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ESERCIZIO 1. Assegnato il campo vettoriale

F(x1, x2, x3) =
(
−

x2
rn , x1

rn ,0
)

dove r2 = (x2
1 + x2

2)

se ne calcoli la circuitazione lungo la circonferenza centrata in O di raggio R > 0 contenuta nel piano {x3 = 0}, al
variare del parametro n.

ESERCIZIO 2. Si calcoli il lavoro del campo vettoriale
F(x1, x2, x3) = (2x2 + 1,2x1− 1,2x3)

lungo una linea che congiunge i punti (0,0,0) e (1,−1/2, 1).

ESERCIZIO 3. Determinare per quali valori del parametro a il campo vettoriale

F(x) =
x2 ln(x3)− 1

2 a2x1 ln(x2), xa
3 + x1 ln(x3)−

x2
1

x2
, ax2x3 + x1x2

x3


è conservativo nel suo insieme di definizione. In corrispondenza di questi valori calcolare il potenziale di F che si
annulla in (1,2,3).

ESERCIZIO 4. Sia F il campo vettoriale

F(x) = (2x1g(x3),0,x2
1 g(x3))

i. Determinare la funzione g ∈ C1(�,�) tale che g(0) = 1 e tale che F sia conservativo nel suo insieme di definizione.
ii. Calcolare il lavoro compiuto da F lungo la curva

x(t) = (t2 cos(t),arctan(t3), t2 sin(t)) t ∈ [0,π]

ESERCIZIO 5. Si spieghi perché la seguente forma differenziale

ω =
[
2x1x2−

1
x1

]
dx1 + x2

1 dx2

è esatta e se ne calcolino tutti i potenziali.

ESERCIZIO 6. Sia A = �2 \ {O} e ω ∈ C1(A) una forma differenziale chiusa in A e supponiamo che esista una curva
chiusa, semplice, regolare a tratti di parametrizzazione φ avente sostegno γ = ∂D⊆ A, con O ∈ D, e tale che∮

γ
ω = 0

Si provi che ω è esatta.
1
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ESERCIZIO 7. Calcolare∫
γ

x2ex1 dx1 +
ex1 +

ln(x2
2)

x2

dx2


dove γ è il sostegno della curva del piano {x3 = 0} di parametrizzazione

γ :
{
x(t) =

(
tg(t) + 2sin(t), tg2(t),0

)
: t ∈ [π/4,π/3]

}
ESERCIZIO 8. Determinare per quali a ∈� la forma differenziale

ω = x2x3
(x2 + 2x1

)dx1 + x1x3
(2x2 + x1

)dx2 +
[
x1x2(x1 + x2) + ax2

3
]

dx3

è esatta. Poi si calcoli, per a = 1, l’integrale della forma differenziale ω lungo la curva γ(t) = (cos(t), sin(t), t2), con
t ∈ [−π,π].

ESERCIZIO 9. Dato il campo vettoriale

F(x) =
x2

2 + 2x1x2− x2
1

(x2
1 + x2

2)2 ,
x2

2− 2x1x2− x2
1

(x2
1 + x2

2)2


si dimostri che F è conservativo in �

2 \ {O} e se ne trovi un potenziale.

ESERCIZIO 10. Determinare la funzione φ ∈ C1(� \ {0}) con φ(1) = 1 tale che la forma

ω(x1, x2, x3) =
 1

x1
−

x2x3
x2

1

dx1 + x3φ(x1)dx2 +
(

1
x3

+ x2
x1

)
dx3

sia esatta. In corrispondenza di tale φ si trovi la primitiva che si annulla nel punto p = (1, 1, 1).

ESERCIZIO 11. Sia f ∈ L2(�) una funzione continua q.o., si provi se le seguenti affermazioni sono vere o false
i. limx−→+∞ f(x) = 0,
ii. f può avere al più un numero finito di asintoti verticali.

ESERCIZIO 12. Si consideri la successione di funzioni

fk(x) =


√

k(1− kx) x ∈ [0, 1/k]
0 x ∈ [1/k, 1]

si calcoli il limite puntuale della successione {fk} ⊆ L2(0, 1), il limite degli integrali e si commenti il risultato ottenuto
alla luce del teorema di convergenza dominata.

ESERCIZIO 13. Sia χk(x) = χ[−k,k](x) (cioè la funzione caratteristica dell’intervallo [−k,k]), si dimostri che

i. se h ∈ L1(�) allora hk = hχk ∈ L1(�) e hk −→ h in L1(�)

ii. se h ∈ L2(�) allora hk = hχk ∈ L2(�) e hk −→ h in L2(�)

ESERCIZIO 14. Assegnata la successione

fk(x) =
k¼

j=1
j2−jχ[0,1/j](x) x ∈ [0, 1]
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e definita f(x) come il limite puntuale della successione, si usi il teorema di convergenza monotona per calcolare∫
[0,1]

f(x)dx

ESERCIZIO 15. Posto

X = L2(�) e Y =
{

f misurabile in � :
∫
�

|f(x)|2e−x2 dx< +∞
}

si mostri la correttezza delle seguenti affermazioni
i. X⊆ Y e l’inclusione è stretta,
ii. fn = χ[n,n+1]−̸→ 0 in X,
iii. fn −→ 0 in Y,
iv. se gn −→ 0 in X allora gn −→ 0 in Y.

ESERCIZIO 16. Data la serie
+∞¼
k=1

4kx2k

k2

si determini
i. l’insieme di convergenza E,
ii. il sottoinsieme di E in cui la serie converge totalmente,
iii. determinare il sottoinsieme di E in cui la serie risulta derivabile.

ESERCIZIO 17. Data la serie di funzioni
+∞¼
k=0

k
k + 2 x2k

i. si determini l’insieme di convergenza E⊆�,
ii. si determini il sottoinsieme di E in cui la serie converge totalmente,
iii. si calcoli esplicitamente, se possibile, la somma della serie.

ESERCIZIO 18. Data la serie
+∞¼
k=1

4kx2k

k2

si determini
i. l’insieme di convergenza E,
ii. il sottoinsieme di E in cui la serie converge totalmente,
iii. determinare il sottoinsieme di E in cui la serie risulta derivabile,
iv. determinare il sottoinsieme di E in cui la serie converge in L2.

ESERCIZIO 19. Data la serie di funzioni
+∞¼
k=0

k
k + 2 x2k

i. si determini l’insieme di convergenza E⊆�,
ii. si determini il sottoinsieme di E in cui la serie converge in L1,
iii. si calcoli esplicitamente, se possibile, la somma della serie.
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ESERCIZIO 20. Data la seguente serie di funzioni
+∞¼
k=0

(−1)k

k + 1
[f(x)]2(k+1)

se ne calcoli la somma, spiegando dove converge puntualmente ed uniformemente.

ESERCIZIO 21. Data la serie di funzioni
∞¼

k=0
e−kx2 x ∈�

i. si determini l’insieme di convergenza puntuale,
ii. si determini l’insieme di convergenza uniforme,
iii. si determini l’insieme di convergenza L2,
iv. si scriva la funzione somma (dove esiste).

ESERCIZIO 22. Si risolva tramite lo sviluppo in serie di potenze la seguente equazione differenziale
u′(t)− u(t) = et

ESERCIZIO 23. Si ricavi lo spazio vettoriale delle soluzioni della seguente equazione differenziale
u′′(t)− 2tu′(t) = 0

SVOLGIMENTI

ESERCIZIO 1. Assegnato il campo vettoriale

F(x1, x2, x3) =
(
−

x2
rn , x1

rn ,0
)

dove r2 = (x2
1 + x2

2)

se ne calcoli la circuitazione lungo la circonferenza centrata in O di raggio R > 0 contenuta nel piano {x3 = 0}, al
variare del parametro n.
DISCUSSIONE. Parametrizziamo la circonferenza C nel seguente modo

x(t) = R(cos(t), sin(t),0) t ∈ [0,2π]
è ben noto che tale parametrizzazione è regolare. Calcoliamo la circuitazione del campo lungo C, ricordando
la definizione di tale integrale, in modo da ottenere∮

C
F(x) · ds =

∫ 2π

0

(
−

x2(t)
rn(t) , x1(t)

rn(t) ,0
)
· x′(t)dt

=
∫ 2π

0

 −Rsin(t)

Rn
[
cos2(t) + sin2(t)

]n/2 , Rcos(t)

Rn
[
cos2(t) + sin2(t)

]n/2 ,0

 ·R(−sin(t), cos(t),0)dt

= 1
Rn−2

∫ 2π

0
dt = 2π

Rn−2

Notiamo che tale integrale (lungo una curva chiusa) non è mai nullo e, per n = 2, il risultato è indipendente dal
raggio della circonferenza C.

ESERCIZIO 2. Si calcoli il lavoro del campo vettoriale
F(x1, x2, x3) = (2x2 + 1,2x1− 1,2x3)

lungo una linea che congiunge i punti (0,0,0) e (1,−1/2, 1).
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DISCUSSIONE. Ricordando che

F1(x) = 2x2 + 1 F2(x) = 2x1− 1 F3(x) = 2x3

il campo vettoriale F = (F1, F2, F3) è di classe C∞(�3) che è un insieme semplicemente connesso. Inoltre poiché
vale

rotF(x) =


e1 e2 e3
∂1 ∂2 ∂3

2x2 + 1 2x1− 1 2x3

 = O = (0,0,0)

Quindi F è conservativo, in quanto irrotazionale in un aperto stellato, per il teorema di Poincaré. Ne segue che il
lavoro richiesto non dipende dal percorso che congiunge (0,0,0) e (1,−1/2, 1) ma solo dagli estremi. Il segmento
che congiunte i due punti ha equazione parametriche

x(t) = (t,−t/2,= t) con t ∈ [0, 1]

Ne segue che il lavoro richiesto è dato da

W =
∫ 1

0

[
F1(x1(t),x2(t),x3(t))x′1(t) + F2(x1(t),x2(t),x3(t))x′2(t) + F3(x1(t),x2(t),x3(t))x′3(t)

]
dt

=
∫ 1

0

[
1 + 1

2 (1− 2t) + t
]

dt = 3
2

Un altro modo possibile di procedere è costruire un potenziale del campo vettoriale, i potenziali U(x,y,z) di F
devono soddisfare le relazioni

∂1U(x) = 2x2 + 1 ∂2U(x) = 2x1− 1 ∂3U(x) = 2x3

Integrando rispetto a x1 la prima relazione si trova

U(x) = 2x1x2 + x1 + g(x2, x3)

La funzione g(x2, x3) si determina derivando rispetto a x2 e imponendo l’uguaglianza con ∂2U(x), cioè

2x1 + ∂2g(x2, x3) = 2x1− 1 da cui g(x2, x3) =−x2 + f(x3)

Dunque abbiamo che U(x) = 2x1x2 + x1 − x2 + f(x3). Derivando rispetto a x3 e imponendo l’uguaglianza con la
terza relazione ottenuta prima si trova

f′(x3) = 2x3 cioè f(x3) = x2
3 + c

In definitiva

U(x) = U(x1, x2, x3) = 2x1x2 + x1− x2 + x2
3 + c c ∈�

Il lavoro richiesto vale

W = U
(
1,− 1

2 , 1
)
−U(0,0,0) = 3

2

in perfetto accordo con il calcolo precedente.

ESERCIZIO 3. Determinare per quali valori del parametro a il campo vettoriale

F(x) =
x2 ln(x3)− 1

2 a2x1 ln(x2), xa
3 + x1 ln(x3)−

x2
1

x2
, ax2x3 + x1x2

x3


è conservativo nel suo insieme di definizione. In corrispondenza di questi valori calcolare il potenziale di F che si
annulla in (1,2,3).
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DISCUSSIONE. Il campo F è definito in A = {x ∈ �
3 : x1, x3 > 0}, insieme semplicemente connesso dello

spazio, quindi F è conservativo in A se e solo se è irrotazionale, cioè se e solo se rot(F) = O. Con alcuni calcoli
troviamo che

rot(F) =


e1 e2 e3
∂1 ∂2 ∂3

x2 ln(x3)− a2x1
2 ln(x2) xa

3 + x1 ln(x3)−
x2

1
x2

ax3x2 + x1x2
x3


=
(
ax3− axa−1

3 ,0,
(
a2−4

) x1
2x2

)
dalla terza componente del rotore si trova che deve essere a = ±2. Sostituendo questi valori nella prima
componente si vede che rot(F) = (0,0,0) se e solo se a = 2.
Adesso possiamo cercare i potenziali U del campo F conservativo

F(x) =
x2 ln(x3)− 2x1 ln(x2), x2

3 + x1 ln(x3)−
x2

1
x2

,2x3x2 + x1x2
x3


sapendo che U deve verificare le seguenti relazioni

∂1U(x) = x2 ln(x3)− 2x1 ln(x2) ∂2U(x) = x2
3 + x1 ln(x3)−

x2
1

x2
∂3U(x) = 2x3x2 + x1x2

x3

Integrando rispetto a x1 la prima relazione si trova

U(x) = x1x2 ln(x3)− x2
1 ln(x2) + g(x2, x3)

Deriviamo rispetto a x2 e imponiamo la seconda relazione

x1 ln(x3)−
x2

1
x2

+ ∂2g(x2, x3) = x2
3 + x1 ln(x3)−

x2
1

x2
quindi ∂2g(x2, x3) = x2

3 da cui g(x2, x3) = x2x2
3 + f(x3)

Quindi si ha U(x) = x1x2 ln(x3)− x2
1 ln(x2) + x2x2

3 + f(x3). Deriviamo rispetto a x3 e imponiamo l’ultima relazione
x1x2
x3

+ 2x2x3 + f′(x3) = 2x2x3 + x1x2
x3

cioè f′(x3) = 0 e otteniamo f(x3) = c

Concludiamo che i potenziali sono dati da

U(x1, x2, x3) = x1x2 ln(x3)− x2
1 ln(x2) + x2x2

3 + c

imponendo la condizione U(1,2,3) = 0 si trova c = ln(2)− 2ln(3)− 18.

ESERCIZIO 4. Sia F il campo vettoriale

F(x) = (2x1g(x3),0,x2
1 g(x3))

i. Determinare la funzione g ∈ C1(�,�) tale che g(0) = 1 e tale che F sia conservativo nel suo insieme di definizione.
ii. Calcolare il lavoro compiuto da F lungo la curva

x(t) = (t2 cos(t),arctan(t3), t2 sin(t)) t ∈ [0,π]

DISCUSSIONE. i. Il campo F = (F1, F2, F3) è definito in �
3 che è semplicemente connesso, in quanto convesso,

quindi il campo è conservativo se e solo se è irrotazionale. Quindi g deve essere tale che

∂3F1(x1, x2, x3) = ∂1F3(x1, x2, x3)

cioè tale che 2x1g′(x3) = 2x1g(x3), quindi g deve risolvere il problema di Cauchy{
g′(s) = g(s)
g(0) = 1

quindi g(s) = es.
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ii. Il punto iniziale della curva è (0,0,0), mentre il punto finale è (−π2, arctan(π3),0), quindi se determiniamo
un potenziale U del campo F allora il lavoro compiuto lungo la curva γ vale∫

γ
F · ds = U

(
−π2, arctan(π3),0

)
−U(0,0,0)

Calcoliamo ora un potenziale U, cioè una funzione che verifica le seguenti condizioni

∂1U(x) = 2x1ex3 ∂2U(x) = 0 ∂3U(x) = x2
1 ex3

Integrando rispetto a x la prima relazione si trova

U(x1, x2, x3) = x2
1 ex3 +φ(x2, x3)

Se deriviamo rispetto a x2 e imponiamo la seconda condizione otteniamo immediatamente che ∂2φ(x) = 0,
quindi φ(x) = φ(x3) e allora

U(x1, x2, x3) = x2
1 ex3 +φ(x3)

Per determinare ψ deriviamo U rispetto a x3 e imponiamo la terza condizione per trovare

x2
1 ex3 = x2

1 ex3 +φ′(x3)

quindi φ è costante. Siccome ci basta determinare UN potenziale (e non tutti i potenziali) possiamo scegliere
φ≡ 0, quindi

U(x1, x2, x3) = x2
1 ex3

e il lavoro compiuto da F lungo la curva risulta valere U(−π2, arctan(π3),0)−U(0,0,0) = π4.

ESERCIZIO 5. Si spieghi perché la seguente forma differenziale

ω =
[
2x1x2−

1
x1

]
dx1 + x2

1 dx2

è esatta e se ne calcolino tutti i potenziali.

DISCUSSIONE. ω è definita in �
3 \ {x1 = 0} che è un sottoinsieme dello spazio avente due componenti con-

nesse, {x1 > 0} e {x1 < 0}, ognuna delle quali è semplicemente connessa, in quanto aperto convesso. Quindi
se ω è chiusa in �

3 \ {x1 = 0}, allora è anche esatta, ed In effetti ω è chiusa, visto che

2x1 = ∂2

[
2x1x2−

1
x1

]
= ∂1

[x2
1
] = 2x1

Cerchiamo ora di calcolare le primitive di ω. Integrando rispetto a x2 il secondo coefficiente della forma otte-
niamo

U(x1, x2) = x2
1 x2 +φ(x1)

ma allora, dovendo essere ∂1U(x1, x2) = 2x1x2−
1

x1
, abbiamo che

φ′(x1) =− 1
x1

da cui ricaviamo

φ(x) =
{
− ln(−x1) + c− se x1 < 0
− ln(x1) + c+ se x1 > 0 con c−, c+ ∈�

da cui otteniamo che

U(x,y) =
{

x2
1 x2− ln(−x1) + c− se x1 < 0

x2
1 x2− ln(x1) + c+ se x1 > 0 con c−, c+ ∈�

Sottolineiamo che le due costanti additive sono indipendenti l’una dall’altra, quindi le primitive della forma
differenziale sono tante quante i punti del piano �

2.
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ESERCIZIO 6. Sia A = �2 \ {O} e ω ∈ C1(A) una forma differenziale chiusa in A e supponiamo che esista una curva
chiusa, semplice, regolare a tratti di parametrizzazione φ avente sostegno γ = ∂D⊆ A, con O ∈ D, e tale che∮

γ
ω = 0

Si provi che ω è esatta.

DISCUSSIONE. Supponiamo, per semplicità, che D = {x2
1 + x2

2 < 1}, in modo che γ = {x2
1 + x2

2 = 1}, sia ω =
a(x)dx1 + b(x)dx2 e consideriamo l’aperto

Ã = A \ {(x1,0),x1 > 0} ⊆ A⊆�
2

Siccome Ã è semplicemente connesso, esiste un potenziale U(x1, x2) ∈ C2(Ã) tale che

∇U(x1, x2) = (a(x1, x2),b(x1, x2)) e U(−1,0) = 0

Poiché ω (o meglio i suoi coefficienti a(x1, x2) e b(x1, x2)) è definita in tutto A ed è di classe C1, per provare la
tesi sarà sufficiente mostrare che U può essere esteso per continuità in tutto l’aperto A, cioè prolungata sulla
semiretta, quindi dobbiamo mostrare che

lim
ε−→0+

U(x1,ε) = lim
ε−→0−

U(x1,ε) per ogni x1 ∈ (0,+∞)

Siccome in Ã la forma è esatta possiamo scrivere che

U(x1,ε) =


∫

s+∪γ+
ω per ε > 0∫

s−∪γ−
ω per ε < 0

avendo scelto un cammino composto di due tratti concatenati dove γ± è l’arco di circonferenza avente come
estremi (rispettivamente) i punti (−1,0) e (

√
1− ε2,±ε) e s± è (rispettivamente) il segmento orizzontale di

estremi (
√

1− ε2,±ε) e (x0,±ε).
A questo punto la tesi equivale a mostrare che

lim
ε−→0+

[∫
s+∪γ+

ω−
∫

s−∪γ−
ω

]
= 0

per il teorema di Lagrange (si ricordi che ω è di classe C1!), segue che∫
γ+∪s+

ω−
∫
γ−∪s−

ω =
∫
γ+
ω +

∫
s+
ω−

∫
γ−

ω−
∫

s−
ω

=
∫
γ+
ω−

∫
γ−

ω +
∫ x0

√
1−ε2

[a(t,ε)− a(t,−ε)]dt

=
∫
γ+
ω−

∫
γ−

ω + 2ε
∫ x0

√
1−ε2

∂2a(t,η(ε))dt

e passando al limte per ε che tende a zero troviamo che

lim
ε−→0+

[U(x0,ε)−U(x0,−ε)] =
∫
γ
ω = 0

il che garantisce la possibilità di estendere il potenziale U su tutto A.

ESERCIZIO 7. Calcolare∫
γ

x2ex1 dx1 +
ex1 +

ln(x2
2)

x2

dx2


dove γ è il sostegno della curva del piano {x3 = 0} di parametrizzazione

γ :
{
x(t) =

(
tg(t) + 2sin(t), tg2(t),0

)
: t ∈ [π/4,π/3]

}
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DISCUSSIONE. Il calcolo dell’integrale applicando la definizione è evidentemente complicato, quindi cerchia-
mo un modo più semplice, che eviti eccessivi tecnicismi. La forma differenziale ω = x2ex1 dx1 +

(
ex1 + ln(x2

2)
x2

)
dx2

è di classe C∞ in �
3 privato del piano {x2 = 0}, inoltre la forma ω è chiusa dato che

∂2x2ex1 = ex1 = ∂1

ex1 +
ln(x2

2)
x2

 e ∂3x2ex1 = ∂3

ex1 +
ln(x2

2)
x2

 = 0

quindi ω è localmente esatta. In più possiamo dire che è esatta in tutto il semispazio A = {x ∈�
3 : x2 > 0} che

è semplicemente connesso. Allora cerchiamo una primitiva U diω, cioè una funzione che verifichi le condizioni

∂1U(x) = x2ex1 ∂2U(x) = ex1 +
ln(x2

2)
x2

∂3U(x) = 0

Integrando rispetto a x1 la prima relazione si trova
U(x) = x2ex1 + g(x2, x3)

La funzione g si determina derivando rispetto alle altre variabili, infatti imponendo le altre relazioni troviamo
che

ex1 + ∂2g(x2, x3) = ex1 +
ln(x2

2)
x2

e ∂3g(x2, x3) = 0

da cui g(x) = ln2(x2) + c con c ∈� arbitraria. Riassumendo abbiamo provato che

U(x) = x2ex1 + ln2(x2)
è una primitiva in A (con c = 0) e siccome la curva γ è contenuta nel semipiano A e congiunge il punto p =(
1 +
√

2, 1,0
)

(punto iniziale della curva) al punto q =
(
2
√

3,
√

3,0
)

(punto finale). Per la caratterizzazione delle
forme differenziali esatte si ha che l’integrale richiesto è dato da

U(q)−U(p) = 3e2
√

3− e1+
√

2 + ln2 (√
3
)

il che conclude lo svolgimento.

ESERCIZIO 8. Determinare per quali a ∈� la forma differenziale

ω = x2x3
(x2 + 2x1

)dx1 + x1x3
(2x2 + x1

)dx2 +
[
x1x2(x1 + x2) + ax2

3
]

dx3

è esatta. Poi si calcoli, per a = 1, l’integrale della forma differenziale ω lungo la curva γ(t) = (cos(t), sin(t), t2), con
t ∈ [−π,π].

DISCUSSIONE. i. La forma è definita in tutto �
3, per il teorema di Poincaré (essendo �

3 semplicemente
connesso) la forma è esatta se e solo se è chiusa, quindi verifichiamo le condizioni sui coefficienti

∂2[x2x3(x2 + 2x1)] = 2x3(x1 + x2) ∂1[x1x3(x1 + 2x2)] = 2x3(x1 + x2)

∂3[x2x3(x2 + 2x1)] = x2(x2 + 2x1) ∂1[x1x2(x1 + x2) + ax2
3] = x2(2x1 + x2)

∂3[x2x3(2x2 + x1)] = x1(x1 + 2x2) ∂2[x1x2(x1 + x2) + ax2
3] = x1(x1 + 2x2)

quindi ω è esatta, indipendentemente dal valore del parametro a ∈�, e i suoi potenziali sono le funzioni

U(x) = x1x2(x1 + x2)x3 + a
3 x3

3 + c c ∈�

ii. L’integrale richiesto è semplicemente la differenza dei valori assunti da un potenziale (per a = 1) agli estremi
del cammino individuato dalla parametrizzazione, quindi

L =
∫
γ
ω = U(1,0,π2)−U(1,0,π2) = 0

naturalmente tale valore è indipendente dalla particolare curva che connette i due punti e quindi è costante
anche rispetto a variazioni di γ che lasciano gli estremi inalterati.
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ESERCIZIO 9. Dato il campo vettoriale

F(x) =
x2

2 + 2x1x2− x2
1

(x2
1 + x2

2)2 ,
x2

2− 2x1x2− x2
1

(x2
1 + x2

2)2


si dimostri che F è conservativo in �

2 \ {O} e se ne trovi un potenziale.

DISCUSSIONE. L’esercizio può essere risolto in due modi differenti, e il più rapido è cercare subito un po-
tenziale, perché l’esistenza di un potenziale U implica immediatamente la conservatività del campo. Allora
osserviamo che deve valere

U(x1, x2) = Ax1 + Bx2
x2

1 + x2
2

+ c da cui segue

∂1U(x) =
−Ax2

1 − 2Bx1x2 + Ax2
2

(x2
1 + x2

2)2 =
x2

2 + 2x1x2− x2
1

(x2
1 + x2

2)2

∂2U(x) =
Bx2

1 − 2Ax1x2−Bx2
2

(x2
1 + x2

2)2 =
x2

2− 2x1x2− x2
1

(x2
1 + x2

2)2

che ci permette di determinare la seguente espressione per i potenziali di ω

U(x1, x2) = x1− x2
x2

1 + x2
2

+ c c ∈�, x ∈�
2 \ {O}

Volendo procedere con maggiore calma è possibile mostrare che la forma differenziale è chiusa, infatti abbiamo
che

∂2

x2
2 + 2x1x2− x2

1
(x2

1 + x2
2)2

 = 2
x3

1 + 2x2
1 x2− 3x1x2

2− x3
2

(x2
1 + x2

2)3

∂1

x2
2− 2x1x2− x2

1
(x2

1 + x2
2)2

 = 2
x3

1 + 2x2
1 x2− 3x1x2

2− x3
2

(x2
1 + x2

2)3

il prolema è che il dominio di ω non è semplicemente connesso (tantomeno stellato), per cui non possiamo
sfruttare il teorema di Poincaré per concludere che la 1-forma differenziale è esatta.

ESERCIZIO 10. Determinare la funzione φ ∈ C1(� \ {0}) con φ(1) = 1 tale che la forma

ω(x1, x2, x3) =
 1

x1
−

x2x3
x2

1

dx1 + x3φ(x1)dx2 +
(

1
x3

+ x2
x1

)
dx3

sia esatta. In corrispondenza di tale φ si trovi la primitiva che si annulla nel punto p = (1, 1, 1).

DISCUSSIONE. La forma differenziale ha dominio massimale D = �3 \ {x1x3 = 0}, D è un aperto dello spazio
unione di 4 aperti disgiunti, connessi e semplicemente connessi, quindi ω è aperta se e solo se è chiusa, cioè
se e solo se valgono le seguenti relazioni

∂2

 1
x1
−

x2x3
x2

1

 =− 1
x2

1
x3 = x3φ

′(x1) = ∂1
(x3φ(x1)

) cioè φ′(x1) =− 1
x2

1

∂3
(x3φ(x1)

) = φ(x1) = 1
x1

= ∂2

(
1

x3
+ x2

x1

)
cioè φ(x1) = 1

x1

∂1

(
1

x3
+ x2

x1

)
=−x2

x2
1

= ∂3

 1
x1
−

x2x3
x2

1

 che è verificata

Poiché le due condizioni relative alla funzione φ sono compatibili tra loro e soddisfano la richiesta φ(1) = 1,
otteniamo che ω è chiusa, quindi esatta e il gradiente di ogni sua primitiva ha un’espressione del tipo

∇U(x) =
 1

x1
−

x2x3
x2

1
, x3

x1
, 1
x3

+ x2
x1

 x ∈ D
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da cui ricaviamo che
U(x) = ln(|x1|) + ln(|x3|) + x2x3

x1
+ cj per x ∈ D e cj ∈� per j = 1,2,3,4

dove cj è una costante additiva della primitiva nella j-sima componente connessa di D = D1∪D2∪D3∪D4, dove
D1 = {x1, x3 > 0}, D1 = {x1 < 0< x3}, D1 = {x1, x3 < 0} e D1 = {x1 > 0> x3}. Infine notiamo che U(1, 1, 1) = 1+ c1,
quindi le primitive cercate hanno c1 = −1, ma non possiamo dire nulla riguardo c2, c3, c4 ∈ �, quindi possiamo
concludere dicendo che non è corretto aver usato l’articolo determinativo nel testo dell’esercizio...

ESERCIZIO 11. Sia f ∈ L2(�) una funzione continua q.o., si provi se le seguenti affermazioni sono vere o false
i. limx−→+∞ f(x) = 0,
ii. f può avere al più un numero finito di asintoti verticali.
DISCUSSIONE. i. Cominciamo osservando che una funzione del tipo

f0(x) =
{

1 se x ∈�

0 se x <�

non risponde alla nostra domanda, perché le funzioni nello spazio L2(�) sono rappresentanti di classi di fun-
zioni e la f0 appena proposta è nulla quasi ovunque, quindi f0 ∈ [0], cioè f0 è solo un rappresentante della
classe di equivalenza della funzione nulla. Questo primo esempio suggerisce che dobbiamo pensare qualcosa
di più elaborato, per esempio consideriamo la funzione

f1(x) =


2k

[
x− (k− 1/2k)

]
se x ∈

[
k− 1

2k , k
]

−2k
[
x− (k + 1/2k)

]
se x ∈

[
k,k + 1

2k

]
0 altrimenti

nella figura che segue riportiamo, sperando sia utile per comprendere meglio lo svolgimento, un tratto del
grafico della funzione f1

k− 1/2k k + 1/2k

(k, 1)

La funzione f1 è continua, in quanto è una funzione affine a tratti che si raccorda con continuità, quindi mo-
striamo che f1 ∈ L2(�), infatti, per le proprietà dell’integrazione secondo Lebesgue, vale∫

�

|f1(x)|2dx =
¼
k≥1

∫ k

k−1/2k
|f1(x)|2dx +

∫ k+1/2k

k
|f1(x)|2dx


=
¼
k≥1

∫ k

k−1/2k
22k [x− (k− 1/2k)

]2
dx

 +
¼
k≥1

∫ k+1/2k

k
22k [x− (k + 1/2k)

]2
dx


=
¼
k≥1

22k

3

(
x− k + 1

2k

)3k

k−1/2k
+
¼
k≥1

22k

3

(
x− k− 1

2k

)3k+1/2k

k

=
¼
k≥1

22k

3 ·
1

23k +
¼
k≥1

22k

3 ·
1

23k = 2
3

Quindi f1 è la funzione desiderata, visto che abbiamo provato che f1 ∈ L2(�)∩C0(�) e adesso osserviamo che
non esiste limk−→+∞ f1(x), in quanto

lim
k−→+∞

f1(k) = 1 e lim
k−→+∞

f1

(
k + 1

2

)
= 0
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ii. Per costruire un esempio che risponda alla seconda questione cominciamo ricordando che∫ 1/2

0

1
x1/2 dx =

∫ 1/2

0

∣∣∣∣∣ 1
x1/4

∣∣∣∣∣2 dx =
√

2

da cui possiamo definire la seguente funzione

f2(x) =


1

3k(x− k)1/4 se x ∈
(
k,k + 1

2

)
0 altrimenti

Osserviamo che f2 è continua quasi ovunque, visto che ha discontinuità solo nell’insieme {k,k + 1/2 : k ∈�} che
ha misura nulla, essendo un insieme formato da una quantità numerabile di punti isolati. Resta da mostrare
che f2 ∈ L2, quindi svolgiamo alcuni calcoli grazie alle proprietà di numerabile additività dell’integrale secondo
Lebesgue∫

�

|f2(x)|2dx =
¼
k≥0

∫ k+1/2

k
|f2(x)|2dx

 =
¼
k≥0

∫ k+1/2

k

[
1

3k(x− k)1/4

]2
dx

 =
¼
k≥0

∫ 1/2

0

[
1

3kt1/4

]2
dt


=
¼
k≥0

1
32k

[∫ 1/2

0

1
t1/2 dt

]
=
√

2
¼
k≥0

1
9k = 9

8
√

2

l’idea insita nella costruzione di f2 è che è possibile costruire una funzione con infiniti asintoti verticali il cui
sottografico circoscriva un’area finita, e la costruzione è fatta scalando oppurtunamente l’area sottostante il
grafico di 1/

√
x!

ESERCIZIO 12. Si consideri la successione di funzioni

fk(x) =


√

k(1− kx) x ∈ [0, 1/k]
0 x ∈ [1/k, 1]

si calcoli il limite puntuale della successione {fk} ⊆ L2(0, 1), il limite degli integrali e si commenti il risultato ottenuto
alla luce del teorema di convergenza dominata.

DISCUSSIONE. Osserviamo subito che la funzione è diversa da zero solo nell’intervallo [0, 1/k], la cui misura
tende a zero al divergere di k, quindi possiamo dire che la funzione tende a 0 q.o. in [0, 1]. Puntualmente
abbiamo che

fk(x)−→ f(x) =
{

0 x ∈ (0, 1]
+∞ x = 0

Dal punto di vista dell’integrale abbiamo che∫
[0,1]
|fk(x)|2dx =

∫
[0,1/k]

k(1− kx)2dx =− 1
3k (1− kx)3

]1/k

0
= 1

3 per ogni k

essendo tale valore costante (e non nullo) possiamo dire che la successione di funzioni non converge a 0 in
L2(0, 1), nonostante converga alla funzione nulla q.o., in particolare non può esistere una funzione sommabile
in [0, 1] che domini tutte le fk, altrimenti (per il teorema di Lebesgue) la successione degli integrali dovrebbe
essere infinitesima.

ESERCIZIO 13. Sia χk(x) = χ[−k,k](x) (cioè la funzione caratteristica dell’intervallo [−k,k]), si dimostri che

i. se h ∈ L1(�) allora hk = hχk ∈ L1(�) e hk −→ h in L1(�)

ii. se h ∈ L2(�) allora hk = hχk ∈ L2(�) e hk −→ h in L2(�)

DISCUSSIONE. i. Osseriviamo subito che le funzioni hk sono delle funzioni misurabili visto che, per ogni aperto
A, vale

h−1
k (A) = h−1(A)∩χ−1

k (A)
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e l’intersezione di due insiemi misurabili secondo Lebesgue è misurabile, inoltre abbiamo che
0≤ |hk(x)| ≤ |h(x)|

quindi hk ∈ L1(�) essendo misurabile e maggiorata da una funzione sommabile. Per provare la prima afferma-
zione basta osservare che, per definizione di funzione caratteristica dell’intervallo [−k,k], vale

hk(x)−→ h(x) q.o. cioè |hk(x)− h(x)| −→ 0 q.o. in �

inoltre abbiamo anche che
0≤ |hk(x)− h(x)| ≤ 2|h(x)| con h ∈ L1(�)

e l’affermazione segue dal teorema di Lebesgue.
In L2(�) il ragionamento è analogo, basta osservare che

∥hk− h∥2
L2(�) =

[∫
�

|hk(x)− h(x)|2 dx
]

e che
|hk(x)− h(x)| −→ 0 implica |hk(x)− h(x)|2 −→ 0

e
0≤ |hk(x)− h(x)|2 ≤ 4|h(x)|2 con h ∈ L2(�)

osservando che se h ∈ L2(�) allora |h|2 ∈ L1(�).

ESERCIZIO 14. Assegnata la successione

fk(x) =
k¼

j=1
j2−jχ[0,1/j](x) x ∈ [0, 1]

e definita f(x) come il limite puntuale della successione, si usi il teorema di convergenza monotona per calcolare∫
[0,1]

f(x)dx

DISCUSSIONE. Poiché le ipotesi del teorema di convergenza monotona sono facilmente verificate (tutti gli
addendi sono funzioni non negative) possiamo scrivere che∫

[0,1]
f(x)dx =

∫
[0,1]

fk(x)dx =
+∞¼
j=1

∫
[0,1]

j2−jχ[0,1/j](x)dx =
+∞¼
j=1

∫
[0,1/j]

j2−jdx =
+∞¼
j=1

2−j = 1

ESERCIZIO 15. Posto

X = L2(�) e Y =
{

f misurabile in � :
∫
�

|f(x)|2e−x2 dx< +∞
}

si mostri la correttezza delle seguenti affermazioni
i. X⊆ Y e l’inclusione è stretta,
ii. fn = χ[n,n+1]−̸→ 0 in X,
iii. fn −→ 0 in Y,
iv. se gn −→ 0 in X allora gn −→ 0 in Y.

DISCUSSIONE. i. Se f ∈ X = L2(�) allora f è misurabile sull’asse reale e vale che |f(x)|2e−x2 ≤ |f(x)|2 quasi
ovunque, da cui segue∫

�

|f(x)|2e−x2 dx≤
∫
�

|f(x)|2dx< +∞

quindi abbiamo mostrato che X ⊆ Y. Per mostrare che l’inclusione è stretta è sufficiente esibire un elemento
del secondo spazio che non appartiene al primo, quindi proviamo che la funzione costante f1(x)≡ 1 sta in Y\X,
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infatti la funzione costante non può essere di quadrato sommabile su �, avendo l’asse reale misura infinita,
però vale che∫

�

|f1(x)|2e−x2 dx =
∫
�

e−x2 dx =
√
π

come mostrato a lezione.
ii. La successione fn ha norma costante in X, infatti

∥fn∥X =
[∫

�

|χ[n,n+1](x)|2dx
]1/2

=
[∫ n+1

n
dx

]1/2
= 1

e siccome tali norme non costituiscono una successione infinitesima di numeri reali la successione non tende
a zero in X.
iii. La successione {fn} ha un comportamento differente in Y, infatti abbiamo che

∥fn∥Y =
[∫

�

|χ[n,n+1](x)|2e−x2 dx
]1/2

=
[∫ n+1

n
e−x2 dx

]1/2
≤

[
e−n2

]1/2
= e−n2/2

quindi fn −→ 0 in Y.
iv. L’ultima affermazione segue da un’osservazione fatta nel primo quesito dell’esercizio, infatti vale che

0≤ ∥gn∥
2
Y =

∫
�

|gn(x)|2e−x2 dx≤
∫
�

|gn(x)|2dx = ∥gn∥
2
X −→ 0

e l’affermazione segue per confronto.

ESERCIZIO 16. Data la serie
+∞¼
k=1

4kx2k

k2

si determini
i. l’insieme di convergenza E,
ii. il sottoinsieme di E in cui la serie converge totalmente,
iii. determinare il sottoinsieme di E in cui la serie risulta derivabile.

DISCUSSIONE. La serie di potenze in oggetto è, in realtà, la serie
∞¼
n=1

anxn con an =
{

41+n/2/n2 n pari
0 n dispari

Il criterio di Hadamard ci permette di calcolare rapidamente il raggio di convergenza di questa serie di potenze

L = limsup
n−→∞

n
√
|an| = lim

k−→∞
2k

√
4k

k2 = lim
k−→∞

2k

√
22k

k2 = lim
k−→∞

2
[ 1

k2

]1/2k
= 2

Si noti che i coefficienti dispari realizzano la sottosuccessione dei coefficienti che tende al liminf.
Il precedente limite implica che la serie converge assolutamente nell’intervallo (−1/2, 1/2), visto che R = 1/L = 1/2.
Se x =±1/2 abbiamo che x2 = 1/4 e la serie diventa

∞¼
k=1

1
k2 < +∞

essendo una serie armonica generalizzata assolutamente convergente. Quindi la serie converge totalmente (e
quindi uniformemente, assolutamente e puntualmente) nell’intervallo [−1/2, 1/2], infatti osservando che

∥a2kx2k∥∞ = sup
x∈[−1/2,1/2]

∣∣∣∣∣4k

k2 x2
∣∣∣∣∣ = 4k

k2 max
x∈[−1/2,1/2]

|x2k| = 4k

k2

[ 1
2

]2k
= 1

k2

possiamo concludere le convergenze elencate precedentemente.
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Riguardo alla derivabilità della serie dobbiamo ricordare che abbiamo bisogno di un intervallo aperto per poter
effettuare il limite del rapporto incrementale, per cui l’intervallo massimale di derivabilità è (−1/2, 1/2) e vale
che

g(x) =
∞¼
k=1

4k

k2 x2k =
∞¼
k=1

22k

k2 x2k da cui g′(x) =
∞¼
k=1

22k+1

k x2k−1 per ogni x ∈
(
−

1
2 , 1

2

)
derivando termine a termine, grazie al torema di scambio tra derivazione e sommatoria (si osservi che, per
x =±1/2, la serie associata alla funzione derivata non converge puntualmente).

ESERCIZIO 17. Data la serie di funzioni
+∞¼
k=0

k
k + 2 x2k

i. si determini l’insieme di convergenza E⊆�,
ii. si determini il sottoinsieme di E in cui la serie converge totalmente,
iii. si calcoli esplicitamente, se possibile, la somma della serie.

DISCUSSIONE. i. & ii. Grazie alla sostituzione x2 = t possiamo ricondurci ad una serie di potenze ”standard”, ed
osservare che, siccome vale

lim
k−→+∞

k
√
|ak| = lim

k−→+∞
k

√
k

k + 2 = 1

nella variabile t la serie converge puntualmente nell’intervallo (−1, 1) e totalmente in ogni intervallo [a,b] ⊆
(−1, 1), e non è possibile avere convergenza in un intervallo più ampio, visto che la successione dei coeffi-
cienti della serie non è infinitesima. Traducendo il risultato nella variabile x abbiamo che la serie converge
puntualmente nell’intervallo (−1, 1) e totalmente in ogni intervallo chiuso contenuto in (−1, 1) (questo perché√

1 = 1!).
iii. Per il calcolo della somma procediamo usando i teoremi di scambio tra serie e integrazione o derivazio-
ne. Innanzitutto, grazie alla sostituzione t = x2, abbiamo a che fare con una serie più semplice, che possiamo
riscrivere come segue

+∞¼
k=0

k
k + 2 tk =

+∞¼
k=0

[
1− 2

k + 2

]
tk =

+∞¼
k=0

tk− 2
+∞¼
k=0

1
k + 2 tk = 1

1− t − 2
+∞¼
k=0

1
k + 2 tk t ∈ [a,b]⊆ (−1, 1)

dove abbiamo usato la convergenza totale e la somma (nota) della serie geometrica. Riguardo alla seconda
serie abbiamo che

+∞¼
k=0

1
k + 2 tk =

+∞¼
k=0

1
k + 2

tk+2

t2 = 1
t2

+∞¼
k=0

∫ t

0
sk+1ds = 1

t2

∫ t

0

 +∞¼
k=0

sk+1
ds = 1

t2

∫ t

0

 +∞¼
j=1

sj

ds

= 1
t2

∫ t

0

s
1− s dt = 1

t2 [−t− ln(1− t)]

da cui ricaviamo
+∞¼
k=0

k
k + 2 tk = 1

1− t + 2
[

t + ln(1− t)
t2

]
Osserviamo che nei calcoli precedenti abbiamo moltiplicato e diviso per t2, introducendo (solo apparentemen-
te) un problema per t = 0, in realtà tutte le funzioni che compaiono nei calcoli devono essere pensate estese
per continuità per t = 0, in modo da ottenere funzioni regolari. Ritornando alla variabile x otteniamo

+∞¼
k=0

k
k + 2 x2k = 1

1− x2 + 2
[

x2 + ln(1− x2)
x4

]
il che conclude l’esercizio.
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ESERCIZIO 18. Data la serie
+∞¼
k=1

4kx2k

k2

si determini
i. l’insieme di convergenza E,
ii. il sottoinsieme di E in cui la serie converge totalmente,
iii. determinare il sottoinsieme di E in cui la serie risulta derivabile,
iv. determinare il sottoinsieme di E in cui la serie converge in L2.

DISCUSSIONE. La serie di potenze in oggetto è, in realtà, la serie
∞¼
n=1

anxn con an =
{

41+n/2/n2 n pari
0 n dispari

Il criterio di Hadamard ci permette di calcolare rapidamente il raggio di convergenza di questa serie di potenze

L = limsup
n−→∞

n
√
|an| = lim

k−→∞
2k

√
4k

k2 = lim
k−→∞

2k

√
22k

k2 = lim
k−→∞

2
[ 1

k2

]1/2k
= 2

Si noti che i coefficienti dispari realizzano la sottosuccessione dei coefficienti che tende al liminf.
Il precedente limite implica che la serie converge assolutamente nell’intervallo (−1/2, 1/2), visto che R = 1/L = 1/2.
Se x =±1/2 abbiamo che x2 = 1/4 e la serie diventa

∞¼
k=1

1
k2 < +∞

essendo una serie armonica generalizzata assolutamente convergente. Quindi la serie converge totalmente (e
quindi uniformemente, assolutamente e puntualmente) nell’intervallo E = [−1/2, 1/2], infatti osservando che

∥a2kx2k∥∞ = sup
x∈[−1/2,1/2]

∣∣∣∣∣4k

k2 x2
∣∣∣∣∣ = 4k

k2 max
x∈[−1/2,1/2]

|x2k| = 4k

k2

[ 1
2

]2k
= 1

k2

possiamo concludere le convergenze elencate precedentemente.
Riguardo alla derivabilità della serie dobbiamo ricordare che abbiamo bisogno di un intervallo aperto per poter
effettuare il limite del rapporto incrementale, per cui l’intervallo massimale di derivabilità è (−1/2, 1/2) e vale
che

g(x) =
∞¼
k=1

4k

k2 x2k =
∞¼
k=1

22k

k2 x2k da cui g′(x) =
∞¼
k=1

22k+1

k x2k−1 per ogni x ∈
(
−

1
2 , 1

2

)
derivando termine a termine, grazie al torema di scambio tra derivazione e sommatoria (si osservi che, per
x =±1/2, la serie associata alla funzione derivata non converge puntualmente).
iv. Sappiamo che la serie di funzioni converge puntualmente (quindi quasi ovunque) in E, per la discussione
svolta in i, osservando che

|fN(x)| :=

∣∣∣∣∣∣∣
N¼

k=1

4kx2k

k2

∣∣∣∣∣∣∣ =
N¼

k=1

4kx2k

k2 ≤
N¼

k=1

1
k2 ≤

∞¼
k=1

1
k2 ≤ C ∈ L∞(E) q,o, x ∈ E

la convergenza in L2(E) segue dal teorema di convergenza dominata di Lebesgue.

ESERCIZIO 19. Data la serie di funzioni
+∞¼
k=0

k
k + 2 x2k

i. si determini l’insieme di convergenza E⊆�,
ii. si determini il sottoinsieme di E in cui la serie converge in L1,
iii. si calcoli esplicitamente, se possibile, la somma della serie.
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DISCUSSIONE. i. Grazie alla sostituzione x2 = t possiamo ricondurci ad una serie di potenze ”standard”, ed
osservare che, siccome vale

lim
k−→+∞

k
√
|ak| = lim

k−→+∞
k

√
k

k + 2 = 1

nella variabile t la serie converge puntualmente nell’intervallo (−1, 1) e totalmente in ogni intervallo [a,b] ⊆
(−1, 1), e non è possibile avere convergenza in un intervallo più ampio, visto che la successione dei coefficien-
ti della serie non è infinitesima. Traducendo il risultato nella variabile x abbiamo che la serie converge pun-
tualmente nell’intervallo E = (−1, 1) e totalmente in ogni intervallo chiuso contenuto in (−1, 1) (questo perché√

1 = 1!).
iii. Per il calcolo della somma procediamo usando i teoremi di scambio tra serie e integrazione o derivazio-
ne. Innanzitutto, grazie alla sostituzione t = x2, abbiamo a che fare con una serie più semplice, che possiamo
riscrivere come segue

+∞¼
k=0

k
k + 2 tk =

+∞¼
k=0

[
1− 2

k + 2

]
tk =

+∞¼
k=0

tk− 2
+∞¼
k=0

1
k + 2 tk = 1

1− t − 2
+∞¼
k=0

1
k + 2 tk t ∈ [a,b]⊆ (−1, 1)

dove abbiamo usato la convergenza totale e la somma (nota) della serie geometrica. Riguardo alla seconda
serie abbiamo che

+∞¼
k=0

1
k + 2 tk =

+∞¼
k=0

1
k + 2

tk+2

t2 = 1
t2

+∞¼
k=0

∫ t

0
sk+1ds = 1

t2

∫ t

0

 +∞¼
k=0

sk+1
ds = 1

t2

∫ t

0

 +∞¼
j=1

sj

ds

= 1
t2

∫ t

0

s
1− s dt = 1

t2 [−t− ln(1− t)]

da cui ricaviamo
+∞¼
k=0

k
k + 2 tk = 1

1− t + 2
[

t + ln(1− t)
t2

]
Osserviamo che nei calcoli precedenti abbiamo moltiplicato e diviso per t2, introducendo (solo apparentemen-
te) un problema per t = 0, in realtà tutte le funzioni che compaiono nei calcoli devono essere pensate estese
per continuità per t = 0, in modo da ottenere funzioni regolari. Ritornando alla variabile x otteniamo

+∞¼
k=0

k
k + 2 x2k = 1

1− x2 + 2
[

x2 + ln(1− x2)
x4

]
= S(x)

il che conclude iii.
ii. Poiché la serie è a termini positivi e abbiamo gia mostrato che la successione delle troncate converge quasi
ovunque alla funzione limite in (−1, 1), possiamo dire che abbiamo convergenza L1 in ogni intervallo I ⊆ E tale
che S ∈ L1(I). Osservando che

S(x)≃ 1
1− x2 per x−→±1

da cui abbiamo che S < L1(E), possiamo concludere che I può essere un qualsiasi intervallo strettamente con-
tenuto in (−1, 1).

ESERCIZIO 20. Data la seguente serie di funzioni
+∞¼
k=0

(−1)k

k + 1
[f(x)]2(k+1)

se ne calcoli la somma, spiegando dove converge puntualmente ed uniformemente.
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DISCUSSIONE. Ignorando, per il momento, il problema della convergenza della serie di funzioni, procediamo
in maniera formale e, grazie alla sostituzione z = f(x), svolgiamo i seguenti calcoli

+∞¼
k=0

(−1)k

k + 1 t2k+2 =
+∞¼
k=0

2 · (−1)k t2k+2

2(k + 1) =
+∞¼
k=0

2 · (−1)k
∫ t

0
s2k+1ds =

∫ t

0
2
s

+∞¼
k=0

(−1)ks2k
ds

=
∫ t

0

2s
1 + s2 ds = ln

(
1 + t2)

Non sarà sfuggito ad alcun studente/ssa che il passaggio chiave dei precedenti calcoli è la convergenza della
serie geometrica, quindi tutti i calcoli sono corretti per t ∈ [a,b]⊆ (−1, 1). In conclusione, tornando alla variabile
x, possiamo affermare che

+∞¼
k=0

(−1)k

k + 1
[f(x)]2(k+1) = ln

(
1 + f2(x)

)
per ogni x ∈� tale che |f(x)| ≤ δ < 1.

ESERCIZIO 21. Data la serie di funzioni
∞¼

k=0
e−kx2 x ∈�

i. si determini l’insieme di convergenza puntuale,
ii. si determini l’insieme di convergenza uniforme,
iii. si determini l’insieme di convergenza L2,
iv. si scriva la funzione somma (dove esiste).

DISCUSSIONE. Cominciamo l’esercizio con una osservazione, che si rivelerà cruciale, ponendo e−x2 = w la
serie di funzioni si trasforma nella seguente serie geometrica

∞¼
k=0

wk w ∈�

della quale sappiamo vita, morte e miracoli... in particolare abbiamo che la serie
a. converge puntualmente ed assolutamente per w ∈ (−1, 1),
b. converge uniformemente e totalmente in ogni intervallo [a,b]⊆ (−1, 1),
c. non converge per w ∈ (−∞,−1]∪ [1, +∞).
Allora possiamo subito concludere che
i. la serie di funzioni iniziale converge puntualmente ed assolutamente quando e−x2 ∈ (−1, 1), cioè per x , 0,
ricordando le proporietà della funzione esponenziale.
ii. la serie di funzioni iniziale converge totalmente, e quindi uniformemente, quando e−x2 ∈ [a,b]⊆ (−1, 1) per
ogni a,b fissati. Cioè per x ∈ (−∞,−δ]∪ [δ, +∞) con il parametro δ > 0 fissato.
iv. Il calcolo della somma discende, nuovamente, dalle proprietà della serie geometrica, infatti vale

∞¼
k=0

wk = 1
1−w = 1

1− e−x2 = ex2

ex2 − 1
= S(x) per x , 0

naturalmente abbiamo usato nuovamente la sostituzione w = e−x2 .
iii. Poiché la serie di funzioni è una serie a termini positivi che converge puntualmente alla funzione S (per
x , 0), dal teorema della convergenza monotona di Levi possiamo dire che abbiamo convergenza in L2(E) per
ogni E⊆� tale che s ∈ L2(E), quindi per ogni insieme E per il quale esista δ > 0 tale che E⊆ (−∞,−δ]∪[δ, +∞).

ESERCIZIO 22. Si risolva tramite lo sviluppo in serie di potenze la seguente equazione differenziale

u′(t)− u(t) = et
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DISCUSSIONE. Cercare le soluzioni di un’equazione differenziale in forma di serie di potenze, significa suppor-
re (o sapere a priori) che la soluzione sia una funzione analitica in un intervallo non degenere. Poi, ricordando
che tale serie è derivabile termine a termine, otteniamo

u(t) =
¼
k≥0

aktk da cui u′(t) =
¼
k≥1

kaktk−1 =
¼
n≥0

(n + 1)an+1tn

e sostituendo queste espressioni nell’equazione differenziale cerchiamo di tradurre l’equazione differenziale in
un sistema algebrico di infinite equazioni aventi i coefficienti ak come incognite. Ricordando lo svilupo in serie
della funzione esponenziale l’equazione differenziale che ci interessa risolvere si riscrive nel seguente modo¼

n≥0
(n + 1)an+1tn−

¼
n≥0

antn =
¼
n≥0

1
n! tn

da cui ricaviamo¼
n≥0

[
(n + 1)an+1− an−

1
n!

]
tn = 0

che si traduce nella legge per ricorrenza

an+1 = 1
n + 1

[
an + 1

n!

]
= an

n + 1 + 1
(n + 1)! con a0 = c ∈�

Provando a calcolare i primi elementi della successione dei coefficienti otteniamo

a0 = c a1 = c + 1 a2 = c + 1
2 + 1

2 = c
2 + 1

a3 = 1
3

[ c
2 + 1

]
+ 1

6 = c
6 + 1

2 a4 = 1
4

[
c
6 + 1

2

]
+ 1

24 = c
24 + 1

6
questi coefficienti suggeriscono la seguente espressione

an+1 = c
(n + 1)! + 1

n! n ∈�

che andiamo a provare per induzione. Abbiamo già verificato che la formula proposta è effettivamente verifi-
cata per alcuni valori dell’indice, cioè per n = 1,2,3,4, per cui dobbiamo provare il passo induttivo, cioè che vale
l’implicazione

da an = c
n! + 1

(n− 1)! segue an+1 = c
(n + 1)! + 1

n!
infatti possiamo scrivere che

an+1 = an
n + 1 + 1

(n + 1)! = 1
n + 1

[
c
n! + 1

(n− 1)!

]
+ 1

(n + 1)!

= c
(n + 1)! + 1

(n + 1)

[
1

(n− 1)! + 1
n!

]
= c

(n + 1)! + 1
(n + 1) ·

n + 1
n! = c

(n + 1)! + 1
n!

La formula provata ci permette di ottenere un’espressione per la serie di potenze della soluzione della nostra
equazione differenziale

u(t = c +
¼
k≥1

[
c
k! + 1

(k− 1)!

]
tk = c

¼
k≥0

1
k! tk +

¼
k≥1

1
(k− 1)! tk = c

¼
k≥0

1
k! tk + t

¼
n≥0

1
n! tn = cet + tet c ∈�

Si noti che non abbiamo alcuna informazione sul valore della funzione incognita u in un punto, per cui abbiamo
ottenuto infinite funzioni (tutte soluzioni dell’equazione differenziale) parametrizzate da un parametro reale.

ESERCIZIO 23. Si ricavi lo spazio vettoriale delle soluzioni della seguente equazione differenziale

u′′(t)− 2tu′(t) = 0
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DISCUSSIONE. Innanzitutto osserviamo che possiamo considerare momentaneamente la seguente equazio-
ne differenziale

w′(t)− 2tw(t) = 0

dove stiamo interessandoci alla funzione incognita w(t) = u′(t) in modo da ridurre l’ordine dell’equazione. Sup-
poniamo che le soluzioni dell’equazione differenziale siano funzioni analitiche e, quindi, sviluppabili in serie di
potenze intorno al punto t0 = 0, questo ci permette di scrivere che

w(t) =
¼
k≥0

wktk e w′(t) =
¼
k≥1

kwktk−1 =
¼
k≥0

(k + 1)wk+1tk per ogni t ∈ (−R,R)

e sostituendo nell’equazione differenziale (del primo ordine) otteniamo la relazione

w′(t)− 2tw′(t) =
¼
k≥1

kwktk−1− 2t
¼
k≥0

wktk =
¼
j≥−1

(j + 2)wj+2tj+1−
¼
k≥0

2wktk+1

= w1 +
¼
k≥0

[(k + 2)wk+2− 2wk
] tk+1 = 0

E poiché una serie di potenze è la serie relativa alla funzione identicamente nulla se e solo se tutti i suoi
coefficienti sono nulli, otteniamo le seguenti relazioni

w1 = 0 e wk+2 = 2
(k + 2) wk

La formula per ricorrenza fa dipendere il valore del coefficiente wk+2 dal coefficiente wk, e siccome w1 = 0 per
induzione abbiamo che

0 = w1 = w3 = ... = w2k+1 = ... per ogni k≥ 1

mentre per i coefficienti con indice pari, sempre procedendo per induzione, otteniamo

w2 = 2
2 w0 = w0 w4 = 2

4 w2 = 1
2 w0 w6 = 2

6 w4 = 1
6 w0 ... w2k = 1

k! w0

In generale abbiamo ottenuto che

w0 ∈� w2k+1 = 0 w2k = 1
k! w0 per ogni k

cioè

w(t) =
¼
k≥0

wktk =
¼
j≥0

w0
j! t2j = w0et2 w0 ∈�

Si noti che abbiamo ottenuto uno spazio vettoriale di dimensione 1, come spazio delle soluzioni, visto che
tutte le soluzioni costituiscono una retta generata dai multipli dalla funzione et2 . Ritornando all’equazione
differenziale originaria abbiamo ottenuto che

u′(t) = w(t) = w0et2 =
¼
j≥0

w0
j! t2j

da cui ricaviamo, ricordando anche che w(0) = u′(0) = u1, usando il teorema fondamentale del calcolo integrale
e il teorema di scambio tra serie ed integrale, le seguenti uguaglianze

u(t)− u(0) = u(t)− u0 =
∫ t

0
u′(s)ds = w0

∫ t

0
es2 ds = w0

¼
j≥0

∫ t

0

s2j

j! ds

= w0
¼
j≥0

t2j+1

(2j + 1)j! = u1
¼
j≥0

t2j+1

(2j + 1)j! = u1E(t)

In conclusione possiamo descrivere lo spazio vettoriale, di dimensione 2, delle soluzioni dell’equazione diffe-
renziale iniziale nel seguente modo

u(t) = u0 + u1
¼
k≥0

1
(2k + 1)k! t2k+1 = u0 + u1E(t) con u0,u1 ∈�
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che è equivalente a dire che una base dello spazio vettoriale è costituito dalle funzioni 1 ed E(t). Naturalmente è
possibile discutere direttamente l’equazione del secondo ordine, ottenendo una rappresentazione dello stesso
spazio vettoriale.


