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ESERCIZIO 1. Data una curva regolare di parametrizzazione x(s) = (x1(s),0,x3(s)), con s ∈ [a,b], si scriva la pa-
rametrizzazione della superficie ottenuta ruotando la curva attorno all’asse x3 di un angolo θ0 e si verifichi che,
aggiungendo qualche ipotesi, si tratta di una superficie regolare.

ESERCIZIO 2. Sia γ una curva polare semplice, chiusa e regolare di equazione ρ = f(θ), con θ ∈ [θ0,θ1]. Supponendo
che γ sia la frontiera di un dominio D⊆�

2 si dimostri che

Area(D) = 1
2

∫ θ2

θ1

|f(θ)|2dθ

ESERCIZIO 3. Sia Fα(x) = krα (x1, x2, x3
), con r2 = x2

1 + x2
2 + x2

3 = ∥x∥2
2, k ∈� eα ∈�, un campo centrale, si determini

il flusso uscente dalla sfera B(O,R) al variare del parametroα e si verifichi che rot(Fα) = O.

ESERCIZIO 4. Verificare la validità delle ipotesi e dell’enunciato del teorema del rotore quando il campo vettoriale è
F(x) = (0,x1,0) e la superficie Î = φ (K), dove (u,w) ∈ K = [0,π]2 e φ(u,w) = (sin(u) + sin(w),u,w).

ESERCIZIO 5. Si calcoli la circuitazione del campo vettoriale F = (a,b,c) lungo il cammino γ = ∂Î, con Î superficie
regolare a tratti.

ESERCIZIO 6. Calcolare il lavoro compiuto dal campo vettoriale F =
(
−x3

2, x3
1 , x3

3
)

lungo la curva γ ottenuta dal-
l’intersezione del cilindro di equazione

{
x2

1 + x2
2 = 1

}
e del piano {x1 + x3 = 3}, orientata in verso antiorario se vista

dall’alto.

ESERCIZIO 7. Sia M = {G(x1, x2, x3) = 0} ⊆ �
3 un sottoinsieme dello spazio tale che G ∈ C∞(�3), O ∈ M e

∂3G(O) , 0. Allora si scriva
i. l’equazione del piano tangente ad M in O,
ii. l’equazione del versore normale ad M in O,
iii. l’espressione della prima forma fondamentale di M in O.
Infine si spieghi perché M, intorno ad O, è una superficie regolare.

ESERCIZIO 8. Assegnati la regione dello spazio D =
{
1≤ x2

1 + x2
2 ≤ x3 ≤ 2(x2

1 + x2
2)≤ 4

}
⊆ �

3 e il campo vettoriale
F(x) = (x1, x2,0), si calcoli la quantità Ð∂D(F).

ESERCIZIO 9. Si calcoli il flusso Ð∂D(F), dove D = B(O, r) e F = (a,b,c).
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SVOLGIMENTI

ESERCIZIO 1. Calcolare il volume del toro ottenuto ruotando intorno all’asse x3 il cerchio contenuto nel piano{x2 = 0}
B = {(x1, x3) ∈�

2 : (x1−R)2 + x2
3 ≤ r2}, con 0< r< R.

DISCUSSIONE. Ricalcando lo svolgimento dell’esercizio precedente proponiamo più svolgimenti per il calcolo
del volume del toro.
Il teorema di Guldino, in questo caso, si rivela particolarmente efficacie, in quanto la sezione del toro è un cer-
chio, il cui baricentro coincide con il centro geometrico, almeno per densità di massa uniformi, quindi possiamo
ottenere rapidamente

m3(T) = 2πb1m2(B) = 2π ·R ·πr2 = 2π2r2R

Volendo calcolare il volume integrando per sezioni troviamo che

m3(T) =
∫ r

−r
m2(S(t))dt

dove le sezioni orizzontali S(t) sono le seguenti corone circolari

S(t) = T∩{x3 = t} =
{(√

x2
1 + x2

2−R
)2

+ t2 ≤ r2
}

=
{

R−
√

r2− t2 ≤
√

x2
1 + x2

2 ≤ R +
√

r2− t2
}

la cui misura è

m2(S(t)) = π
[(

R +
√

r2− t2
)2
−

(
R−

√
r2− t2

)2]
= 4πR

√
r2− t2

a questo punto possiamo concludere

m3(T) =
∫ r

−r
m2(S(t))dt = 4πR

∫ r

−r

√
r2− t2dt = 4πR · π2 r2 = 2π2r2R

Per terminare impostiamo lo svolgimento del calcolo del volume del toro tramite integrazione per fili. Ricor-
dando che

m3(T) =
"

S0

m1(S(w))dw1dw2 dove


S0 =

{
(R− r)2 ≤ w2

1 + w2
2 ≤ (R + r)2

}
S(w) =

|t| ≤
[
r2−

(√
w2

1 + w2
2−R

)2]1/2
ricaviamo un integrale che risolveremo tramite le coordinate polari w = (w1,w2) = ρ(cos(θ), sin(θ)) e il successivo
cambio di variabile reale ρ = R + rsin(s)

m3(T) = 2
"

S0

[
r2−

([
w2

1 + w2
2
]1/2
−R

)2]1/2
dw1dw2 = 4π

∫ R+r

R−r

[
r2− (ρ−R)2]1/2

ρdρ

= 4πr2
∫ π/2

−π/2
(R + rsin(s))cos2(s)ds = 4πr2R

∫ π/2

−π/2
cos2(s)ds = 2π2r2R

ESERCIZIO 2. Sia γ una curva polare semplice, chiusa e regolare di equazione ρ = f(θ), con θ ∈ [θ0,θ1]. Supponendo
che γ sia la frontiera di un dominio D⊆�

2 si dimostri che

Area(D) = 1
2

∫ θ2

θ1

|f(θ)|2dθ

DISCUSSIONE. Le formule di Gauss-Green ci permettono di affermare che

Area(D) =
∫
γ

x1dx2 =−
∫
γ

x2dx1 = 1
2

∫
γ

x1dx2− x2dx1
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Ricordando le relazioni che legano variabili cartesiane e variabili polari, otteniamo per la curva γ la seguente
equazione parametrica x(θ) = f(θ) (cos(θ), sin(θ)), dove il parametro θ ∈ [θ0,θ1], e derivando otteniamo che
x′1(θ) = f′(θ)cos(θ)− f(θ) sin(θ) e che x′2(θ) = f′(θ) sin(θ) + f(θ)cos(θ), dunque abbiamo

Area(D) = 1
2

∫
γ

x1dx2− x2dx1

= 1
2

∫ θ2

θ1

[
f(θ)cos(θ)

(
f′(θ) sin(θ) + f(θ)cos(θ)

)
− f(θ) sin(θ)

(
f′(θ)cos(θ)− f(θ) sin(θ)

)]
dθ

= 1
2

∫ θ2

θ1

|f(θ)|2dθ

Si noti che l’uso della forma differenziale ω = x1dx2 − x2dx1 ci ha permesso di semplificare notevolmente l’e-
spressione da integrare.

ESERCIZIO 3. Sia Fα(x) = krα (x1, x2, x3
), con r2 = x2

1 + x2
2 + x2

3 = ∥x∥2
2, k ∈� eα ∈�, un campo centrale, si determini

il flusso uscente dalla sfera B(O,R) al variare del parametroα e si verifichi che rot(Fα) = O.

DISCUSSIONE. Dalla definizione abbiamo che

rot (Fα(x)) = k(∂2(x3rα)− ∂3(x2rα),∂3(x1rα)− ∂1(x3rα),∂1(x2rα)− ∂2(x1rα))
= k

(
αx2x3rα−2−αx2x3rα−2,α(x1x3− x1x3

) rα−2,α(x1x2− x1x2)rα−2) = O

quindi il campo Fα ha rotore nullo indipendentemente dalla sua intensità α.
Riguardo al flusso del campo attraverso la superficie chiusa, determinata dal bordo della palla B(O,R), abbiamo
che

Ð∂B(O,R)(Fα) =
∫
∂B(O,R)

Fα ·ndσ = k
∫
∥x∥=R

rα(x1, x2, x3) · (x1, x2, x3)
R dσ

= k
∫
∥x∥=R

rα+2

R dσ = kRα+1
∫
∥x∥=R

dσ = kRα+1 ·4πR2 = 4πkRα+3

si noti che il flusso è costante solo seα =−3 (che corrisponde al caso del campo gravitazionale o coulombiano).
Inoltre è opportuno sottolineare che quando α < 0 il campo è singolare e non è definito nell’origine O, in tali
casi non è corretto usare il teorema della divergenza perché F < C1(B(O,R + ε)).

ESERCIZIO 4. Verificare la validità delle ipotesi e dell’enunciato del teorema del rotore quando il campo vettoriale è
F(x) = (0,x1,0) e la superficie Î = φ (K), dove (u,w) ∈ K = [0,π]2 e φ(u,w) = (sin(u) + sin(w),u,w).

DISCUSSIONE. Verificare la validità delle ipotesi non è molto impegnativo, in particolare osserviamo che la
superficie è un pezzo del grafico di una funzione differenziabile, quindi regolare ed orientabile. Effettuiamo il
calcolo esplicito degli integrali premettendo il calcolo di alcune necessarie quantità

∂1φ = (cos(u), 1,0) ∂2φ = (cos(w),0, 1) ∂1φ∧ ∂2φ = (1,−cos(u),−cos(w))

da cui segue

ÐÎ (F) =
∫
Î

(F ·n)dσ =
∫

K
F(φ(u,w)) · (∂1φ∧ ∂2φ

)dσ

=
∫

K
(0,sin(u) + sin(w),0) · (1,−cos(u),−cos(w))dudw

=−
∫ π

0

∫ π
0

[sin(u) + sin(w)]cos(u)dudw = 0

D’altra parte abbiamo∮
∂Î

[rot(F) · T]ds =
∫
γi

(0,0, 1) ·ψ′i (t)dt
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dove γi, per i = 1, ...,4, sono le curve che costituiscono il bordo della superficie Î aventi le seguenti parametriz-
zazioni

γ1 : ψ1(t) = (sin(t), t,0) t ∈ [0, 1] e ψ′1(t) = (cos(t), 1,0)
γ2 : ψ2(t) = (sin(t),0, t) t ∈ [0, 1] e ψ′2(t) = (cos(t),0, 1)
γ3 : ψ3(t) = (−sin(t),−t,0) t ∈ [0, 1] e ψ′3(t) = (−cos(t),−1,0)
γ4 : ψ4(t) = (−sin(t),0,−t) t ∈ [0, 1] e ψ′4(t) = (−cos(t),0,−1)

dopo questa precisazione otteniamo∮
∂Î

[rot(F) · T]ds =
∫
γ2

(0,0, 1) ·ψ′2(t)dt +
∫
γ4

(0,0, 1) ·ψ′4(t)dt =
∫ 1

0
dt +

∫ 1

0
(−1)dt = 0

in questo modo la verifica è completata.

ESERCIZIO 5. Si calcoli la circuitazione del campo vettoriale F = (a,b,c) lungo il cammino γ = ∂Î, con Î superficie
regolare a tratti.

DISCUSSIONE. Per rispondere alle pretese dell’esercizio basta osservare che il campo vettoriale F è regolare
su tutto �

3, quindi è possibile applicare il teorema del rotore e dedurre che∮
γ

F · ds =
∮
∂σ

F · ds =±
∫
Î

[rot(F) ·n]dσ = 0

infatti il rotore di un campo vettoriale costante è sempre nullo. Si noti che l’indecisione nel segno dell’integrale
di superficie (causata dal non avere informazioni sull’orientazione di Î) in questo caso non pregiudica la possi-
bilità di portare a termine l’esercizio...

ESERCIZIO 6. Calcolare il lavoro compiuto dal campo vettoriale F =
(
−x3

2, x3
1 , x3

3
)

lungo la curva γ ottenuta dal-
l’intersezione del cilindro di equazione

{
x2

1 + x2
2 = 1

}
e del piano {x1 + x3 = 3}, orientata in verso antiorario se vista

dall’alto.

DISCUSSIONE. Possiamo applicare il teorema di Stokes se pensiamo γ come bordo della superficie piana

Î : {x3 = 3− x1 con (x1, x2) ∈ D} dove D = {(x1, x2) : x2
1 + x2

2 ≤ 1}
quindi si ha∫

γ
[F · T]ds =

"
Î

[rot(F) ·n]dσ

con il versore n orientato verso l’alto e T antiorario se visto dall’alto. Poiché si ha

rot(F) =
(
0,0,3

(
x2

1 + x2
2
))

e n = 1√
1 + |∇f|2

(
−∂1f,−∂2f, 1) = 1√

2
(1,0, 1)

segue che il lavoro W vale

W =
"

Î

[rot(F) ·n]dσ =
"

D
3(x2

1 + x2
2) 1√

2
·
√

2dxdy = 6π
∫ 1

0
ρ3dρ = 3

2π

L’alternativa consiste nello svolgere l’esercizio applicando la definizione di lavoro, cioè svolgendo un integrale
di linea: poiché la curva γ ha equazione parametrica

x(θ) = (x1(θ), x2(θ), x3(θ)) = (cos(θ), sin(θ),3− cos(θ)) θ ∈ [0,2π]
troviamo che

W =
∫ 2π

0

 3¼
j=1

Fj(x1(θ), x2(θ), x3(θ))x′j (θ)

dθ

=
∫ 2π

0
((−sin3(θ))(−sin(θ)) + cos3(θ)cos(θ) + (3− cos(θ))3 sin(θ))dθ =

∫ 2π

0

[
1− 1

2 sin2(2θ)
]

dθ = 3
2π
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ricordando un po’ di trigonometria...

ESERCIZIO 7. Sia M = {G(x1, x2, x3) = 0} ⊆ �
3 un sottoinsieme dello spazio tale che G ∈ C∞(�3), O ∈ M e

∂3G(O) , 0. Allora si scriva
i. l’equazione del piano tangente ad M in O,
ii. l’equazione del versore normale ad M in O,
iii. l’espressione della prima forma fondamentale di M in O.
Infine si spieghi perché M, intorno ad O, è una superficie regolare.

DISCUSSIONE. i. & ii. Le ipotesi contenute nel testo ci permettono di applicare il teorema delle funzioni implici-
te per rispondere alle richeste dell’esercizio. Dunque osserviamo subito che il teorema di Dini assicura l’esistenza
di una funzione g ∈ C∞(B,�), con B = B(O,ε)⊆�

2, tale che
i. g(O) = 0
ii. G(x1, x2, g(x1, x2)) = 0 per ogni (x1, x2) ∈ B
iii. se ∥x−O∥2 ≤ δ e G(x) = 0 allora x3 = g(x1, x2)

inoltre sappiamo che

∇g(x1, x2) =− 1
∂3G(x1, x2, g(x1, x2))

(
∂1G(x1, x2, g(x1, x2)),∂2G(x1, x2, g(x1, x2)))

quindi, in particolare, vale che

∇g(0,0) =−
(
∂1G(0),∂2G(O))

∂3G(O)
questo ci permette di ottenere l’equazione del piano tangente ad M in O, come l’equazione del piano tangente
al grafico di g nel punto O = (0,0,g(0,0)), che è

x3 = g(0,0) +∇g(0,0) · (x1, x2) =−∂1G(0)x1 + ∂2G(O)x2
∂3G(O)

che possiamo riscrivere, più elegantemente, nel seguente modo
∂1G(0)x1 + ∂2G(O)x2 + ∂3G(O)x3 =∇G(O) · x = 0

Dalla precedente espressione segue che il versore normale al piano tangente, e quindi ad M, è ∇G(O)
∥∇G(O)∥2

.

iii. M è, nei dintorni di O, una superficie regolare in quanto è il grafico di una funzione di classe C1, come prova
il teorema della funzione implicita, e il teorema in questione suggerisce anche una buona parametrizzazione
della superficie

x(u) = (u1,u2, g(u1,u2)) con u = (u1,u2) ∈ B
inoltre vale

∂1x(u) = (1,0,∂1g(u1,u2)) =
(
1,0,− ∂1G(x1, x2, g(x1, x2))

∂3G(x1, x2, g(x1, x2))

)
∂2x(u) = (0,1,∂2g(u1,u2)) =

(
0,1,−∂2G(x1, x2, g(x1, x2))

∂3G(x1, x2, g(x1, x2))

)
∂1x∧ ∂2x =

(
∂1G(x1, x2, g(x1, x2))
∂3G(x1, x2, g(x1, x2)) , ∂2G(x1, x2, g(x1, x2))

∂3G(x1, x2, g(x1, x2)) , 1
)

a questo punto è facile ricavare i coefficienti della prima forma fondamentale della superficie, che sono

E = ∂1x · ∂1x = 1 +
[
∂1G(x1, x2, g(x1, x2))
∂3G(x1, x2, g(x1, x2))

]2

F = ∂1x · ∂2x = ∂1G(x1, x2, g(x1, x2)) · ∂2G(x1, x2, g(x1, x2))
|∂3G(x1, x2, g(x1, x2))|2

G = ∂2x · ∂2x = 1 +
[
∂2G(x1, x2, g(x1, x2))
∂3G(x1, x2, g(x1, x2))

]2
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il che mette fine allo svolgimento.

ESERCIZIO 8. Assegnati la regione dello spazio D =
{
1≤ x2

1 + x2
2 ≤ x3 ≤ 2(x2

1 + x2
2)≤ 4

}
⊆ �

3 e il campo vettoriale
F(x) = (x1, x2,0), si calcoli la quantità Ð∂D(F).

DISCUSSIONE. Il flusso del campo vettoriale F attraverso la frontiera del dominio D (superficie regolare a tratti
composta da più superfici) può essere calcolato, grazie al teorema della divergenza, aggirando il calcolo di più
integrali superficiali e riducendo il tutto ad un unico integrale di volume, infatti vale

Ð∂D(F) =
∫
∂D

(F ·n)dσ =
∫

D
div(F)(x)dx =

∫
D

2dx1dx2dx3 = 2m3(D)

Osserviamo che il dominio D⊆�
3 è un solido avente simmetria assiale e la sua sezione S ha il seguente profilo

S

dove ρ =
√

x2
1 + x2

2 è la distanza dall’asse x3 di rotazione. Quindi possiamo calcolare la misura di D grazie alle
coordinate cilindriche nel seguente modo

m3(D) =
∫

D
dx1dx2dx3 =

∫
D̃
ρdρdθdz =

∫ √2

1

[∫ 4

ρ2

[∫ 2π

0
dθ

]
dz

]
ρdρ = 2π

∫ √2

1
(4− ρ2)ρdρ

= 2π
[
2ρ2−

ρ4

4

]√2

1
= 5

2π

cos̀ı da concludere che Ð∂D(F) = 5π.

ESERCIZIO 9. Si calcoli il flusso Ð∂D(F), dove D = B(O, r) e F = (a,b,c).

DISCUSSIONE. L’esercizio non presenta particolari difficoltà, il calcolo del flusso in questione (cioè dell’in-
tegrale di superficie) può essere aggirato tramite il teorema della divergenza, visto che il campo vettoriale è
sufficientemente regolare e la superficie è regolare ed è il bordo di un dominio. In particolare notiamo che

div(F) = ∂1F1 + ∂2F2 + ∂3F3 = ∂1a + ∂2b + ∂3c = 0
da cui segue che

Ð∂D(F) =
∫
∂D

[F ·n]dσ =
∫

D
div(F)(x)dx1dx2dx3 = 0

si noti che ogni campo vettoriale costante ha divergenza nulla, quindi il risultato ottenuto resta vero per ogni
dominio D per cui vale il teorema della divergenza!


