Vaccine against bacterial
infections



Diphtheria vaccine
Antibiotics / 8

Rabies vaccine |/ o
Hygiene/Cleanwater’ l

Smallpoxvaccine\l %

)
O
=
©
-
(&
Q
Q.
>
Q
Q
- —
and

/ / //
/ /

'] I T WA I P
4.000 1700 1900 " 2100

2.500.000 100.000 0 1800 2000

Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines Against Antimicrobial Resistance. Front
Immunol. 2020 Jun 3;11:1048. doi: 10.3389/fimmu.2020.01048.



Transmission of Neisseria meningitidis (Meningococcus, Men) in the
population .
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Meningococcal vaccines and herd immunity: Lessons learned from serogroup C conjugate
vaccination programs.Trotter & Maiden 2009
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Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity,
evolution and pathogenesis. Nat Rev Microbiol. 2020 Feb;18(2):84-96. doi: 10.1038/s41579-
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Neisseria meningitidis
(Meningococcus, Men) vaccination

Capsule polysaccharide (CPS) vaccines

The earliest attempts to develop Men vaccines were made
from 1900 to 1940, in response to epidemic disease and
increased infection rates occurring during both World Wars.
These vaccines were heat-killed whole bacteria preparations,
which ultimately proved unsuccessful due to poorly controlled
clinical studies, questions over the nature of the immunity
conferred and notably because of excess reactogenicity, in
hindsight likely due to the presence of large amounts of
lipooligosaccharide (LOS).

Sophian 1912; Greenwood 1917; Gates 1918; Riding and Corkill 1932



The availability of antibiotics became
significant for successfully treating
bacterial meningitis from WWII onwards,
such that meningococcal vaccine research
languished until antibiotic resistance, in
particular to sulphonamides, was observed
in meningococci (Miller, Siess and
Feldman 1963)
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The role of the polysaccharide capsule for pathogenesis
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ABSTRACT

While much data exist in the literature about how Neisseria meningitidis
adheres to and invades human cells, its behavior inside the host cell is largely
unknown. One of the essential meningococcal attributes for pathogenesis is
the polysaccharide capsule, which has been shown to be important for
bacterial survival in extracellular fluids. To investigate the role of the
meningococcal capsule in intracellular survival, we used B1940, a serogroup
B strain, and its isogenic derivatives, which lack either the capsule or both the
capsule and the lipooligosaccharide outer core, to infect human phagocytic

and nonphagocytic cells and monitor invasion and intracellular growth. Our

data indicate that the capsule, which negatively affects bacterial adhesion and,

consequently, entry, is, in contrast, fundamental for the intracellular survival
of this microorganism. The results of in vitro assays suggest that an increased
resistance to cationic antimicrobial peptides (CAMPs), important components

of the host innate defense system against microbial infections, is a possible
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Gotschlich and colleagues published in 1969 Men vaccine development.
These cardinal studies described the phenomena of age-related immunity
to the meningococcus; that intermittent carriage of different strains of
meningococci throughout life initiates, reinforces and broadens natural
immunity to meningococcal disease; that susceptibility to disease
correlates with low levels of serum antibodies with bactericidal activity
(SBA) to the pathogen.

The only high-molecular weight CPS (>100 000 Da), produced by
precipitation with the cationic detergent Cetavlon (Gotschlich, Liu and
Artenstein 1969), reliably induced antibody responses in humans.

These studies culminated in the classic vaccination trial of a purified MenC
CPS at the military training camps at Fort Dix, New Jersey.

The large scale field trials in 28 245 recruits that followed in 1969—-1970
showed a vaccine-protective effect of 89.5% against MenC disease
(Artenstein et al.1970; Gold and Artenstein 1971).

Significantly, these studies have provided the basis for using SBA as the
‘serological correlate of protection’ for all subsequent meningococcal
vaccines based on CPS and non-capsular antigens.

Plain CPS vaccines have been licensed since the 1970s, as mono-, bi-, tri-
and tetravalent vaccines, in various formulations containing MenA, MenC,
MenW and MenY CPS.



Diagrammatic representation of the CPS region in meningococci
that express sialic acid containing capsules.
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Meningococcal vaccines and herd immunity: Lessons learned from serogroup C conjugate
vaccination programs. Trotter & Maiden 2009



Perhaps the most outstanding example of the impact of Men CPS conjugate
vaccines on disease is the introduction of an affordable MenA conjugate
vaccine MenAfriVac (Frasch, Preziosi and LaForce 2012; Tiffay et al.2015) to
Saharan and Sub-Saharan countries of Africa, which has led to virtual
elimination of MenA disease in those countries with immunisation
programmes (Djingarey et al.2015).

MenAfriVac successfully reduces nasopharyngeal carriage and generates herd
protection.

M.H. Djingarey et al / Vaccime 305 {2012) B40-B45 B41
Weekly Epidemic Curve for Meningitis in Burkina Faso
2005-2010
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Fig. 1. Weekly reported meningitis cases — Burkina Faso 2005-2010.



Figure 1. Cumulative attack rates per outbreak (district average), stratified by serogroup, excluding
special situations outbreaks in Cameroon and Ethiopia. Neisseria meningitidis serogroup C
outbreaks are shown in blue and N. meningitidis W outbreaks in green. Red line indicates epidemic
criterion. Abbreviations: AR, attack rate; BEN, Benin; BF, Burkina Faso; GHA, Ghana; NE, Niger; NG,
Nigeria; TOG, Togo.
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Plain CPS vaccines have been licensed since the 1970s, as mono-, bi-,
tri- and tetravalent vaccines, in various formulations containing MenaA,
MenC, MenW and MenY CPS.

Plain CPS vaccines have been used successfully to vaccinate specific
groups at risk from meningococcal infection and to control MenA
epidemics in the Sub-Saharan African ‘Meningitis Belt’,

Then it followed the development and widespread use of CPS conjugate
vaccines (Gasparini and Panatto 2011).

Conjugation of a bacterial CPS to a protein induces stronger antibody
responses to the carbohydrate moiety than the corresponding plain CPS.

................ Then Men conjugate vaccines
The role of the adjuvants

What is an adjuvant and why is it added to a vaccine?

An adjuvant is an ingredient used in some vaccines that helps create a
stronger immune response in people receiving the vaccine. In other
words, adjuvants help vaccines work better. Some vaccines that are made
from weakened or killed germs contain naturally occurring adjuvants and
help the body produce a strong protective immune response.



Adjuvant

Aluminum

ASO1s

ASO4

CpG 1018

No adjuvant

Composition

One or more of the following:
amorphous aluminum
hydroxyphosphate sulfate (AAHS),
aluminum hydroxide, aluminum
phosphate,

potassium aluminum sulfate (Alum)

Monophosphoryl lipid A (MPL) and QS-
21, a natural compound extracted from
the Chilean soapbark tree, combined in
a liposomal formulation
Monophosphoryl lipid A (MPL) +
aluminum salt

Cytosine phosphoguanine (CpG), a
synthetic form of DNA that mimics
bacterial and viral genetic material
Saponins derived from the soapbark
tree (Quillaja saponaria Molina)

Oil in water emulsion composed of
squalene

Vaccines

Anthrax, DT, DTaP (Daptacel), DTaP (Infanrix), DTaP-HepB-IPV (Pediarix), DTaP-IPV
(Kinrix), DTaP-IPV (Quadracel), DTaP —IPV/Hib (Pentacel), DTaP-IPV-Hib-HepB
(VAXELIS), HepA (Havrix), HepA (Vaqgta), HepB (Engerix-B), HepB (PREHEVBRIO), HepB
(Recombivax), HepA/HepB (Twinrix), HIB (PedvaxHIB), HPV (Gardasil 9), Japanese
encephalitis (Ixiaro), MenB (Bexsero, Trumenba), Pneumococcal (Prevnar 13, Prevnar
20, VAXNEUVANCE), Td (Tenivac), Td (Mass Biologics), Td (no trade name), Tdap
(Adacel), Tdap (Boostrix), Tick-Borne Encephalitis (TICOVAC)

Zoster vaccine (Shingrix)

Human papillomavirus, or HPV (Cervarix)

HepB (Heplisav-B)

COVID-19 vaccine (Novavax COVID-19 Vaccine, Adjuvanted)
Influenza (Fluad and Fluad Quadrivalent)

Chickenpox, cholera, COVID-19 (includes mRNA Pfizer-BioNTech, mRNA Moderna and
adenoviral Johnson & Johnson/Janssen), dengue, Ebola, Hib (ActHIB, HIBERIX),
measles, mumps & rubella (MMR), meningococcal (Menactra, Menveo, MenQuadfi),
polio (IPOL), rabies, rotavirus, seasonal influenza (except Fluad and Fluad
quadrivalent), smallpox and monkeypox (ACAM2000, JYNNEQS), Typhoid, yellow
fever, zoster live (Zostavax)


https://www.cdc.gov/vaccinesafety/concerns/adjuvants.html#mf59

Highly immunogenic proteins including diphtheria and tetanus toxoids and
the non-toxic diphtheria toxin variant CRM*7 have been conjugated to
different Men CPS to produce licensed glycoconjugate vaccines. The first
meningococcal conjugate vaccine to be used was a MenC conjugate vaccine
(MCC) for infants, toddlers and teenagers, introduced into the UK
immunisation programme in 1999, in response to ST-11 MenC outbreaks
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Meningococcal quadravalent CPS conjugate vaccines that include MenA, MenC,
MenW and MenY CPS have subsequently been developed and licensed (Dull and
Mclintosh 2012; Vella and Pace 2015). Recently, a MenACWY CPS conjugate vaccine
was strongly recommended for vaccination of teenagers in the UK in response to
increases in cases of infection caused by MenY and in particular by a hypervirulent
clone of MenW (Ladhani et al.2016a).

Conjugate A Conjugate C Conjugate W Conjugate Y



The CPS vaccine approach has not been successful for MenB

Plain MenB CPS was tested in several hundred volunteers, but few individuals
showed an antibody response (Wyle et al.1972).

Antibody to MenB CPS has been reported to be an effective opsonin, but a poor
bactericidal antibody in a chick embryo model of meningococcal challenge (Frasch
et al.1976).

The reluctance to develop MenB CPS vaccines is based on the observation that the
o(2-8) N-acetyl-neuraminic acid linked homopolymer of the polysaccharide is
structurally identical to a modification of mammalian neural cell adhesion
molecule (Toikka et al.1998) and thus, vaccines may induce autoimmune antibodies
that potentially cross-react with fetal brain tissue.

Since the CPS vaccine strategy has been rejected for preventing MenB
disease, research has focused intensively on using non-CPS
components as potential MenB vaccines.



Capsular polysaccharide
(self antigen)

The challenge of developing universal vaccines, August 2011
*F1000 Medicine Reports 3(1):16




Outer Membrane Vesicles (OMVs)
of Gram-negative bacteria

OMVs of Gram-negative bacteria are spherical
membrane-enclosed entities of endocytic origin.
Reported in the consortia of different bacterial species,
production of OMVs into extracellular milieu seems
essential for their survival. Enriched with bioactive
proteins, toxins, and virulence factors, OMVs play a
critical role in the bacteria-bacteria and bacteria-host
interactions. Emergence of OMVs as distinct cellular
entities helps bacteria in adaptating to diverse niches, in
competing with other bacteria to protect members of
producer species and more importantly play a crucial role
in host-pathogen interaction.



Outer Membranes of Gram-negatives are characteristically shed from
the surface as ‘vesicle blebs’ (OMV)
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Figure illustrating offensive and defensive roles of OMVs
utilized in bacteria-bacteria and bacteria-host interactions;
and their potential applications.

Major ones

@ Host immune suppression

@ Sharing of resistance
determinants

3 Enhanced biofilm
formation

@ Relieving stress

® Nutrient acquisition

® Trapping AMPs

Defensive functions

Prospective applications

@ As drug delivery vehicles
2 As communication tool
3 As secretory system

@ As vaccines

® As adjuvants
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Major ones

@ Bacterial killing

@ Delivery of virulence
factors

@ Elicit inflammatory
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@ Host-tissue disruption
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Study of the OMV production under natural and diverse
stress conditions has broadened the horizons, and also
opened new frontiers in delineating the molecular
machinery involved in disease pathogenesis. Playing
diverse biological and pathophysiological functions,
OMVs hold a great promise in enabling resurgence of
bacterial diseases, in concomitance with the steep
decline in the efficiency of antibiotics. Having
multifaceted role, their emergence as a causative agent
for a series of infectious diseases increases the
probability for their exploitation in the development of
effective diagnostic tools and as vaccines against
diverse pathogenic species of Gram-negative origin



For vaccines three types of OMV are defined:

- Naturally shed OMV are native ‘(n)OMV’;

« OMV treated with sodium deoxycholate (NaDOC) and used as
vaccines in humans are defined as ‘OMV vaccines’;

« OMYV that are modified by genetic manipulation (with or without
NaDOC treatment) are defined as modified ‘(m)OMV’

The hypothesis for using OMV as vaccines led to the development of two
OMV vaccines: VA-MENGOCOC-BC™, developed at the Finlay Institute
in Cuba, and MenBvac™ at the Norwegian Institute of Public Health
(Holst et al.2013). The vaccines were developed from the homologous
clonal strains of MenB and used to successfully control ongoing
epidemics in both countries.

Various methods are used to manufacture these OMV vaccines

(Frasch et al.2001; Holst et al.2009) including growth under iron
(Banerjee-Bhatnagar and Frasch 1990) or zinc-limiting conditions
(Stork et al.2010) to induce expression of regulated proteins, but
extraction with NaDOC (0.5%) is the common and key step to reduce LOS
content.



Given the complexity of OMV vaccines, the question to be asked is
which antigens are directing protective immune responses?

Studies of sera from the Norwegian vaccine trial using western blot
showed that antibodies to the serosubtype-specific PorA protein
and Opc protein made the most important single contributions to
bactericidal activity against the vaccine strain
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Examples of strategies for identifying potential meningococcal vaccine antigens

Method
Reverse vaccinology
Pan-genome analysis

Proteomics/immunoproteo
mics

Targeting meningococcal
factors required for
pathogenesis

Expression library
immunisation

Transcriptional profiling

Protocol Reference
See next slides

Multistep comparative analysis of entire Neisseria genomes
identifies potential pan-neisserial vaccine candidates

Human sera from colonised individuals, convalescents and OMV
vaccinees examined for specific reactivity with meningococcal
proteins, using 2D gel electrophoresis and western blotting.
Correlation of protein detection with increased SBA identifies
candidate vaccine antigens

SCAPE (2D free method for proteome analysis) and
bioinformatics identifies candidate OMP

2D gel-based platform integrating surface and
immunoproteomics identifies novel potential immunogens and
validates others (e.g. PorA, MIP, fHbp)

Surface-display screening/reporter fusion/phage-display-based
systems to characterise still undefined meningococcal
secretome

Mouse model of meningococcal systemic infection used to
identify candidate vaccine antigens that protect mice from lethal
challenge

Screening of genetic libraries selected on the basis of induction
of murine SBA identifies protective pools of defined antigens

Transcriptomes of meningococci grown in blood identify
upregulated proteins as putative vaccine candidates

Transcriptomes of meningococci exposed to human sera and
after interactions with epithelial and endothelial cells

Pajon et al. (2009)

Mendum et al. (2009);
Williams et al. (2009, 2
014)

Gil et al. (2009)

Tsolakos et al. (2014)

Gagic et al. (2016)

Sun et al. (2005)

Yero et al. (2007)

Echenique-
Rivera et al. (2011);
Hedman et al. (2012)

Kurz et al. (2003)



Reverse vaccinology



MenB protein-based vaccines

Whole genome sequencing paved the way for new approaches to
develop meningococcal vaccines by providing information about the
complete proteome from which vaccine candidates could be selected

by using bioinformatic algorithms to identify putative protective
antigens.

This novel in silico approach was termed genome- and proteome-
based ‘reverse vaccinology’ (RV) and was first described by Rino
Rappuoli and colleagues in 2000 (Rappuoli 2001) for the discovery of
potential antigens in the MenB strain MC58 and led to the
development of the Novartis vaccine Bexsero™/4CMenB.



> Science. 2000 Mar 10;287(5459):1809-15. doi: 10.1126/science.287.5459.1809.

Complete genome sequence of Neisseria
meningitidis serogroup B strain MC58

H Tettelin 1, N J Saunders, J Heidelberg, A C Jeffries, K E Nelson, J A Eisen, K A Ketchum, D W Hood,
J F Peden, R J Dodson, W C Nelson, M L Gwinn, R DeBoy, J D Peterson, E K Hickey, D H Haft,

S L Salzberg, O White, R D Fleischmann, B A Dougherty, T Mason, A Ciecko, D S Parksey, E Blair,

H Cittone, E B Clark, M D Cotton, T R Utterback, H Khouri, H Qin, J Vamathevan, J Gill, V Scarlato,

V Masignani, M Pizza, G Grandi, L Sun, H O Smith, C M Fraser, E R Moxon, R Rappuoli, J C Venter
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Abstract

The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative
agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which

were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of
these contain genes encoding proteins involved in pathogenicity, and the third island contains coding

sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N.

meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus

https://pubmed.ncbi.nim.nih.gov/2term=White+O&cauthor_id=10710307 Unique to serogroup B capsular polysaccharide synthesis can

10 Mar 2000

Complete genome sequencing of
Neisseria meningitidis serogroup B

10 Mar 2000
Vol 287
1809-1815
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The 2,272,351-base pair genome of Neisseria meningitidis strain MC58
(serogroup B), a causative agent of meningitis and septicemia, contains
2158 predicted coding regions, 1158 (53.7%) of which were assigned a
biological role.

Three major islands of horizontal DNA transfer were identified; two of
these contain genes encoding proteins involved in pathogenicity, and the
third island contains coding sequences only for hypothetical proteins.
Insights into the commensal and virulence behavior of N. meningitidis can
be gleaned from the genome, in which sequences for structural proteins of
the pilus are clustered and several coding regions unique to serogroup B
capsular polysaccharide synthesis can be identified.

Finally, N. meningitidis contains more genes that undergo phase variation
than any pathogen studied to date, a mechanism that controls their
expression and contributes to the evasion of the host immune system.
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Figure 3 Structure of the putative islands of horizontally tranferred DNA (IHTs) in the N. meningitidis strain MC58 genome. Empty boxes are
hypothetical proteins and striped boxes are conserved hypothetical proteins.

IHT-A1: NMB0066, adenine rRNA methylase ErmC; NMB0067 to NMB0070, capsule biosynthesis proteins SiaD, SiaC,SiaB, and SynX;
NMBO0071 to NMB0074, capsule export proteins CtrA, CtrB, CtrC, and CtrD.

IHT-A2: NMB0097 and NMBO0098, disrupted secreted protein and ABC transporter.

IHT-C: NMB1747, tspB protein; NMB1750, PivNM-2; NMB1751, NMB1769, and NMB1770, transposases; NMB1753 and NMB1754,
bacteriophage-related proteins; NMB1762, NMB1763, and NMB1768, toxin/toxin-related homologs.
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To identify potential vaccine candidates, we determined the genome
sequence of the virulent strain MC58 [see (11)]. While the sequencing
project was in progress, unassembled DNA fragments were analyzed to
identify open reading frames (ORFs) that potentially encoded novel
surface-exposed or exported proteins (12).

We identified 570 such ORFs and, by means of the polymerase chain
reaction (PCR), we amplified and cloned the DNA sequences of these
hypothetical genes in Escherichia coli to express each polypeptide as either
His-tagged or glutathione S-transferase (GST) fusion proteins (13). We
obtained successful expression with 350 ORFs (61%).


https://www.science.org/doi/10.1126/science.287.5459.1816#core-RF11
https://www.science.org/doi/10.1126/science.287.5459.1816#core-RF12
https://www.science.org/doi/10.1126/science.287.5459.1816#core-RF13

A total of 350 candidate antigens were expressed in Escherichia
coli, purified, and used to immunize mice. The sera allowed the
identification of proteins that are surface exposed, that are
conserved in sequence across a range of strains, and that
induce a bactericidal antibody response, a property known to
correlate with vaccine efficacy in humans.

we used a collection of strains isolated worldwide and over
many years to investigate whether the new candidate
molecules were conserved and accessible to antibodies. Our
aim was to select strains representative of the diversity
found in natural populations of MenB. We used a
phylogenetic tree from 107 strains constructed by
multilocus enzyme electrophoresis (MLEE) and validated by
multilocus sequence typing (MLST) to select 22
representative, disease-associated MenB strains
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Antigen (length, amino

Serum bactericidal

acids) Remarks/similarities* FACS ELISA activity (SBA)
GNA33 (441) Lipoprotein/similar toE. coli membranebound lytic transglycosylase A (MItA) of E. ++++t 13,000 1/16,000%
coli and of Synechocystis sp. (22)
GNA992 (591) Outer membrane protein/similar to Hsf and Hia ofHaemophilus influenzae and FhaB ~ +++ 2,750 1/256
of Bordetella pertussis (26)
GNA1162 (215) Lipoprotein/no significant similarities ++ 1,270 1/4
GNA1220 (315) Membrane protein/contains a stomatin-like domain 44+ 1,000 1/256
GNA1946 (287) Lipoprotein/similar to HIpA of H. influenzae, belongs to the NIpA family of -t 13,100 1/32
lipoproteins (27)
GNAZ2001 (251) Outer membrane protein/similar to P60 invasion-associated extracellular proteins - 500 1/512
(28)
GNA2132 (488) Lipoprotein/low similarity to transferrin binding proteins -+ 1,700 1/16,000
GST§ — - <50 <1/4
omMvEg Mixture of proteins containing mainly PorA HHH 260,000  1/32,000
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FACS analysis showing binding of GST OMV GNA33 GNA1 946
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problems

Management and interpretation of about two million base pairs of

meningococcal genome sequence data were prone to errors. For instance,

prediction of the start codons was based on the identification of the first

ATG occurring after a previously identified stop codon. Unfortunately, this

did not take into account either the presence of a correctly spaced Shine
Dalgarno sequence, or the potential presence of less frequent start
codons like TTG or GTG (coding for leucine or valine, respectively).

For example, the annotation of GNA1870 (later renamed fHbp) was

incorrect as a result of automatic procedures and is now one of the most

important meningococcal antigens.

-182
AATTGAACCAAATCGTCAAATAACAGGTTGCCTGTAAACAANATGCCGTCTGAACCGCCG

NMB1869 L N Q I V K *

B Lt L]

‘ TTCGGACGACATTTGATI‘TTTGCTTCTTTGACCTGCCTCATTGATGCGGTATGCM
g T, S L -~ .
HGATACCATAACCAAAATGTTTATATATTATCTATTCTGCG’[@ACTAGG TAAACCT

- GTGAATCGAACTGCCTTCTGCTGCCTTTCTCTGACCACTGCCCTGATTCTGACCGCCTGC

GNA1IB870 M N R T A F € C L 8 L T T A L I L T A C
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Two protein-based vaccines against MenB:
e the four-component 4CMenB vaccine [Bexsero, GSK]
e the bivalent fHbp2086 vaccine [Trumenba, Pfizer]

The fHbp2086 vaccine consists of equal amounts of two factor H binding protein (fHbp)
variants belonging to subfamilies A and B, which were identified by biochemical
approaches.

The 4CMenB vaccine contains three components that were identified by reverse

vaccinology based on the complete genome sequence of a pathogenic reference MenB

strain (MC58 strain):

(1) the fHbp variant 1.1 (subfamily B) fused to the genome-derived Neisseria antigen
(GNA) 2091,

(2) the Neisseria adhesin A (NadA),

(3) the neisserial heparin binding antigen (NHBA) peptide 2 fused to GNA1030
Immunization with fHbp and NHBA fused to GNA2091 and GNA1030, respectively,
resulted in increased bactericidal activity compared to immunization with the unfused
proteins.

(4) Besides these three recombinant surface-exposed protein antigens, the vaccine
contains OMVs from the New Zealand strain NZ98/254 containing porin A (PorA) P1.4

Ruiz Garcia, Y., Sohn, WY., Seib, K.L. et al. Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. npj Vaccines 6, 130
(2021). https://doi.org/10.1038/s41541-021-00388-3
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An innovative method was developed to assess coverage
and predict effectiveness of the 4CMenB vaccine. This
assay, called MATS (Meningococcal Antigen Typing
System), correlated information on the quantity and
quality of the antigens expressed by individual MenB
strains and the potency of the immune response elicited
by the vaccine based on bactericidal assays.
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4CMenB represents a striking departure from the successful research and development platform
that resulted in several, highly safe and effective conjugate meningococcal vaccines (against
meningococcal serogroups A, C, W, and Y strains) formulated through covalent chemical linkage
of different serogroup capsular polysaccharides to proteins. Although each of the meningococcal
capsular polysaccharides shows strikingly distinct chemical compositions, each is an invariant
structure whose target epitopes do not change over time or region.

But for vaccines, such as 4CMenB, where the antigens inducing protective immunity are
proteins, the scenario is fundamentally different. The amino acid sequence of each of the
protein antigens is highly variable, a consequence of their location on the bacterial surface
where exposure to immune responses drives selection and fixation of diversity in circulating
strains of meningococci.

Genetic variation in meningococci occurs predominantly through recombination, not intra-
genomic mutations. Thus, within the natural population of meningococci, there is frequent
horizontal transfer of DNA, mainly through DNA transformation, not only between distinct
genotypes of N. meningitidis, but also from other sub-species of Neisseria and, rarely, other
distinct bacterial species. For example, conserved homologs of the nhba gene have been found
in commensal Neisseria species, such as N. lactamica, N. polysaccharea, and N. flavescens. This
finding is relevant because of the potential “selective impact” that a NHBA-containing vaccine
could have not only on encapsulated meningococcal strains, which are potentially pathogenic,
but also on the commensal flora. This rampant recombination has major implications in that to
be an effective vaccine, 4CMenB must elicit antibodies that protect against an enormous
diversity of circulating meningococcal



Varying degrees of strain coverage were estimated depending on the non-B meningococcal
serogroup and antigenic repertoire. 4CMenB elicits immune responses against non-B
meningococcal serogroups and N. gonorrhoeae. Real-world evidence showed risk
reductions of 69% for meningococcal serogroup W clonal complex 11 disease and 40% for
gonorrhea after 4CMenB immunization. In conclusion, functional antibody activity and real-
world evidence indicate that 4CMenB has the potential to provide some protection beyond
MenB disease.

a
N. gonorrhoeae

Worldwide 87 million new cases in 2016
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OMV proteins

Ruiz Garcia, Y., Sohn, WY., Seib, K.L. et al. Looking beyond meningococcal B with the 4CMenB

vaccine: the Neisseria effect. npj Vaccines 6, 130 (2021). https://doi.org/10.1038/s41541- % identity between N. meningitidis strain
021-00388-3 NZ05/33 and N. gonorrhoeae FA1090
FbpA 99.1
Neisseria MafA adhesin 98.8
mepingitidis #gioggﬁlt)i(ogl ar;;r:e% i 98.5
antigens o 078
TonB-dependent 96.9
receptor (NMB0964)
MtrE 96.4
Hypothetical protein 96.3
TonB-dependent 96.1
receptor (NMB1497)
OMP85 95.0
FrpB 94.3
Putative lipoprotein 94.2
NMB1126/1164
OMP P1 94.0
Tbp1 93.7
NspA 93.7
RmpM 93.4
% identity between N. meningitidis strain PilQ 9.4
NZ05/33 and N. gonorrhoeae FA1090 LptD 89.8
fHbp 62.6* containing protein
NadA n/a PorB 67.3
OpcA 43.8
PorA n/a

LbpA n/a
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Thermotolerant campylobacters are the most frequent cause
of bacterial infection of the lower intestine worldwide.

C. jejuni belongs to the epsilon class of proteobacteria, in the
order Campylobacteriales; this order includes two other
genera, Helicobacter and Wolinella. Like C. jejuni, members of
these genera have small genomes (1.6—2.0 megabases)




Figure 1: The sources and outcomes of Campylobacter jejuni infection.

Several environmental reservoirs can lead to human infection by C. jejuni. It colonizes the
chicken gastrointestinal tract in high numbers, primarily in the mucosal layer, and is passed
between chicks within a flock through the faecal-oral route. C. jejuni can enter the water
supply, where it can associate with protozoans, such as freshwater amoebae, and possibly
form biofilms. C. jejuni can infect humans directly through the drinking water or through the
consumption of contaminated animal products, such as unpasteurized milk or meat,
particularly poultry. In humans, C. jejuni can invade the intestinal epithelial layer, resulting in
inflammation and diarrhoea.
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The determination of the complete genome sequence of several
C. jejuni strains and plasmids has heralded the beginning of a
new era of C. jejuni research. These projects have revealed the
potential mechanisms by which C. jejuni associates with the host;
for example, the complete sequencing of pVir, a plasmid that is
found in some isolates of C. jejuni, has led to the identification of
a type IV secretion system that has been demonstrated to have a
role in cell invasion and pathogenicity in ferrets.

The publication of the genome sequence has also enabled the
development of multiple genetic and genomic tools for use in C.
jejuni, including microarrays, transposons for efficient random
mutagenesis, sighature-tagged mutagenesis, new reporter
constructs and vectors for constructing in-frame deletion mutants
and chromosomal point mutations.



Campylobacter jejuni pathogenesis

The mechanism of pathogenesis comprises four main stages: adhesion to
intestinal cells, colonization of the digestive tract, invasion of targeted cells,
and toxin production.
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Genetic variation and natural transformation.

C. jejuni displays extensive genetic variation, which has arisen from intragenomic mechanisms
as well as genetic exchange between strains. Sequencing the genome of C. jejuni has revealed:
the presence of hypervariable sequences that consist of homopolymeric tracts

lack of clear homologues of many E. coli DNA-repair genes.

Most of the hypervariable sequences are in regions that encode proteins that are involved in
the biosynthesis or modification of surface-accessible carbohydrate structures, such as the
capsule, lipooligosaccharide (LOS) and flagellum.
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Cytolethal distending toxin.

C. jejuni produces cytolethal distending
toxin (CDT), which is also produced by a
diverse group of other bacterial
species. The toxin causes arrest at the
G,/S or G,/M transition of the cell cycle,
depending on the cell type. The active
holotoxin is a tripartite complex

of CdtA, CdtB and CdtC, although one
study has indicated that CdtB and CdtC
combined have some cytotoxicity
without CdtA?
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Campylobacter jejuni genomics

A total of 174 complete genome sequences of C. jejuni strains collected
from different geographic locations and isolation sources were preliminarily
analyzed. To be consistent with the genomic data, all of the sequences were
annotated using the software Prokka. The correct taxonomy classification is
essential for obtaining high-quality pangenomes (Wu et al., 2020).

In order to determine the taxonomic status and obtain a high-quality
pangenome of C. jejuni, the ANI values were firstly calculated to estimate
the genetic relatedness among the strains. ANI has become one of the main
genome options for DNA-DNA hybridization for taxonomic purposes. The
previously suggested species threshold of 95% ANI can represent the same
species. We found that the ANI value of the C. jejuni strain 414 is about
91%, which is obviously different from the other 173 strains and may be an
incorrect classification.
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Using the whole-genome and core genome alignment concatenation approach, phylogenetic
trees for the set of 173 genomes were constructed, the core genome tree could be divided
into six main clades, in which nine strains were diverged independently of the other
members.



Pangenome shape of Campylobacter
jejuni.

(A) Pangenome flower plot showing the
core genome and the different unique
genes for each strain. Different

colors represent the subgroups in the
pangenome tree (the colors correspond to
the different clades in the core genome
tree). (B) Gene accumulation curves for
the pangenome. (C) Histogram of the
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oo in the pangenome. A total of 8,041 non-

redundant gene families identified in 173
genomes are based on their frequency
distribution. (F) Distributions of the
Clusters of Orthologous Genes (COG)
categories in the core, accessory, and
unique genes without homologs were
marked in gray.
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Characterization of the core virulence
factors (VFs).

(A) Distributions of the virulence type
categories of 145 VF proteins. The top
three types are motility and export
apparatus (black), colonization and
immune evasion (light blue), and iron
uptake (brown). (B) Distributions of
the Clusters of Orthologous Genes
(COG) types of core VFs, with the
largest COGs mainly distributed in cell
motility (N) and cell component (wall,
membrane, and envelop) biogenesis
(M), which accounted for more than
35% of the 145 core

VFs. (C) Simulated location
distributions of some core VFs based
on Gene Ontology (GO) functional
““analysis that are mainly involved in
motility, biosynthesis, metabolism,
and transportation.



Core VF Estimation for Essentiality and Non-host Homologs

Essential genes are composed of the minimum set of genes required to support cell life
and have greater therapeutic potentiality.

The identification of essential genes is a key step in designing therapeutic targets for
bacterial infections. Among the 145 core VFs, 94 (~65%) were predicted as essential
genes. These genes are mainly involved in biological processes like ATP binding, DNA
binding, and transferase and permease activities. Afterward, the essential core VFs
were aligned with the human proteome to confirm whether there is any similarity
between them. Seventy-four proteins showed hits below the threshold value and were
considered as non-host homologous proteins. These non-host homologous proteins
can be preferably used for C. jejuni vaccine development to avoid autoimmune
response or recombination and integration events in humans.

Besides, proteins located in the periplasmic region, in outer membranes, and
extracellularly are considered as effective vaccine candidates.

The core VF proteins for subcellular location revealed that 47 proteins were
cytoplasmic, 19 were located in the cytoplasmic membrane, one was in the outer
membrane, three were unknown, and four were periplasmic



It is known that outer membrane vesicles (OMVs) are a molecular complex consisting of
lipopolysaccharides (LPS), outer membrane proteins, periplasmic proteins, lipids, and even
cytoplasmic proteins, which are important vehicles for the simultaneous delivery of many
effector molecules to host cells. Exposed proteins are often attractive targets for vaccine
design, but sometimes not all proteins must be exposed to the surface, including some
periplasmic proteins present in OMV preparations, which may also elicit an immunogenic
response. Due to the role of OMVs in intestinal adhesion and invasion, and in regulating
the dynamic interaction between host and pathogens, OMVs have become potential
vaccine targets for a variety of intestinal pathogens. Therefore, the bacterial cell surface
and secreted proteins, usually located in the extracellular, periplasmic, and outer
membranes, could be more effective as vaccine candidates or diagnostic targets

Protein name Location PsortB score TMHMM prediction Molecular weight (kDa) VaxiJen score VaxiJen prediction
SodB Periplasmic 9.44 Qutside 24.81 0.5003 Probable antigen
FigC Periplasmic 9.44 Qutside 18.30 0.4831 Probable antigen
HtrA Periplasmic 9.76 Outside 51.01 0.5379 Probable antigen
KpsD Periplasmic 9.44 QOutside 60.84 0.4261 Probable antigen
CadF Outer membrane 10 Qutside 36.00 0.8043 Probable antigen



Campylobacter jejuni transcriptome analysis in human INT 407 and Caco-2 cells and
the pig intestinal loop.
the expression levels of 126 genes, including the 25 core VFs (which include sodB, cadF,
and flgC) were increased and the expression levels of 148 genes (including 13 core VFs)

wea¥e decreased under human immune streds.
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For the five selected proteins, nearly all of them had an apparent differential to the stress in
human and pig. As well, the results in the pig ligated intestinal loop model showed that the
expression levels of 33 core VFs, including flgC, have been increased and those of 23 core VFs,
including htrA, have been decreased. The oxidative stress response genes and the iron
acquisition genes, including the potential vaccine targets htrA, sodB, and other core VFs such
as chuA, chuB, and chuD, were expected to be decreased due to the intestinal mucus in the
intestinal loop of pig.

This study found that the increased core VFs were mainly associated with the motility- and
flagellar-related genes in both human and pigs and that the decreased core VFs were mainly
related to iron transport system proteins.

These results indicate that the flagellar genes are important VFs, which are essential for C.
jejuni motility and the secretion of virulence proteins. The differences in the gene expressions
could be caused by the different transcriptional responses by different hosts or the need for a
certain reaction time after infection.

The candidate proteins found in this study may be efficient vaccine targets both in human and
other animals. With the development of more animal models, these core VFs can provide
abundant gene resources, which may be beneficial to the study of the virulence mechanisms
of C. jejuni
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