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ESERCIZIO 1. Data una curva regolare di parametrizzazione x(s) = (x(s),0,x3(s)), con s € [a,b], si scriva la pa-
rametrizzazione della superficie ottenuta ruotando la curva attorno allasse x3 di un angolo 6q e si verifichi che,
aggiungendo qualche ipotesi, si tratta di una superficie regolare.

ESERCIZIO 2. Sia v una curva polare semplice, chiusa e regolare di equazione p = f(6), con 6 € [6g,6,]. Supponendo
che y sia la frontiera di un dominio D C RZ si dimostri che

1 (%
Area(D)=ij |f(6)|2d6
0

1

ESERCIZIO 3. Sia Fy(X) = kr® (x1,%2,X3), conr? = x12 +x% +x§ = ||x % k € Rea € R, un campo centrale, si determini

il flusso uscente dalla sfera B(O, R) al variare del parametro o e si verifichi che rot(F ) = O.

ESErcIZIO 4. Verificare la validita delle ipotesi e dellenunciato del teorema del rotore quando il campo vettoriale é
F(x) = (O,xy,0) e la superficie ¥ = ¢ (K), dove (u,w) € K = [0, 712 e p(u,w) = (sin(u) + sin(w), u, w).

ESERCIZIO 5. Si calcoli la circuitazione del campo vettoriale F = (a,b, c) lungo il cammino v = 8%, con ¥ superficie
regolare a tratti.

Esercizio 6. Calcolare il lavoro compiuto dal campo vettoriale F = (—x%,xf,xg) lungo la curva -y ottenuta dal-

lintersezione del cilindro di equazione {x12 + x% = 1} e del piano {xq +x3 = 3}, orientata in verso antiorario se vista

dallalto.

ESERCIzIO 7. Sia M = {G(xq,%3,x3) = O} C R3 un sottoinsieme dello spazio tale che G € C®(R3),0 € Me
93G(0O) = 0. Allora si scriva

i. lequazione del piano tangente ad M in O,

ii. lequazione del versore normale ad M in O,

iii. lespressione della prima forma fondamentale di M in O.

Infine si spieghi perché M, intorno ad O, é una superficie regolare.

ESERCIZIO 8. Assegnati la regione dello spazio D = {1 < x12 +X

F(x) = (x1,%7,0), si calcoli la quantita ®p (F).

NN

<x3 < 2(x12 +x%) < 4} CR3eil campo vettoriale

ESERCIZIO 9. Si calcoli il flusso Pgp(F), dove D = B(O,r) e F = (a,b, ).




SVOLGIMENTI

Esercizio1. Calcolare il volume del toro ottenuto ruotando intorno allasse xs il cerchio contenuto nel piano {x; = O}
B ={(xq,x3) € RZ: (xq — R)? +x§ < rz}, con0O<r<R

DiscussiONE.  Ricalcando lo svolgimento dellesercizio precedente proponiamo piti svolgimenti per il calcolo
del volume del toro.

Il teorema di Guldino, in questo caso, si rivela particolarmente efficacie, in quanto la sezione del toro & un cer-
chio, il cui baricentro coincide con il centro geometrico, almeno per densita di massa uniformi, quindi possiamo
ottenere rapidamente

m3(T) = 27tbymy (B) = 27 - R- mr? = 2%r?R

Volendo calcolare il volume integrando per sezioni troviamo che

m3(M) = | my(S(H)dt

—r

dove le sezioni orizzontali S(t) sono le seguenti corone circolari

S(t)=Tﬁ{X3=t}={( x12+x%—R)2+t2 < r2}={R—mg mg R+m}
la cui misura &

my(S(1) = W[(R+ m)z - (R— M)z] - 4RV — 2

a questo punto possiamo concludere

r

)
m3(T) = [ my(S(t)dt= 47TRJ Vr2 —t2dt = 47R- %rz =212 R
—r

—r

Per terminare impostiamo lo svolgimento del calcolo del volume del toro tramite integrazione per fili. Ricor-
dando che

So={R—n? <wlewk < (R+n?

21172
r2—( w12+w%—R)] }

ricaviamo un integrale che risolveremo tramite le coordinate polari w = (wy,w3) = p(cos(6), sin(6)) e il successivo
cambio di variabile reale p = R +rsin(s)

12 R
m3(T) = ZJLO [rz - ([w12 +w%]1/2 B R)Z} dwrdwy = 47TL r[rz (o R)z]VZ odp

—r

m3(T) = -[so my(S(w))dwidw,  dove S(w) = {|t <

/2 /2
= 472 J- (R +rsin(s)) cosz(s)ds = 47rr2RJ- cosz(s)ds = 272r?R
—7/2 —7/2

ESERCIZIO 2. Sia -y una curva polare semplice, chiusa e regolare di equazione p = f(6), con 6 € [0g, 61]. Supponendo
che « sia la frontiera di un dominio D C R? si dimostri che

1 (%
Area(D)=§J If(6)|2de

61

DiscussIONE. Le formule di Gauss-Green ci permettono di affermare che

Area(D) = J x1dxy = —J- Xpdxq = 1[ x1dXy — Xodxq
¥ ¥ 2 )y
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Ricordando le relazioni che legano variabili cartesiane e variabili polari, otteniamo per la curva <y la seguente
equazione parametrica x(0) = f(0) (cos(6),sin(0)), dove il parametro 6 € [6g,61], e derivando otteniamo che
x{(@) =f'(6) cos(9) — f(6) sin(6) e che x’2(9) =/(6) sin(9) + f(9) cos(8), dunque abbiamo

Area(D) = [ X1dX2 — X2dX1
v
ro
. [£(6)cos(6) (' (6) sin(6) + (6) cos(6) ) — (6) sin(6) (' (6) cos(6) — (6) sin(6) )| do
2 Jg,
1 f‘@z
== | [f(6)*de
2 ), 1O

Si noti che luso della forma differenziale w = x;dx; — x,dxy ci ha permesso di semplificare notevolmente le-
spressione da integrare. |

ESERCIZIO 3. Sia Fy(X) = kr® (x1,%2,X3), conr? = x12 +x% +x§ = ||x||%, k € Rea € R, un campo centrale, si determini
il flusso uscente dalla sfera B(O, R) al variare del parametro o e si verifichi che rot(F ) = O.

DiscussiONE. Dalla definizione abbiamo che

rot (Fo (X)) = k(8 (x3r®) — 83(xar®), 83 (x1r™) — 84(x3r%), 81(xor*) — B9 (x4r%))

= k(QXZX3r°‘_2 — axpX3r® 2, a (x1X3 — X1X3) 12, culxyxy — x1x2)ro‘_2) =0

quindi il campo F, ha rotore nullo indipendentemente dalla sua intensita c.
Riguardo al flusso del campo attraverso la superficie chiusa, determinata dal bordo della palla B(O, R), abbiamo
che

(x4,%7,X3)
CDGB(O,R)(Fa):f Fa~nda=kJ- P (Xq,X,X3) - ~— é 3 4o
9BIOR) Ix[=R

- kj 2 = kR J do =kR™!. 47R? = 47kRY"3
xi-R R Ixll=R

si noti che il flusso & costante solo se & = —3 (che corrisponde al caso del campo gravitazionale o coulombiano).

Inoltre & opportuno sottolineare che quando oo < O il campo & singolare e non é definito nellorigine O, in tali

casi non & corretto usare il teorema della divergenza perché F ¢ C'(B(O,R +¢)). ]

ESERCIzIO 4. Verificare la validita delle ipotesi e dellenunciato del teorema del rotore quando il campo vettoriale &
F(x) = (O,xy,0) e la superficie ¥ = ¢ (K), dove (u,w) € K = [0, 712 e p(u,w) = (sin(u) + sin(w), u, w).

DiscUssIONE. Verificare la validita delle ipotesi non & molto impegnativo, in particolare osserviamo che la
superficie & un pezzo del grafico di una funzione differenziabile, quindi regolare ed orientabile. Effettuiamo il
calcolo esplicito degli integrali premettendo il calcolo di alcune necessarie quantita

01¢ = (cos(u),1,0) 0,0 = (cos(w),0,1) 019 A 0y¢ = (1,— cos(u), — cos(w))

da cui segue
@ (7= [ (Fedo~ | Flgtuw) (20 oy

= | (0,sin(u) +sin(w),0) - (1, — cos(u), — cos(w))dudw
K

=— Jﬂr Jw[sin(u) +sin(w)]cos(u)dudw = O
0o JO

Daltra parte abbiamo

[rot(F) - T]ds = j (0,0,1)- 4/ (t)dt

(o)X i
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dove vy, peri=1,..,4, sono le curve che costituiscono il bordo della superficie > aventi le seguenti parametriz-
zazioni

Yo Y(t)=(sint),t0) te[011 e  Y(t)=(cos(t),1,0)

Y2: Pa)=(sin(t),0,t)  te[01] e  YPi(t)=(cos(t),0,1)

v3:  P3(t) = (—sin(t),—t,0) t € [0,1] e P§(t) = (—cos(t), —1,0)
Y4: Pa(t)=(—sin(t),0,—t)  te[0,11 e  Py(t)=(—cos(t),0,—1)

dopo questa precisazione otteniamo

1 1
é [rot(F) - T]ds = J (0,0,1)- ’L/)é(t)dt + j (0,0,1)- 'L/Jﬁt(t)dt = J dt+ f (=1 dt=0
ox Y2 Y4 0 0

in questo modo la verifica & completata. n

ESERCIZIO 5. Si calcoli la circuitazione del campo vettoriale F = (a,b, c) lungo il cammino «y = 8%, con ¥ superficie
regolare a tratti.

DIScUSSIONE. Per rispondere alle pretese dellesercizio basta osservare che il campo vettoriale F € regolare
su tutto R3, quindi & possibile applicare il teorema del rotore e dedurre che

§F-ds=§ F~ds=iJ[rot(F)~n]da=O
07 do pu

infatti il rotore di un campo vettoriale costante &€ sempre nullo. Si noti che l'indecisione nel segno dell’integrale
di superficie (causata dal non avere informazioni sullorientazione di %) in questo caso non pregiudica la possi-
bilita di portare a termine lesercizio... [

33

ESercizio 6. Calcolare il lavoro compiuto dal campo vettoriale F = (—xz,x1 xg) lungo la curva -y ottenuta dal-

lintersezione del cilindro di equazione {x12 + x% = 1} e del piano {xq + x3 = 3}, orientata in verso antiorario se vista

dallalto.

DISCUSSIONE. Possiamo applicare il teorema di Stokes se pensiamo ¥ come bordo della superficie piana
Y: {x3=3—x5con(xqx;) €D} dove D={(x1,x2):x12+x% <1}

quindi si ha

J- [F-Tlds = JJ. [rot(F) - n]do
¥ >

con il versore n orientato verso lalto e T antiorario se visto dallalto. Poiché si ha

rot(F) = (0,0,3(x?+x3)) e e (“of a1 = = (1.0.1)

V1+|VH2 V2

segue che il lavoro W vale

1
W = J.J-Z[rot(F) -n]do = JL 3(x? +x%)% -v/2dxdy = 67TL p3dp= %ﬂ

Lalternativa consiste nello svolgere lesercizio applicando la definizione di lavoro, cioé svolgendo un integrale
di linea: poiché la curva y ha equazione parametrica

X(0) = (%1(8),%7(6),%3(0)) = (cos(6),sin(8),3 — cos(H)) 6 c[0,27]
troviamo che

2| 3
W = J:) |:ZF](X‘I(9)1X2(9),X3(9))X]/(9)] do

1

2 2
j ((—sin3(6))(—sin(9))+cos3(9)cos(0)+(3—cos(@))3sin(9))d0=J [1—%sin2(26)]d9=%7r
0 (0]
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ricordando un po di trigonometria... n

ESERCIZIO 7. Sia M = {G(x},X3,x3) = O} C R3 un sottoinsieme dello spazio tale che G € C*°(R3),0 € Me
93G(O) = 0. Allora si scriva

i. lequazione del piano tangente ad M in O,

ii. lequazione del versore normale ad M in O,

iii. lespressione della prima forma fondamentale di M in O.

Infine si spieghi perché M, intorno ad O, é una superficie regolare.

DISCUSSIONE. i.&ii. Le ipotesi contenute nel testo ci permettono di applicare il teorema delle funzioniimplici-
te perrispondere alle richeste dellesercizio. Dunque osserviamo subito che il teorema di Dini assicura l'esistenza
di una funzione g € C*°(B,R), con B=B(O,¢) C R2, tale che

i. g(0)=0

ii.  G(xq,%2,8(x1,%2)) =0 per ogni (x1,%7) € B

ii. se |x—0O|;<6 e G(x)=0 allora X3 = g(xq,%7)
inoltre sappiamo che
B 1

93G(x1,X7,8(x1,X7))
quindi, in particolare, vale che
(81G(0),5,G(0))
33G(O)

questo ci permette di ottenere lequazione del piano tangente ad M in O, come lequazione del piano tangente
al grafico di g nel punto O = (0,0, g(0,0)), che &

_ 01G(O)xq + 9,G(O)x,
83G(O)

che possiamo riscrivere, pit elegantemente, nel seguente modo
81G(O)X1 + 82G(O)X2 + 83G(O)X3 = VG(O) -x=0

Vglx1,xp) = (01G(xq,%2,8(X1,%2)), B G (%1, X2, 8 (X1, X2)) )

Vg(0,0) = —

x3 = g(0,0) + Vg(0,0) - (x1,%7) =

VG(O)
VGOl
iii. M &, nei dintorni di O, una superficie regolare in quanto & il grafico di una funzione di classe C', come prova
il teorema della funzione implicita, e il teorema in questione suggerisce anche una buona parametrizzazione
della superficie

Dalla precedente espressione segue che il versore normale al piano tangente, e quindi ad M, &

x(u) = (ug,uz,8(ug,uz)) con u=(u,up) €B

inoltre vale

o) - (1,0.rgluyug) = 1.0, S EMN

03G(xq,%7,8(x1,%3))
B 87G(x1, %72, 8(%1,%2)) )
03G(xq,%7,8(x1,X7))
A1G(x1, %2, 8(x1,%7))  92Glx1, X7, 8(x1, X2)) 1)
93G(x1,%2,8(x1,%2))" F3G(x1,%7,8(X1,X2))’
a questo punto é facile ricavare i coefficienti della prima forma fondamentale della superficie, che sono

A1G(x1,%,8(x1,%2)) ]Z
83G(x1,%2,8(x1,%2))
A1G(x1,%2,8(x1,X7)) - B2Gx1, X2, 8(X1,X7))
‘(33G(X1,X2,g(X1,X2))‘2

626(x1,x2,g(x1,x2)) ]2

azx(u) = (0,1,62g(U1,U2)) = (0,1,

61X/\82X=(

E=81X'81X=1+[

F=81x-62x=

G=0)X-Oyx=1+
25752 [83G(X11X2,8(X1,X2))
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il che mette fine allo svolgimento. n

NN

Esercizio 8. Assegnati la regione dello spazio D = {1 < x12 +X 5

F(x) = (x1,%7,0), si calcoli la quantita ®p (F).

<x3 < 2(x12 +x2) < 4} C R3 el campo vettoriale

DiscussioNE. Il flusso del campo vettoriale F attraverso la frontiera del dominio D (superficie regolare a tratti
composta da piu superfici) pud essere calcolato, grazie al teorema della divergenza, aggirando il calcolo di piu
integrali superficiali e riducendo il tutto ad un unico integrale di volume, infatti vale

Psp(F) = j (F-n)do = J div(F)(x)dx = f 2dx¢dx,dx3 = 2m3(D)
ob D D

Osserviamo che il dominio D C R3 & un solido avente simmetria assiale e la sua sezione S ha il seguente profilo

2
1

coordinate cilindriche nel seguente modo

V21 4
m3(D) = j dX1dX2dX3 = J: pd,od@dz = j [j |:
D D 1 02

dove p = /x4 + x% é la distanza dall'asse x3 di rotazione. Quindi possiamo calcolare la misura di D grazie alle

21 V2
j d@} dz} odp = 27rj (4— pz)pdp
1

0
2
= 27|20 — i v = §7r
PR T2
cosi da concludere che ®gp(F) = 5. m

ESERCIZIO 9. Si calcoli il flusso Pgp(F), dove D = B(O,r) e F = (a,b, c).

DiscUsSIONE. Lesercizio non presenta particolari difficolta, il calcolo del flusso in questione (cioé dell'in-
tegrale di superficie) puo essere aggirato tramite il teorema della divergenza, visto che il campo vettoriale &
sufficientemente regolare e la superficie € regolare ed & il bordo di un dominio. In particolare notiamo che

div(F) = 61F1 +62F2 +83F3 = 81a+62b+83c =0

da cui segue che
Pgp(F) = j [F-n]ldo = J- div(F)(x)dxjdx,dx3 = O
oD D

si noti che ogni campo vettoriale costante ha divergenza nulla, quindi il risultato ottenuto resta vero per ogni
dominio D per cui vale il teorema della divergenzal n




