2)2

F(x) = (

17°7%2
si dimostri che F & conservativo in R \ {O} e se ne trovi un potenziale.

EsErcIZIO 10. Determinare la funzione ¢ € CY(R\ {0}) con ¢(1) = 1tale che la forma

1 1
w(Xy,Xg,X3) = __X2>2<3 dxq +x3(xq)dxy + [ — + 22 | dxs
I X3 X

sia esatta. In corrispondenza di tale ¢ si trovi la primitiva che si annulla nel punto p = (1,1,1).

Esercizio 11. Sia f € L2(R) una funzione continua g.o, si provi se le seguenti affermazioni sono vere o false
i limy_.00f(x) = O,
ii. f puo avere al pitt un numero finito di asintoti verticali.

ESERCIZIO 12. Si consideri la successione di funzioni
Vk(1—kx)  xe[0,1/k]
fi(x) =
0 x € [1/k,1]

si calcoli il limite puntuale della successione {f,} C L%(0,1), il limite degli integrali e si commenti il risultato ottenuto
alla luce del teorema di convergenza dominata.

ESERCIZIO 13. Sia X (x) = X[—kk] (x) (cioé la funzione caratteristica dell’intervallo [—k, k1), si dimostri che
ise hel(R) allora hg=hx,ecLl(R) e h,—h inL'(R)
ise hel’(R) allora h,=hx,el*R) e h,—h inL%(R)

ESERCIZIO 14. Assegnata la successione

k
fi (x) = Z 27X  x€[0.1]
j=1
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e definita f(x) come il limite puntuale della successione, si usi il teorema di convergenza monotona per calcolare

J f(x)dx
[0.1]

ESeRcIziO 15. Posto
X = L2(R) e Y = {f misurabilein R : j |f(x)|2e7X2dx < +oo}
R

si mostri la correttezza delle seguenti affermazioni
i. X C Y elinclusione é stretta,

ii. fn = X[n,n+1]7L> OinX,

iii. f, — QinY,

iv.seg, — OinXallorag, — OinY.

ESERCIZIO 16. Data la serie

120 4k, 2k
2
k=1 k
si determini

i. linsieme di convergenza E,
ii. il sottoinsieme di E in cui la serie converge totalmente,
iii. determinare il sottoinsieme di E in cui la serie risulta derivabile.

Esercizio 17. Data la serie di funzioni
+0OQO k
RS
k+2
k=0
i. si determini l'insieme di convergenza E C R,

ii. si determini il sottoinsieme di E in cui la serie converge totalmente,
iii. si calcoli esplicitamente, se possibile, la somma della serie.

ESERCIZIO 18. Data la serie

122 gky 2k
2
k=1 k
si determini

i. linsieme di convergenza E,

ii.. il sottoinsieme di E in cui la serie converge totalmente,

iii. determinare il sottoinsieme di E in cui la serie risulta derivabile,
iv. determinare il sottoinsieme di E in cui la serie converge in L2.

ESERCIZIO 19. Data la serie di funzioni
+00
R
k+2
k=0
i. si determini l'insieme di convergenza E C R,

ii. si determini il sottoinsieme di E in cui la serie converge in L'
iii. si calcoli esplicitamente, se possibile, la somma della serie.
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Esercizio 20. Data la seguente serie di funzioni
v (=1

2(k+1)
> i

se ne calcoli la somma, spiegando dove converge puntualmente ed uniformemente.

Esercizio 21. Data la serie di funzioni

S 2
Ze_kx x€R
k=0

i. si determini l'insieme di convergenza puntuale,
ii. si determini l'insieme di convergenza uniforme,
iii. si determini linsieme di convergenza L2,

iv. si scriva la funzione somma (dove esiste).

ESERCIZIO 22. Sirisolva tramite lo sviluppo in serie di potenze la seguente equazione differenziale
u'(t) — u(t) = et

ESERCIZIO 23. Si ricavi lo spazio vettoriale delle soluzioni della seguente equazione differenziale
u”(t) — 2tu'(t) = O

SVOLGIMENTI

ESERCIZIO 1. Assegnato il campo vettoriale
X2 X
F(x1,x2,X3)=(—r—n,r—n,O) dover2=(x12+x%)
se ne calcoli la circuitazione lungo la circonferenza centrata in O di raggio R > O contenuta nel piano {x3 = O}, al
variare del parametro n.

DISCUSSIONE.  Parametrizziamo la circonferenza C nel seguente modo
x(t) = R(cos(t),sin(t),0) te[0,2m]

€ ben noto che tale parametrizzazione é regolare. Calcoliamo la circuitazione del campo lungo C, ricordando
la definizione di tale integrale, in modo da ottenere

T x®) %) ,
9SCF(X)-ds-J0 (_rn(t)'rn(t)'o)'x(t)dt

J‘ZW —Rsin(t) Rcos(t)
0O |R" [cosz(t) + sinz(t)]n/2 ' R" [cosz(t) + sinz(t)]

1 2 27
= 2 f dt = 2
R4 Jo >

Notiamo che tale integrale (lungo una curva chiusa) non € mai nullo e, per n = 2, il risultato & indipendente dal
raggio della circonferenza C. [

O |- R(—sin(t),cos(t),0)dt

n/2’

Esercizio 2. Si calcoliil lavoro del campo vettoriale
F(xq1,X7,X3) = (2% +1,2%1 — 1,2x3)
lungo una linea che congiunge i punti (0,0, 0) e (1, —1/2,1).
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DiscuUssSIONE. Ricordando che
Fi(x) = 2%, +1 Fa(x) = 2% —1 F3(x) = 2x3

ilcampo vettoriale F = (F;,F,,F3) € diclasse C>°(R3) che & un insieme semplicemente connesso. Inoltre poiché
vale

& €2 €3
rotF(x) = 81 82 83
2X2 +1 2X1 —1 2X3

=0=(0,0,0)

Quindi F & conservativo, in quanto irrotazionale in un aperto stellato, per il teorema di Poincaré. Ne segue che il
lavoro richiesto non dipende dal percorso che congiunge (0, 0, 0) e (1, —1/2,1) ma solo dagli estremi. Il segmento
che congiunte i due punti ha equazione parametriche

x(t) = (t,—t/2,=t) conte[0,1]

Ne segue che il lavoro richiesto € dato da

1
E L [F1x1(0) x2(0) x3 (0D (0) + F (3 (0 xp (), xa (0 8) + F g 8) x(0), x3 ()4 ()]t

o1 3
=L[1+i(1—2t)+t]dt=i

Un altro modo possibile di procedere € costruire un potenziale del campo vettoriale, i potenziali U(x,y,z) di F
devono soddisfare le relazioni

AHU(x) = 2%, +1 9U(x) =2x1 — 1 A3U(x) = 2x3

Integrando rispetto a x; la prima relazione si trova
U(x) = 2x1%5 + X1 + g(%2,X3)

La funzione g(x;,x3) si determina derivando rispetto a x, e imponendo luguaglianza con 8, U(x), cioé
2xq + 0p8(xp,%3) = 2% — 1 da cui g(x2,X3) = —x7 +f(x3)

Dunque abbiamo che U(x) = 2x1x3 + X; — X + f(x3). Derivando rispetto a x3 e imponendo luguaglianza con la
terza relazione ottenuta prima si trova

/(x3) = 2x3 cioé  f(x3)= x§ +C
In definitiva
U(x) = U(xq,%2,X3) = 2X1X3 + X1 — X +x§+c ceR

Il lavoro richiesto vale

1 3
W= U(1'_i,1)_ U(0,0,0) = i

in perfetto accordo con il calcolo precedente. n

Esercizio 3. Determinare per quali valori del parametro a il campo vettoriale

2
1 X
F(x) = [XZ In(x3) — 532X1 In(x;), %3 +xq In(x3) — X—;,ax2x3 " _X)ZZ

é conservativo nel suo insieme di definizione. In corrispondenza di questi valori calcolare il potenziale di F che si
annullain (1,2,3).
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DISCUSSIONE. Il campo F & definito in A = {x € R3 : x;,x3 > O}, insieme semplicemente connesso dello
spazio, quindi F & conservativo in A se e solo se & irrotazionale, cioé se e solo se rot(F) = O. Con alcuni calcoli
troviamo che

€1 (5] €3

0 0 0
rot(F) = ! ) 2 o2 3 o
2

arx 1 1
Xy In(x3) — 5 In(x2) x5 +x1ln(x3) — % axgxy +

_ _ a1 2_ .\ %
= (aX3 ax3~,0, (a 4) 2x2)
dalla terza componente del rotore si trova che deve essere a = +2. Sostituendo questi valori nella prima
componente si vede che rot(F) = (0,0,0) se e solo se a = 2.
Adesso possiamo cercare i potenziali U del campo F conservativo
2 X X1X2
F(x) = [ x2 In(x3) — 2% In(x7), 3 + %1 In(x3) — X—,2X3X2 + .
2

sapendo che U deve verificare le seguenti relazioni

2 x; X1X2
AU(x) = %7 In(x3) — 2% In(x7) BU(x) = x3 +x1In(x3) — - A3U(x) = 2x3%5 + "
2 3

Integrando rispetto a x; la prima relazione si trova
U(x) = x1x2 [n(x3) — x2 In(x7) + g(x7,X3)

Deriviamo rispetto a x, e imponiamo la seconda relazione

2 2
X 2 X
x1ln(x3) — % +078(x2,%3) = X3 +x1In(x3) — %

quindi O,8(x2,%3) = x% da cui g(x2,x3) = x2x§ +f(x3)

Quindi si ha U(x) = x1x; In(x3) — x12 (n(x;) + xzxg +f(x3). Deriviamo rispetto a x3 e imponiamo l'ultima relazione

X1X . .
172 cioé  f(x3)=0  eotteniamo  f(x3)=c

XX
+ 2X2X3 +f/(X3) = 2X2X3 + 172
X3
Concludiamo che i potenziali sono dati da
U(xq,%2,X3) = X1X7 In(x3) — x12 (n(x;) + xzxg +C

imponendo la condizione U(1,2,3) = O si trova c = In(2) — 2In(3) — 18. n

ESERCIZIO 4. Sia F il campo vettoriale
F(x) = (2x1g(x3), 0,x?g(x3))

i. Determinare la funzione g € C(R,R) tale che g(0) =1e tale che F sia conservativo nel suo insieme di definizione.
ii. Calcolare il lavoro compiuto da F lungo la curva

x(t) = (t2 cos(t), arctan(t3),t?sin(t))  t< [0, 7]

DISCUSSIONE. i. Il campo F = (F;,F5, F3) & definito in R3 che & semplicemente connesso, in quanto convesso,
quindi il campo é conservativo se e solo se & irrotazionale. Quindi g deve essere tale che

93F1(x1,x2,%3) = BF3(x1,%2,X3)
cioé tale che 2x1g’(x3) = 2x1g(x3), quindi g deve risolvere il problema di Cauchy

g'(s) = g(s)
g(0) =1

quindi g(s) = e°.
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ii. Il punto iniziale della curva € (O, 0, 0), mentre il punto finale & (—2,arctan(3),0), quindi se determiniamo
un potenziale U del campo F allora il lavoro compiuto lungo la curva -y vale

J F.ds=U (—Wz,arctan(7r3),0) —U(0,0,0)
Y

Calcoliamo ora un potenziale U, cioé una funzione che verifica le seguenti condizioni
BU(x) = 2x;€™3 8,U(x) =0 A3U(x) = x12ex3

Integrando rispetto a x la prima relazione si trova
U(xy,%p,X3) = x12ex3 +P(x9,X3)

Se deriviamo rispetto a x; e imponiamo la seconda condizione otteniamo immediatamente che 9, ¢(x) = O,
quindi ¢(x) = ¢(x3) e allora

U(xy,%7,X3) = X12ex3 + P(x3)
Per determinare 1) deriviamo U rispetto a x3 e imponiamo la terza condizione per trovare
x12ex3 = x12ex3 + ¢/ (x3)

quindi ¢ é costante. Siccome ci basta determinare UN potenziale (e non tutti i potenziali) possiamo scegliere
¢ =0, quindi

2 X
U(xy,x2,x3) = xye™3

e il lavoro compiuto da F lungo la curva risulta valere U(—72,arctan(3),0) — U(O, 0,0) = 4. []

ESErCIZIO 5. Si spieghi perché la seguente forma differenziale
1
W= [2x1x2 - —] dxq + x12dx2
X1

é esatta e se ne calcolino tutti i potenziali.

DISCUSSIONE.  w & definitain IR3\ {x; = O} che & un sottoinsieme dello spazio avente due componenti con-
nesse, {x; > O} e {x; < O}, ognuna delle quali € semplicemente connessa, in quanto aperto convesso. Quindi
se w & chiusain R3\ {x; = 0}, allora & anche esatta, ed In effetti w & chiusa, visto che

1
2x1 = O, [2x1x2 - X—1] = 81[x12] = 2xq

Cerchiamo ora di calcolare le primitive di w. Integrando rispetto a x; il secondo coefficiente della forma otte-
niamo

U(xq,%7) = x12x2 +P(xq)
1
ma allora, dovendo essere 91U(xy,X3) = 2x1X3 — t abbiamo che
1

1
/ [
@' (xq) = %

da cui ricaviamo
¢(X)={ —In(=xq)+c~ sexy<O

conc ,c€R
—In(xq) +c* sex; >0

da cui otteniamo che
U(x,y) = {

Sottolineiamo che le due costanti additive sono indipendenti luna dallaltra, quindi le primitive della forma
differenziale sono tante quante i punti del piano R2. ]

xixz —In(—xq)+c~ sex <O

— _+
conc ,c €R
x7xa — In(xq) + c* sex; >0




8 EM

ESERCIZIO 6. Sia A= R2\ {O} ew € C'(A) una forma differenziale chiusa in A e supponiamo che esista una curva
chiusa, semplice, regolare a tratti di parametrizzazione ¢ avente sostegno y = 9D C A, con O € D, e tale che

§w=0
y

Si provi che w é esatta.

DISCUSSIONE.  Supponiamo, per semplicita, che D = {x12 + x% < 1}, in modo che 7y = {x12 + x% =1}, siaw =
a(x)dxq + b(x)dx; e consideriamo laperto

A=A\ {(x,0),x; >0} CAC R?
Siccome A & semplicemente connesso, esiste un potenziale U(x;,x;) € C2(A) tale che
VU(X1,X2) = (a(x1,x2),b(x1,x2)) e U(—1,0) =0

Poiché w (o meglio i suoi coefficienti a(x;,x3) € b(xy,x3)) & definita in tutto A ed & di classe C', per provare la
tesi sara sufficiente mostrare che U pud essere esteso per continuita in tutto laperto A, cioé prolungata sulla
semiretta, quindi dobbiamo mostrare che

lim U(x,e)= lim U(xq,e) per ogni X; € (0, +o0)
e—0* e—0~

Siccome in A la forma € esatta possiamo scrivere che

J w pere >0
s Uy

w pere <O
s—Uy—

U(§1,6) =

avendo scelto un cammino composto di due tratti concatenati dove y+ & larco di circonferenza avente come
estremi (rispettivamente) i punti (—1,0) e (V1—€2,+¢) e s1 & (rispettivamente) il segmento orizzontale di

estremi (V1 — €2, +¢) e (xg, %€).

A questo punto la tesi equivale a mostrare che

lim [J w— J w] =0
e—0" [ Js,un. s_Uy-

per il teorema di Lagrange (si ricordi che w & di classe C'l), segue che

-
J w—J w = w+jw—j w—f w

Y+US. y-Us— IV S — S_

[w-| J [alt.) —aft, —e)]d
= w— w+ a(t,e) —alt,—¢)]dt
Jy. .- V1-¢?

[ j 2 f Hralt,n(e))d
= w— w+2e a(t,n(e))at
J7. _ V1—¢€? 2

e passando al limte per ¢ che tende a zero troviamo che

lim [U(xg,€) — U(xg,—€)] = J w=0
e—0* v

il che garantisce la possibilita di estendere il potenziale U su tutto A. |

Esercizio 7. Calcolare

ln(x2
j |:X28X1dX1 + [e’“ + ( 2) ]dXz]
v X2

dove «y é il sostegno della curva del piano {x3 = O} di parametrizzazione

v+ {x(0) = (tg(t) + 2sin(t), tg?(1), 0) : t € [m/4, /31
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DiscussIiONE. Il calcolo dell'integrale applicando la definizione € evidentemente complicato, quindi cerchia-
2
mo un modo pitl semplice, che eviti eccessivi tecnicismi. La forma differenziale w = x,e*1dx + (ex1 + %)dxz
& di classe C* in R3 privato del piano {x; = 0}, inoltre la forma w & chiusa dato che
2 2
In(x2) In(x3)
X2 X

Byx,e*1 =M =9 {e"1 + ) e O3xeN =03 (ex1 +

quindi w & localmente esatta. In pili possiamo dire che & esatta in tutto il semispazio A = {x € R3: x; > 0} che
& semplicemente connesso. Allora cerchiamo una primitiva U di w, cioé una funzione che verifichi le condizioni

2
In(x3)
X2
Integrando rispetto a x; la prima relazione si trova

AU(x) = x,e™ 8U(x) =X + &U(x) =0

U(x) = x2€X + g(x7,x3)

La funzione g si determina derivando rispetto alle altre variabili, infatti imponendo le altre relazioni troviamo
che

In(x2)

€ +9,g(xp,x3) = €1+ e  03g(x2,x3)=0

X2
da cui g(x) = In?(x,) +c con ¢ € R arbitraria. Riassumendo abbiamo provato che
U(x) = x,eX + ln2(x2)

€ una primitiva in A (con ¢ = O) e siccome la curva y & contenuta nel semipiano A e congiunge il punto p =
(1 V2,1, O) (punto iniziale della curva) al punto q = (2\@, V3, O) (punto finale). Per la caratterizzazione delle
forme differenziali esatte si ha che l'integrale richiesto & dato da

U(@) — U(p) = 33 —e"V2+1n? (V3)

il che conclude lo svolgimento. ]

ESErcizIO 8. Determinare per quali a € R la forma differenziale

W = XpX3 (X + 2%q) dxq + X1X3 (2%5 + x1) dx, + [x1x2(x1 +X7) + ax% dxs
é esatta. Poi si calcoli, per a = 1, l'integrale della forma differenziale w lungo la curva ~(t) = (cos(t),sin(t),t2), con
te[—m, 7wl

DISCUSSIONE. i. La forma & definita in tutto R3, per il teorema di Poincaré (essendo R3 semplicemente
connesso) la forma é esatta se e solo se € chiusa, quindi verifichiamo le condizioni sui coefficienti

O [xgx3(x9 + 2%7)] = 2x3(x1 +X7) O1[xix3(xq + 2%7)] = 2x3(x1 +X7)
B3lxaxa(xg + 2x))] =X (xp + 2x1)  Bylxaxp(xq + Xp) + ax3] = xp(2xq + X))
O3[X9x3(2x%5 +x1)] = X1 (%1 + 2%7) Oy[x1%5 (%1 +X7) + axg] = Xq(xq + 2x3)
quindi w € esatta, indipendentemente dal valore del parametro a € IR, e i suoi potenziali sono le funzioni

a
U(x)=x1x2(x1+x2)X3+§x§+c ceR

ii. Lintegrale richiesto & semplicemente la differenza dei valori assunti da un potenziale (per a = 1) agli estremi
del cammino individuato dalla parametrizzazione, quindi

Lifw=UﬂQwh—U&Om%=O
Y

naturalmente tale valore & indipendente dalla particolare curva che connette i due punti e quindi € costante
anche rispetto a variazioni di -y che lasciano gli estremi inalterati. n
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EsercIzIO 9. Dato il campo vettoriale

2 w2 2 _ 2

Fix) = X5+ DX — X X5 — 2XqXp — X
2,22 2 . 2)2
O +x3) O +x3)

si dimostri che F & conservativo in R2 \ {O} e se ne trovi un potenziale.

DiscUsSIONE. Lesercizio puo essere risolto in due modi differenti, e il pit rapido € cercare subito un po-
tenziale, perché lesistenza di un potenziale U implica immediatamente la conservativita del campo. Allora
osserviamo che deve valere

Axq +Bx ,
U(xq,x7) = % +C da cui segue
X] +X5
_Av2 2 2 2
UK - Axy — 2Bxyx + Ax; ) X5+ 2X1X — X
2 . y2)2 2 . 2)2
O +x3) O +x3)
2 _ __ Ry?2 2 _ _ 2
B,Ux) = Bxy — 2Ax1x; — Bxj i X5 — XX — X
WodE e

che ci permette di determinare la seguente espressione per i potenziali di w

X1 — X
U(X1,Xz)=12 22+C ce RxeR%\ {0}
Xj +%5

Volendo procedere con maggiore calma € possibile mostrare che la forma differenziale € chiusa, infatti abbiamo
che

2{x§+2x1x2 xz] _ x13'+2x12x2 —3x1x% —xg

7 2P

[x%—2x1x2 —xf] ) x13+2x12x2—3x1x%—x-;’
27 2P

il prolema é che il dominio di w non & semplicemente connesso (tantomeno stellato), per cui non possiamo
sfruttare il teorema di Poincaré per concludere che la 1-forma differenziale & esatta.
]

ESERCIZIO 10. Determinare la funzione ¢ € (R \ {0}) con ¢(1) =1tale che la forma

! 1
w(xq,X2,X3) =| — — % dxq +x3¢(xq)dxy + (— + X—z)dx3
oo X3 X
sia esatta. In corrispondenza di tale ¢ si trovi la primitiva che si annulla nel punto p = (1,1,1).

DISCUSSIONE. La forma differenziale ha dominio massimale D = R3 \ {xyx3 = O}, D & un aperto dello spazio
unione di 4 aperti disgiunti, connessi e semplicemente connessi, quindi w € aperta se e solo se & chiusa, cioé
se e solo se valgono le seguenti relazioni

1 X9x 1 . 1
0, [— - 2—23] = ——=x3=x30'(x)) =B (x3p(x))) ~ cioe  ¢'(x)=——
X X X
B (x3blx)) = dx) = — =By [+ 22} cioe gl
= = — = —_— - — = —
3 (X30(Xq X1 X 2 X3 X cioe X1 Xq
1T % X2 1 Xpx3 _
A [P — e che é verificata
G (X3 X1 ) x12 3 (X1 x12

Poiché le due condizioni relative alla funzione ¢ sono compatibili tra loro e soddisfano la richiesta ¢(1) = 1,
otteniamo che w é chiusa, quindi esatta e il gradiente di ogni sua primitiva ha unespressione del tipo

VU(X)=[———2,—.—+—] xeD
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da cui ricaviamo che
X2X3

U(x) = In(]xq]) + In(|x3]) + *Gj perxeDe GER perj=123,4

dove ¢; € una costante additiva della primitiva nella j-sima componente connessa di D = D;UD, UD3UDy, dove
Dq={xq,x3 > 0},D1={xy <O < x3},D1 = {x,x3 < 0} e D = {Xy > O > x3}. Infine notiamo che U(1,1,1) =1+ ¢,
quindi le primitive cercate hanno c; = —1, ma non possiamo dire nulla riguardo c;,c3,¢4 € R, quindi possiamo
concludere dicendo che non é corretto aver usato larticolo determinativo nel testo dellesercizio... n

Esercizio 11. Sia f € L2(R) una funzione continua g.o, si provi se le seguenti affermazioni sono vere o false

i limy—s.00f(x) =0
ii. f puo avere al pitt un numero finito di asintoti verticali.

DISCUSSIONE.  i. Cominciamo osservando che una funzione del tipo

fo(x) = 1 sex €N
o=\ o sexe N

non risponde alla nostra domanda, perché le funzioni nello spazio L2(RR) sono rappresentanti di classi di fun-
zioni e la fg appena proposta € nulla quasi ovunque, quindi fg € [O], cioé fy € solo un rappresentante della
classe di equivalenza della funzione nulla. Questo primo esempio suggerisce che dobbiamo pensare qualcosa
di piti elaborato, per esempio consideriamo la funzione

1
2k[x—(k—1/2k)] sexc |k— ?,k]

fik) = ~2x— ks 1/2Y] sexe k,k+ﬂ

0] altrimenti

nella figura che segue riportiamo, sperando sia utile per comprendere meglio lo svolgimento, un tratto del
grafico della funzione f;

(k,7)

[A]

. .
k — 172k k+1/2K

La funzione f; & continua, in quanto & una funzione affine a tratti che si raccorda con continuita, quindi mo-
striamo che f; € L2(R), infatti, per le proprieta dell'integrazione secondo Lebesgue, vale

[~k k+1/2k
[ oorax=y | [ i [ oo
R =7 [ 12k k
[~k k+1/2¢
ZJ ZZk[x (k — 1/2k)] dx ZJ 22k[x (k + 1/2k]
ko7 L/ k=172¢ 5]
) 22k » 1 3 k 22k . : 3 k+1/2
L5 beg]] e
I>1L k—1/2¢ > k
22k 2%k 1 2

—_— _
3k 3k
k>1 32 k>1 32 3

Quindi f; € la funzione desiderata, visto che abbiamo provato che f; € L2(R) N CO(R) e adesso osserviamo che
non esiste lim,__,. . f{(x), in quanto

im fk=1 e lim f1(k+%)=o

k—+00 k—+o0
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ii. Per costruire un esempio che risponda alla seconda questione cominciamo ricordando che

1/2 1 1/2 1 2 f
——dx = f ' dx=v2
J;) X1/2 0

/4
da cui possiamo definire la seguente funzione

1 sex e (k k 1 )
_— + —
fa(x) =4 3k(x — k)14 "2
0] altrimenti

Osserviamo che f, & continua quasi ovunque, visto che ha discontinuita solo nell'insieme {k,k +1/2 : k € N} che
ha misura nulla, essendo un insieme formato da una quantita numerabile di punti isolati. Resta da mostrare
che f, € L2, quindi svolgiamo alcuni calcoli grazie alle proprieta di numerabile additivita dell'integrale secondo

Lebesgue
J- , Z ke1/2 ) Z ke1/2 1 2 Z 2 1 12
|F2(x)] “dx = J [f2(x)] dx]= U [ﬁ] dx]= U [ k14} dt]
R ol Solde  [3x—k¥ SolJo 134"
1 7 4 1 9
L[, w252

k>0 k>0

l'idea insita nella costruzione di f; € che é possibile costruire una funzione con infiniti asintoti verticali il cui
sottografico circoscriva unarea finita, e la costruzione é fatta scalando oppurtunamente larea sottostante il
grafico di 1/y/x! [

ESERCIZIO 12. Si consideri la successione di funzioni

Vk(1—kx)  x€[0,1/k]
fi(x) =
0 x € [1/k,1]

si calcoli il limite puntuale della successione {f,} C L%(0,1), il limite degli integrali e si commenti il risultato ottenuto
alla luce del teorema di convergenza dominata.

DiscussIiONE. Osserviamo subito che la funzione € diversa da zero solo nellintervallo [0, 1/k], la cui misura
tende a zero al divergere di k, quindi possiamo dire che la funzione tende a O g.o. in [O,1]. Puntualmente
abbiamo che

) Hf(x)={ 0 xe(01]

+00 x=0
Dal punto di vista dell'integrale abbiamo che

f Ifi (x)[2d J- k(1— kx)?d L (1—kx)3 1 ik
X X = — KX X=——1—KX = = er ogni
o1 ¢ [0.1/k] 3k o 3 PeroE

essendo tale valore costante (e non nullo) possiamo dire che la successione di funzioni non converge a O in
L%(0,1), nonostante converga alla funzione nulla g.0., in particolare non pus esistere una funzione sommabile
in [O,1] che domini tutte le f, altrimenti (per il teorema di Lebesgue) la successione degli integrali dovrebbe
essere infinitesima. ]

ESERCIZIO 13. Sia X (x) = X[_k k1 (X) (cioé la funzione caratteristica dell'intervallo [—k,k]), si dimostri che
ise hel'(R) allora h =hx,ecl'(R) e h,—h inLY(R)
ise hel’(R) allora h,=hx,el*R) e h,—h inL%(R)

DISCUSSIONE. i. Osseriviamo subito che le funzioni h, sono delle funzioni misurabili visto che, per ogni aperto
A, vale

h'(A) =h™1(A) N '(A)
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e lintersezione di due insiemi misurabili secondo Lebesgue € misurabile, inoltre abbiamo che
0 < |h(x)| < |h(x)|

quindi hy, € L'(R) essendo misurabile e maggiorata da una funzione sommabile. Per provare la prima afferma-
zione basta osservare che, per definizione di funzione caratteristica dell'intervallo [k, k], vale

hi (x) — h(x) g.o0. cioe [h(x) —h(x)] — O g.o.inR
inoltre abbiamo anche che
0 < |hi(x) — h(x)] < 2]h(x)] conh e L'(R)

e laffermazione segue dal teorema di Lebesgue.
In L2(R) il ragionamento & analogo, basta osservare che

h, — hl2 U he(x) — h Zd}

eche
|hi(x) —h(x)] — O implica [hi (%) — h(x)|2 —0
e
0 < |h () —h(x)|2 < 4/h(x))2  conheL%(R)
osservando che se h € L%(R) allora \h\z e L'(R). ]

ESERCIZIO 14. Assegnata la successione

k
fi(x) = Z 270X x€[0.1]
j=1

e definita f(x) come il limite puntuale della successione, si usi il teorema di convergenza monotona per calcolare

f f(x)dx
[0.1]

DiscussIONE.  Poiché le ipotesi del teorema di convergenza monotona sono facilmente verificate (tutti gli
addendi sono funzioni non negative) possiamo scrivere che
> . S . > .
f(x)dx = J f (x)dx = j 27 x[0.1/7()dx = f i27ldx=) 27)=1
J[OJ] [0 ,Z1 [0 ' JZ, [0.1/] ,Z1

ESeERcIziO 15. Posto
X = L2(R) e Y= {f misurabile in R : f |f(x)|2e7"2dx < +oo}
R

si mostri la correttezza delle seguenti affermazioni
i. X C Y e linclusione é stretta,

ii. fn = X[nne1) 7> Qin X,
iii. fn — OinY,
iv.seg, — OinXallorag, — OinY.

DISCUSSIONE. i. Se f € X = L%(R) allora f & misurabile sull'asse reale e vale che |f(x)\2e*"2 < \f(x)\2 quasi
ovunque, da cui segue

J 1f(x)|2e ™ *dx < J 1£(x)|2dx < +o0
R R

quindi abbiamo mostrato che X C Y. Per mostrare che l'inclusione é stretta & sufficiente esibire un elemento
del secondo spazio che non appartiene al primo, quindi proviamo che la funzione costante fi(x) = 1stain Y\ X,
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infatti la funzione costante non puo essere di quadrato sommabile su R, avendo lasse reale misura infinita,
pero vale che

J- f1(x)|2e_xzdx=J e dx= 7
R R

come mostrato a lezione.
ii. La successione f, ha norma costante in X, infatti

) w2
||fn|x=U x[n,mﬂ(xnzdx] U dx] iy
R n

e siccome tali norme non costituiscono una successione infinitesima di numeri reali la successione non tende
azeroin X.
iii. La successione {fn} ha un comportamento differente in Y, infatti abbiamo che

, 72 n+1 2 2 2112 2
lIfnlly = [J |><[n,n+1](x)\2e_X dx] = [J e X dx] < [e_” ] =e N2
R n

quindif, — OinY.
iv. Lultima affermazione segue da un'osservazione fatta nel primo quesito dellesercizio, infatti vale che

2
0< g, I2- fR g, (0| 2e ¥ dx < jR g, 2dx = |g, |2 — O

e laffermazione segue per confronto. ]

ESERCIZIO 16. Data la serie

122 gky 2k
2
k=1 k
si determini

i. linsieme di convergenza E,
ii.. il sottoinsieme di E in cui la serie converge totalmente,
iii. determinare il sottoinsieme di E in cui la serie risulta derivabile.

DISCUSSIONE. La serie di potenze in oggetto €, in realta, la serie

o0

4202 n pari

n
anX con  ap= o
n n { 0] n dispari

n=1

IL criterio di Hadamard ci permette di calcolare rapidamente il raggio di convergenza di questa serie di potenze

4k 22k 1 12k
L=limsup/]an|= lim 7 im X - lim 2[—] =2
nsep [an| Db sz enne V2 Tl A2

Si noti che i coefficienti dispari realizzano la sottosuccessione dei coefficienti che tende al liminf.
Il precedente limite implica che la serie converge assolutamente nell'intervallo (—1/2,1/2), visto che R = 1/L = 1/2.
Se x = +1/2 abbiamo che x? = 1/4 e la serie diventa

[e.e]
Z lz < +00
k=1 k
essendo una serie armonica generalizzata assolutamente convergente. Quindi la serie converge totalmente (e
quindi uniformemente, assolutamente e puntualmente) nell’intervallo [—1/2,1/2], infatti osservando che
4k | 4k k12 g
—xz‘ max |x2k| = [—] = —
k2 k212

2k
aX = su =—
lagexlloc 3 K2 xe[-172,172]
possiamo concludere le convergenze elencate precedentemente.

x€[—1/2,1/2]
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Riguardo alla derivabilita della serie dobbiamo ricordare che abbiamo bisogno di un intervallo aperto per poter
effettuare il limite del rapporto incrementale, per cui lintervallo massimale di derivabilita € (—1/2,1/2) e vale
che

00 Lk o0 A2k OO ~2k+1
4% 27 % - / 27 2k : 11
g(X)-Zk—ZX -Zk—zx da cui g(X)—Z TR perognix € | —5,5
k=1 =1 k=1
derivando termine a termine, grazie al torema di scambio tra derivazione e sommatoria (si osservi che, per
x = £1/2, la serie associata alla funzione derivata non converge puntualmente). ]

ESERcIZIO 17. Data la serie di funzioni
+00O
R
k+2
k=0
i. si determini l'insieme di convergenza E C R,

ii. si determini il sottoinsieme di E in cui la serie converge totalmente,
iii. si calcoli esplicitamente, se possibile, la somma della serie.

DISCUSSIONE. i. & i. Grazie alla sostituzione x? = t possiamo ricondurci ad una serie di potenze "standard’, ed
osservare che, siccome vale

k
im a= lm +/— =1
k*l>+00 3 k—l>+oo k+2

nella variabile t la serie converge puntualmente nell'intervallo (—1,1) e totalmente in ogni intervallo [a,b] C
(—1,1), e non é possibile avere convergenza in un intervallo pit ampio, visto che la successione dei coeffi-
cienti della serie non é infinitesima. Traducendo il risultato nella variabile x abbiamo che la serie converge
puntualmente nell'intervallo (—1,1) e totalmente in ogni intervallo chiuso contenuto in (—1,1) (questo perché
Vi=1).

iii. Per il calcolo della somma procediamo usando i teoremi di scambio tra serie e integrazione o derivazio-
ne. Innanzitutto, grazie alla sostituzione t = x2, abbiamo a che fare con una serie pitl semplice, che possiamo
riscrivere come segue

Zk+2tk Z[1—k+2]tk Ztk ZZ—tk ZZ—tk te [ab] C (—1,1)

dove abbiamo usato la convergenza totale e la somma (nota) della serie geometrica. Riguardo alla seconda
serie abbiamo che

k+2 t]roo
Zk St Zk zttz tzZJ k*‘ds-tzL[Z s ds'_L ) d|ds

=
1 (" s 1

da cui ricaviamo

- k 1 t+ln(1—t)
) gt e
. k+2 —t 2

Osserviamo che nei calcoli precedenti abbiamo moltiplicato e diviso per t2, introducendo (solo apparentemen-
te) un problema per t = O, in realta tutte le funzioni che compaiono nei calcoli devono essere pensate estese
per continuita per t = O, in modo da ottenere funzioni regolari. Ritornando alla variabile x otteniamo

Z o x2 +ln(1—x2)
k+ 2 1—x2 x4

il che conclude lesercizio. ]




16 EM

ESERcCIZIO 18. Data la serie

122 gky 2k
y)
k=1 k
si determini

i. linsieme di convergenza E,

ii.. il sottoinsieme di E in cui la serie converge totalmente,

iii. determinare il sottoinsieme di E in cui la serie risulta derivabile,
iv. determinare il sottoinsieme di E in cui la serie converge in L2.

DISCUSSIONE. La serie di potenze in oggetto €, in realta, la serie

ia M con an - 4*"2/n2 1 pari
n n 0] n dispari

n=1

Il criterio di Hadamard ci permette di calcolare rapidamente il raggio di convergenza di questa serie di potenze

4k 22k 1 11/2k
L=timsup {lanl = tm R[5 = im §/%5 - im 2| 5] -2
rl\mst;g |an ‘ |I'T1oo kz klmoo k2 ‘ ||'nOO kz

Si noti che i coefficienti dispari realizzano la sottosuccessione dei coefficienti che tende al liminf.

Il precedente limite implica che la serie converge assolutamente nell'intervallo (—1/2,1/2), visto che R = 1/L = 1/2.

Se x = £1/2 abbiamo che x = 1/4 e la serie diventa

[&.°]
Z l < +00
2

k=1 k

essendo una serie armonica generalizzata assolutamente convergente. Quindi la serie converge totalmente (e

quindi uniformemente, assolutamente e puntualmente) nell'intervallo E = [—1/2,1/2], infatti osservando che
4k o1 4k akp1yk

—X2‘=— max |x2k|=—[ ] = —

kZ k2 xe[-1/2,1/2] k2 k2

2k
2o = sup :

xe[—1/2,1/2]
possiamo concludere le convergenze elencate precedentemente.
Riguardo alla derivabilita della serie dobbiamo ricordare che abbiamo bisogno di un intervallo aperto per poter
effettuare il limite del rapporto incrementale, per cui lintervallo massimale di derivabilita & (—1/2,1/2) e vale
che

X 4k X 22k 00 2k
g(x) = kZ ;:—ZXZI‘ = kZ 2k—2xZk dacui  g'(x)= kZ 2 " x 2k per ogni x € (—% %)
=1 =1 =1

derivando termine a termine, grazie al torema di scambio tra derivazione e sommatoria (si osservi che, per
x = £1/2, la serie associata alla funzione derivata non converge puntualmente).

iv. Sappiamo che la serie di funzioni converge puntualmente (quindi quasi ovunque) in E, per la discussione
svolta in i, osservando che

N gky2k| N gky2k N o0
~ 457 4%x 1 1 oo
\fN(x)|.-Z 2 Z 2 ng—ZSZk—ZSCeL (E) qo.xeE
k=1 k=1 k=1 k=1
la convergenza in L(E) segue dal teorema di convergenza dominata di Lebesgue. n

ESERCIZIO 19. Data la serie di funzioni
+00
RS
k+2
k=0
i. si determini l'insieme di convergenza E C R,

ii. si determini il sottoinsieme di E in cui la serie converge in L',
iii. si calcoli esplicitamente, se possibile, la somma della serie.
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DISCUSSIONE. i. Grazie alla sostituzione x? = t possiamo ricondurci ad una serie di potenze "standard”, ed
osservare che, siccome vale

— k
l. Kk - |. k o 1
klnoo 2 kl)?oo k+2

nella variabile t la serie converge puntualmente nellintervallo (—1,1) e totalmente in ogni intervallo [a,b] C
(—1,1), e non & possibile avere convergenza in un intervallo pitl ampio, visto che la successione dei coefficien-
ti della serie non é infinitesima. Traducendo il risultato nella variabile x abbiamo che la serie converge pun-
tualmente nell'intervallo E = (—1,1) e totalmente in ogni intervallo chiuso contenuto in (—1,1) (questo perché
Vi=1l).

iii. Per il calcolo della somma procediamo usando i teoremi di scambio tra serie e integrazione o derivazio-
ne. Innanzitutto, grazie alla sostituzione t = x2, abbiamo a che fare con una serie piti semplice, che possiamo
riscrivere come segue

- k = 2 = = 1 1

Z k_Z _ k=Z k Z k _ Z k _
k+2t = [1 k+2]t t 2 _k+2t —1_ 2 —t te[a,b]g( 1,1)

k=0 k=0 k=0 k=0

dove abbiamo usato la convergenza totale e la somma (nota) della serie geometrica. Riguardo alla seconda
serie abbiamo che

AL ol AL £l ISR B Ec
Zk 2k Zk zt t_zéJ‘OSk1ds=t_2J‘o[Zsk1lds=t_zJ;{Zslld5

k=0 =1

lzj %dt-—[ t—In(1—1)]

da cui ricaviamo

1 _[teln(i—1)
k ‘ﬁz[—tz ]

Osserviamo che nei calcoli precedenti abbiamo moltiplicato e diviso per t2, introducendo (solo apparentemen-
te) un problema per t = O, in realta tutte le funzioni che compaiono nei calcoli devono essere pensate estese
per continuita per t = O, in modo da ottenere funzioni regolari. Ritornando alla variabile x otteniamo

x2 +n(1— x2)
Zkz 1_X2 2[ 3 ]=S(x)

il che conclude iii.

ii. Poiché la serie € a termini positivi e abbiamo gia mostrato che la successione delle troncate converge quasi
ovungque alla funzione limite in (—1,1), possiamo dire che abbiamo convergenza L' in ogni intervallo | C E tale
che S € L'(1). Osservando che

1
1—x2

S(x) ~ per x — +1

da cui abbiamo che S ¢ L'(E), possiamo concludere che | pud essere un qualsiasi intervallo strettamente con-
tenuto in (—1,1). n

Esercizio 20. Data la seguente serie di funzioni
v ()

k+1
k=0

[f(x)]Z(kﬂ)

se ne calcoli la somma, spiegando dove converge puntualmente ed uniformemente.
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DISCUSSIONE. Ignorando, per il momento, il problema della convergenza della serie di funzioni, procediamo
in maniera formale e, grazie alla sostituzione z = f(x), svolgiamo i seguenti calcoli

t2k+2

+OO( 1) 2%+2 k . P TN N IR B
ot Zz S T éz-(—nfos ds—LZsZ(—Us ds

k=0
t
=L 1+S2ds ln(1+t2)

Non sara sfuggito ad alcun studente/ssa che il passaggio chiave dei precedenti calcoli € la convergenza della
serie geometrica, quindi tutti i calcoli sono corretti per t € [a,b] C (—1,1). In conclusione, tornando alla variabile
X, possiamo affermare che

)y ke 1 [F612% = (1+F2(2)

per ogni x € R tale che [f(x)| <0 < 1. |

ESERCIZIO 21. Data la serie di funzioni

> 2
Zeka x€R

k=0
i. si determini l'insieme di convergenza puntuale,
ii. si determini l'insieme di convergenza uniforme,
iii. si determini l'insieme di convergenza L2,
iv. si scriva la funzione somma (dove esiste).

. . y .. . . N . _ 2
DiscussioNE. Cominciamo lesercizio con una osservazione, che si rivelera cruciale, ponendo e™ = w la
serie di funzioni si trasforma nella seguente serie geometrica

o0
Zwk weR
k=0

della quale sappiamo vita, morte e miracoli... in particolare abbiamo che la serie

a. converge puntualmente ed assolutamente per w € (—1,1),

b. converge uniformemente e totalmente in ogni intervallo [a,b] C (—1,1),

¢. non converge per w € (—oo, —1JU[1,+00).

Allora possiamo subito concludere che

i. la serie di funzioni iniziale converge puntualmente ed assolutamente quando e € (-1,1), cioé per x = O,

ricordando le proporieta della funzione esponenziale.

ii. la serie di funzioni iniziale converge totalmente, e quindi uniformemente, quando e € [a,b] C (—1,1) per

ogni a,b fissati. Cioé per x € (—oo, —6] U [§,+00) con il parametro ¢ > O fissato.

iv. Il calcolo della somma discende, nuovamente, dalle proprieta della serie geometrica, infatti vale
T 1 e’

_1fw=1_e7x2=ex2_1zs(x) perx = 0

k=0
naturalmente abbiamo usato nuovamente la sostituzione w = e ™",
iii. Poiché la serie di funzioni & una serie a termini positivi che converge puntualmente alla funzione S (per
x = 0), dal teorema della convergenza monotona di Levi possiamo dire che abbiamo convergenza in L%(E) per
ogniE C Rtaleches e L2(E), quindi per ogni insieme E per il quale esista § > O tale che E C (—oo0, —§]U[4, +00).
[

ESerciziO 22. Sirisolva tramite lo sviluppo in serie di potenze la seguente equazione differenziale

u'(t) — u(t) = et
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DiscussiONE.  Cercare le soluzioni di unequazione differenziale in forma di serie di potenze, significa suppor-
re (o sapere a priori) che la soluzione sia una funzione analitica in un intervallo non degenere. Poi, ricordando
che tale serie é derivabile termine a termine, otteniamo

= Z at  dacui  U(1)= Z kay t“ = Z (n+Nap,t"
k>0 k>1 n>0

e sostituendo queste espressioni nellequazione differenziale cerchiamo di tradurre lequazione differenziale in
un sistema algebrico di infinite equazioni aventi i coefficienti a; come incognite. Ricordando lo svilupo in serie
della funzione esponenziale lequazione differenziale che ci interessa risolvere si riscrive nel seguente modo

1
n n_ 4N
Z(n+1)an+1t - Zant - Z St
n>0 n>0 n>0
da cui ricaviamo
1
) [(n+1)an+1 —an— m]t” =0
n>0 )

che si traduce nella legge per ricorrenza

a 1 a L 8n_ —1 con ap=cc€R
= — + — | = + =
MR M nl T el (ne) 0
Provando a calcolare i primi elementi della successione dei coefficienti otteniamo
ap=c ar=c+1 a el 1 ¢ 1
= =C+ = —+ ===+
0 1 255 t5 %5

1 [c 1] 1 ¢ 1 1fc 1 1 c 1

===+ + —=—+ — ==|-"*+*=|+t— = —+ —

BI327"67672 MTale"2|"24 2476
questi coefficienti suggeriscono la seguente espressione

C 1
a“+1=—(n+1)!+ﬁ neN

che andiamo a provare per induzione. Abbiamo gia verificato che la formula proposta é effettivamente verifi-
cata per alcuni valori dell'indice, cioé per n = 1,2, 3, 4, per cui dobbiamo provare il passo induttivo, cioé che vale
limplicazione

<, 1 segue a <,

—+ = + —

T R S (N TR

infatti possiamo scrivere che

da ap-=

_an 1 _ 1 C 1 1
am"m*m'm[m*—mm]*m
C 1 1 1 C 1 n+1 C 1
=(n+1)!+(n+1)[(n—1)!+ﬁ] ( Tl o "l

") (nel) Nl (n+N nl

La formula provata ci permette di ottenere unespressione per la serie di potenze della soluzione della nostra
equazione differenziale

s b k. k, - Tk, - col s tat
u(t=c g[kl (k—1] CZklt L _1)| cZklt tZ ce'+te ceR

n>0

Si noti che non abbiamo alcuna informazione sul valore della funzione incognita u in un punto, per cui abbiamo
ottenuto infinite funzioni (tutte soluzioni dellequazione differenziale) parametrizzate da un parametro reale.
(]

ESERCIZIO 23. Siricavi lo spazio vettoriale delle soluzioni della seguente equazione differenziale

u’(t)—2tu’(t) =0
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DISCUSSIONE.  Innanzitutto osserviamo che possiamo considerare momentaneamente la seguente equazio-
ne differenziale

w/(t) — 2tw(t) = O

dove stiamo interessandoci alla funzione incognita w(t) = u’(t) in modo da ridurre lordine dellequazione. Sup-
poniamo che le soluzioni dellequazione differenziale siano funzioni analitiche e, quindi, sviluppabili in serie di
potenze intorno al punto tg = O, questo ci permette di scrivere che

w(t) = Z wi t€ e w/(t) = kaktk_1 = Z(k+ NWiqt€ per ognit € (—R,R)
k>0 k>1 k>0
e sostituendo nell’equazione differenziale (del primo ordine) otteniamo la relazione

—2tw/(0)= ) kw T -2t ) witk- Z(|+2 Wit = ) 2wt

k>1 k>0 k>0
s Y 1 g2 ]1=0
k>0
E poiché una serie di potenze é la serie relativa alla funzione identicamente nulla se e solo se tutti i suoi
coefficienti sono nulli, otteniamo le seguenti relazioni
2 w
(k+2)"¢

La formula per ricorrenza fa dipendere il valore del coefficiente w,, dal coefficiente wy, e siccome wy = O per
induzione abbiamo che

wy=0 e Wi, =

O=wy=wW3=..2 Wy, =.. per ognik > 1
mentre per i coefficienti con indice pari, sesmpre procedendo per induzione, otteniamo
2 1 2 1 1
WHr=-Wo =W w —W»H = W Wg = —~Wy =W e WoL = —W
2= 3Wo =Wo 4= 2W2=5Wo 6= gW4=gWo %7 g

In generale abbiamo ottenuto che

wo € R Wy, =0 Wy = per ogni k

E
cioé
k _ 2j _
wit)= ) wt —t woe wg € R
k>0 J>O

Si noti che abbiamo ottenuto uno spazio vettoriale di dimensione 1, come spazio delle soluzioni, visto che

tutte le soluzioni costituiscono una retta generata dai multipli dalla funzione et’. Ritornando allequazione
differenziale originaria abbiamo ottenuto che

u'(t) = w(t) = woe® Z Wo,
J>O

da cui ricaviamo, ricordando anche che w(0) = u’(0) = uy, usando il teorema fondamentale del calcolo integrale
e il teorema di scambio tra serie ed integrale, le seguenti uguaglianze

t 2
u(t)—u(O)=u(t)—uo=J /(s)ds = wofe ds = WoZJ '

j>0
t2]+1 t2|+1

OZ(zl+1 1Z @1 = wE(t)

In conclusione possiamo descrivere lo spazio vettorlale, di dimensione 2, delle soluzioni dellequazione diffe-
renziale iniziale nel seguente modo

1 .
u(t) = Up +Uq Z thk 12 ug +uE(t) conug,u; € R
k>0 '
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che é equivalente a dire che una base dello spazio vettoriale & costituito dalle funzioni 1ed E(t). Naturalmente &
possibile discutere direttamente lequazione del secondo ordine, ottenendo una rappresentazione dello stesso
spazio vettoriale. m




