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Abstract

In this work we study the characteristics of heart rate variability (HRV) as a function of age

and gender. Our analysis covers a wider age range than that studied so far. It includes

results previously reported in the literature and reveals behaviours not reported before. We

can establish basic scale relationships in different HRV measurements. The mean value of

the RR intervals shows a power-law behaviour independent of gender. Magnitudes such as

the standard deviation or pNN50 show abrupt changes at around the age of 12 years, and

above that age they show gender dependence, which mainly affects short-time (or high fre-

quency) scales. We present a unified analysis for the calculation of the non-linear α and β
parameters. Both parameters depend on age; they increase in the extremes of life and

reach a minimum at around one year of age. These gender-independent changes occur at

low frequencies and in scale ranges that depend on age. The results obtained in this work

are discussed in terms of the effects of basal metabolic rate, hormonal regulation, and neu-

ronal activity on heart rate variability. This work finally discusses how these findings influ-

ence the interpretation of HRV measurements from records of different lengths.

Introduction

Heart rate variability (HRV) is the physiological variation in the duration of cardiac cycles [1,

2]. Research into HRV began with the emergence of modern signal processing in the 1960s

and 1970s, and has rapidly expanded in more recent times [3]. HRV is mainly controlled by

the autonomic nervous system (ANS) through the interplay of sympathetic and parasympa-

thetic neural activity especially at the sinus node [4, 5]. The autonomic nervous system inter-

acts with receptors on the sinoatrial node (SAN) and the relative contributions of the ANS and

SAN to HRV have been elucidated in [6, 7]. In general, HRV is influenced by many several fac-

tors such as chemical, hormonal and neural modulations, circadian changes, exercise, emo-

tions, posture, and preload. The heart rate adaptation to changing factors is carried out by the

activity of a variety of regulatory subsystems, and results in a complex linear and non-linear

time behaviour, which changes with age and pathological conditions.
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Several studies demonstrated age-related and gender-related variations in long-term HRV

characteristics. It was reported that autonomic activities diminish with age in both genders

and that gender-related variation in parasympathetic regulation decreases after the age of 50

years [8–14]. The hormonal influence on autonomic activity was analysed in [15–20]. Some

investigators found that cardiac vagal activity declined during the luteal phase, and others

reported that no changes in cardiovascular autonomic control occurred during the menstrual

cycle of healthy fertile women. These studies were conducted on small populations and using

HRV series too short to compare the results with ours.

HRV characteristics were proposed as predictors of the risk of premature mortality after

myocardial infarction or development of congestive heart failure, also as diagnosis tools of

autonomic dysfunction in diabetes, and as non-invasive tools for estimating the autonomic

modulation of the cardiovascular system during stress, relaxation, or assessment of the effects

of physical training on fitness level. For these reasons, the interest in HRV is growing both in

clinical and physiological studies [21–28]. The importance of HRV as an index of the func-

tional status of physiological control systems is currently recognized.

To compute HRV characteristics, many mathematical methods have been developed,

which may be grouped into statistical, spectral, graphical, non-linear, complexity or informa-

tion based [29–32].

In summary, the scientific and medical community has made a huge effort to obtain reliable

measurements of the HRV characteristics in normal and pathological conditions. The study of

the dependence of HRV on age and gender in a healthy population reveals the influence of fac-

tors such as body mass, basal metabolic rate, hormonal regulation, neuronal activity, etc. It

also allows characterizing a control group to reference deviations associated with various

pathologies.

There are many studies in the literature that together explore an age range of 1-99 years [2,

33–42].

In this paper we present a study that covers an age range of 0.08 (1 month)-99 years,

increasing the age range by slightly more than a power of ten. The difference is significant for

revealing scaling behaviours in the HRV measurements. In our analysis we include data

obtained from [2, 33–35] that are representative of the age range 1-99 years and sufficient for

the purpose of this work.

Finley et al. presented calculations of low frequency (LF), high frequency (HF), and total

power indices for the range of 0.08-24 years [43]. LF and HF indices are not analysed in our

work, and total power is equivalent to the standard deviation of HRV, whose dependence on

age is discussed in this work. In that study, however, the data are grouped into age ranges, that

is, age is not considered a continuous variable. Van den Berg et al. [44] presented a very large

study including some of the indices that we calculate, but they examined 10-second electrocar-

diograms, which are too short to calculate scale factors by power and multifractal analyses, as

we discuss in the last section.

We calculate indices in the time domain and scale factors (α and β) derived from both the

multifractal and the power analyses, and a unified analysis of them is presented. There is a

mathematical relationship between α and β, and our unified analysis suggests that the scale

ranges depend on age. We also discuss α and β dependences on age in terms of the influence

of neuronal activity on heart rate variability (due to either maturation of the autonomic ner-

vous system or alterations in its interaction with the cells of the sinoatrial node).

Our work is limited to the analysis of the above-mentioned HRV characteristics [45, 46],

but the methodological aspects reported in this work are general and should be considered to

analyse any other measurements. By considering the HRV as a signal composed of multiple

frequencies influenced by control mechanisms operating in different frequency ranges, there
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are two immediate aspects to consider: (i) the length of the HRV series is a variable coupled to

the physiological variables, (ii) the HRV measurements must be determined in the same scale

ranges in both the time and frequency domains. In other words, the length of the HRV series

limits the scale range that can be analysed [47, 48]. There is a growing interest in using short

and ultrashort HRV records because of their obvious clinical utility. To do this, it is necessary

to understand the differences with 24-hour measurements, which have not yet been fully stan-

dardized. It is evident that by shortening the series, the frequencies under study are limited. A

better understanding of the frequency composition of HRV and its dependence on age and

gender can facilitate the use of short records.

This work is organised as follows: in Procedure we explain the methodology used, which is

the same as that in [47, 48] and comparable to the one in [2, 33, 34]. The next section deals

with the results; results of indices in the time domain are presented first, and then are results

of scale factors α and β. The last section summarizes our conclusions.

Procedure

We analysed Holter recordings from healthy subjects who were recruited as volunteers after

an exhaustive interview and clinical examination. Approval for this study was granted by the

Ethics Committee of the National University of La Plata (UNLP) for data protection and pri-

vacy. In accordance with the Declaration of Helsinki, prior to participation in the study, all

subjects were informed about the study and gave their written consent (in the case of children

under 16, their parent’s or legal guardian’s consent was required).

The study included participants without clinical symptoms of disease, who were not on

medication and whose electrocardiograms (ECG) were normal according to the criteria sum-

marized in Table 1 [47, 48].

Following these criteria, a total of 154 individuals were selected, who were aged between 1

month and 55 years (the age distribution is shown in Table 2).

Table 1. Criteria of normality for all Holter records obtained in the present work.

I Minimum nighttime frequency>60/min

II Nighttime pauses< 3s.

III Ventricular extrasystoles < 100/24 h, without couplets, bursts, or polymorphism.

IV Supraventricular extrasystoles < 100/24 h, without couplets, or bursts.

V Absence of blocks or conduction disturbances.

https://doi.org/10.1371/journal.pone.0255894.t001

Table 2. Age distribution of the 154 individuals included in the research.

Age range (x in years) Number of patients

0 < x � 0.17 16

0.17 < x� 0.42 28

0.42 < x� 0.67 17

0.67 < x� 1.0 12

1.0 < x� 2.0 14

2.0 < x� 4.0 14

4.0 < x� 7.0 13

7 < x� 12 17

12 < x� 30 15

30 < x� 55 8

https://doi.org/10.1371/journal.pone.0255894.t002
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Holter monitoring was recorded for 24 h with digital three-channel DMS300 7 and

DMS300 3A recorders, and Galix recorders, using 3M electrodes [49]. The Galix recorders had

a programmable read in sampling rate of 512 and 1024 Hz, and a write out sampling rate of

128 Hz. The DMS recorders had a sampling rate of 1024 Hz per channel for signal-averaged

electrocardiography (SAEG) analysis, a read in sampling rate of 512 Hz, and a write out sam-

pling rate of 128 Hz in the other cases. The signals were analysed with Galix software, and Car-

dioScan 10.0, 11.0 software for DMS recorders. The error in the RR interval determination

was of about 8 ms (twice the error in the determination of the R peak).

The records of cardiac events were automatically detected and classified by the Holter soft-

ware, and then examined and corrected by two cardiologists. We employed the quality criteria

established in [47, 48] for all time series used in the present work. Also stationarity was evalu-

ated, and surrogate analysis was performed as in [50–53].

Time series of a total of 195 healthy participants were analysed. Of these time series, 154

corresponded to the participants mentioned above, 13 to [54, 55], and 28 to [54, 56]. Partici-

pants from [54, 56] were aged from 20 to 74 years (the age distribution is shown in Table 3),

and 50% of them were females. Holter monitoring was recorded for 24 h with digital three-

channel DMS recorders, the signals were analysed with CardioScan (so the error in the RR

interval determination was also 8 ms), and then examined and corrected by two cardiologists.

The HRV time series were selected after the evaluation according to quality criteria established

in [47, 48]. For comparison we also analysed data from [2, 33–35]. The characteristics of the

population studied in [2, 34] are shown in Tables 4 and 5 respectively. In [33] two hundred

sixty healthy subjects 10 to 99 years old (112 males, 148 females) were recruited (the age distri-

bution is shown in Table 6). Healthy subjects were defined as those without clinical evidence

of organic disease in terms of medical history, physical examination, rest 12-lead electrocardio-

gram, routine blood chemistry profiles, and complete blood count. Oral contraceptives and

non-steroidal anti-inflammatory agents were the only medications allowed. Subjects who

exhibited abnormalities in one or more of the aforementioned categories were excluded from

the study. Holter monitoring was recorded for 24h and analysed with different three recorders

and software, and randomly selected Holter tapes were cross-analysed with the use of all pro-

grams. HRV and HR determinations from identical tapes were within 10% of each other.

Table 3. Age distribution of the 41 individuals from [54–56].

Age range (x in years) Number of patients

20 < x� 40 14

40 < x� 60 5

60 < x� 74 22

https://doi.org/10.1371/journal.pone.0255894.t003

Table 4. Clinical characteristics of the population used in [2].

Females (n = 51) Males (n = 49)

Age (years) 13.9 ± 3.7 12.3 ± 3.9

PQ (ms) 129.0 ± 14.7 129.9 ± 17.8

QRS (ms) 83.8 ± 8.6 87.2 ± 9.0

QTc (ms) 398.1 ± 16.7 387.6 ± 21.7

Supraventricular beats in 24h ECG (%) (2.35 ± 9.3) × 10−4 (1.73 ± 6.5) × 10−3

Ventricular beats in 24h ECG (%) (1.76 ± 5.19) × 10−4 0.205±1.425

Duration of ECG recording (min) 1287 ± 119 1313 ± 82

https://doi.org/10.1371/journal.pone.0255894.t004
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Table 5. Clinical, lifestyle and laboratory characteristics of the population used in [34].

Males (n = 192) Females (n = 202)

Age (years) 50 ± 6 51 ± 6

Body Mass Index (kg/m2) 26.4 ± 3.5 25.6 ± 4.0

Waist/hip ratio 0.91 ± 0.06 0.78 ± 0.05

Systolic blood pressure (mmHg) 147 ± 19 138 ± 20

Diastolic blood pressure (mmHg) 89 ± 11 82 ± 12

No smoking 123 (64%) 150 (74%)

Moderate smoking (<20/d) 57 (30%) 49 (24%)

Heavy smoking (>20/d) 12 (6%) 3 (2%)

Duration of smoking 0-46 years 0-57 years

No alcohol drinking 24 (13%) 96 (50%)

1-100g/week alcohol drinking 72 (37%) 37 (18%)

> 100g/week alcohol drinking 162 (80%) 3 (2%)

No physical activity 6 (3%) 57 (30%)

Mild physical activity 68 (35%) 61 (32%)

Moderate physical activity 7 (3%) 44 (22%)

Heavy physical activity 69 (34%) 82 (41%)

Personality type: Framingham 26 ± 5 22 ± 3

Personality type: Bortener 7 ± 3 28 ± 5

Personality type: Hostility 23 ± 3 7 ± 3

Fasting blood glucose (mmol/l) 4.4 ± 0.5 4.3 ± 0.4

2-hour blood glucose (mmol/l) 5.1 ± 1.5 5.1 ± 1.3

Fasting serum insulin (mU/l) 13 ± 9 9 ± 6

2-hour serum insulin (mU/l) 55 ± 53 54 ± 45

Total serum cholesterol (mmol/l) 5.78 ± 1.11 5.49 ± 1.00

HDL- cholesterol (mmol/l) 1.24 ± 0.30 1.57 ± 0.38

LDL- cholesterol (mmol/l) 3.75 ± 0.95 3.30 ± 0.90

VLDL- cholesterol (mmol/l) 0.43 ± 0.29 0.28 ± 0.20

Serum triglycerides (mmol/l) 1.51 ± 0.76 1.13 ± 0.60

Left ventricular mass # 221 ± 53 154 ± 35

Left ventricular mass index # 112 ± 26 91 ± 19

Fractional shortening (%) # 34 ± 6 35 ± 5

# n = 193 women, n = 166 men.

https://doi.org/10.1371/journal.pone.0255894.t005

Table 6. Age and gender distribution of the individuals from [33].

Age range (x in years) Male Female

10 < x � 19 16 14

20 < x � 29 16 26

30 < x � 39 19 20

40 < x � 49 25 40

50 < x � 59 11 11

60 < x � 69 10 10

70 < x � 79 9 12

80 < x � 99 6 15

https://doi.org/10.1371/journal.pone.0255894.t006
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Recordings <20 h in duration, and those in which nonsinus beats comprised 10% of the total

number of beats, were excluded.

In total, we evaluated data from about 700 healthy subjects aged between 1 month and 99

years.

The age distributions in Tables 2, 3 and 6 are given as histograms dividing the population

into subgroups. However, in our analysis we consider the age as a continuous variable and

therefore we did not carry out an analysis of the size effect in these groups. The effect of size is

considered in linear regressions as explained below.

The following linear indices in the time domain were calculated: the mean value of the RR

intervals (<RR>), the standard deviation of the RR intervals (SDRR), the square root of the

mean squared sum of differences of successive RR intervals (rMSSDRR), and the percentage of

the intervals that vary by more than 50 ms from the previous interval (pNN50). These indices

were calculated using the complete series, without detrending procedure. As we will discuss

below, the length of the series affects its frequency composition (also does the detrending pro-

cedure) and this fact must be considered when comparing results obtained from short and

long series. Our series are long enough so that the mentioned indices have values independent

of the length of the series [47, 48].

As we mentioned in the Introduction, there are other widely used HRV indices, for example

total power, and the LF and HF indices [33, 34, 43, 44]. The total power is equivalent to SDRR.

The LF and HF indices are calculated over specific frequency ranges. One of our conclusions

points to the need to improve the definition of the frequency ranges studied, which would be

dependent on age. For this reason we focus on the scale factors and the relationship between

them, as explained below.

It is known that HRV follows a power-law behaviour in the frequency domain (1/beat),

which is manifested in the power spectrum dependence on frequency as

Sðf Þaf � b ð1Þ

The values for β were determined in this work by averaging the power spectra of successive

time series segments, each consisting of 4096 datapoints. This procedure, which allows elimi-

nating high frequency fluctuations, is detailed in [47]. Power spectra were calculated using fast

Fourier transform (FFT) after normalizing the series to zero mean value. The method to calcu-

late β used the optimal range for each participant (roughly in the range 2 × 10−4–5 × 10−2Hz)

[47]. No detrending procedure was used. In the next section we compare our results with

those obtained in [34]. In [34]the slope (β) was calculated from the frequency range of 10−4 to

10−2 Hz from the 24-hour ECG recordings. The point power spectrum was logarithmically

smoothed in the frequency domain, and the power was integrated into bins spaced 0.0167 log

(Hz) apart. A line-fitting algorithm of log(power) on log(frequency) was then applied to the

power spectrum between 10−4 and 10−2 Hz, and the slope of this line was calculated.

The detrended fluctuation analysis (DFA) is widely used to characterize the fractal dynam-

ics of a system from which a time series has been measured [57, 58], and it is the most popular

approach to detect the presence of long-term memory in data [59]. By the DFA technique a

scale exponent α is determined, which is related to β as: β = 2α−1. However, we rarely find a

verification of this relationship in scientific papers. There are several reasons for this omission.

The value of α depends on the scale ranges chosen to calculate it, and there is no agreement on

such ranges. The scale ranges for calculating β should be compatible with those used for α, but

the reliable calculation of the power spectrum usually requires more data.

The DFA follows five steps [60–62]
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• Step 1: given a time series S = {xt, t = 1, . . ., N}, with N being the number of equidistant

observations, the cumulative sum of the data YðkÞ ¼
Pk

t¼1
ðxt � hxiÞ, with k = 1, . . ., N and

hxi ¼ ð
PN

t¼1
xtÞ=N, is considered.

• Step 2: this profile is divided into ⎣N/s⎦ non-overlapping windows of equal length s (⎣a⎦
denotes the largest integer less than or equal to a).

• Step 3: a local polynomial fit yν,m(k) of degree m is fitted to the profile for each window ν = 1,

. . ., ⎣N/s⎦. The degree of the polynomial can be varied to eliminate constant (m = 0), linear

(m = 1), quadratic (m = 2) or higher order trends of the profile. It is customary to indicate

the degree of detrending by including it in the title of the technique (DFA- m).

• Step 4: the variance of the detrended time series is evaluated by averaging over all datapoints

k in each segment ν, F2
mðn; sÞ ¼ ð1=sÞ

Ps
k¼1
fY½ðn � 1Þsþ k� � yn; mðkÞg

2
, for ν = 1, . . ., ⎣N/s⎦.

• Step 5: the DFA fluctuation function is obtained by averaging over all segments and taking

the square root, FmðsÞ ¼ fð1=bN=scÞ
PbN=sc

n¼1
½F2

mðn; sÞ�g
1=2

.

By repeating this procedure for different values of s, the s-dependence of Fm s is obtained.

If the time series has long-range power-law correlations, Fm(s) scales as

FmðsÞ � sa ð2Þ

for a certain range of s [62]. The scaling exponent α is estimated by the slope of the best linear

regression in a double logarithmic plot. The long-range correlations embedded in the time

series are quantified by this exponent: if α> 1/2, consecutive increments tend to have the

same sign, so the processes are persistent. If α< 1/2, consecutive increments are more likely to

have opposite signs, and it is said that the processes are anti-persistent. For uncorrelated data α
= 1/2 is obtained [63].

We calculated the fluctuation functions F2(s) with detrending degrees m = 1 − 4 (scales s
ranging from 5 to 200 datapoints). For m = 3, 4, detrending artifacts appear, and therefore m
values should be limited to 1 or 2 for a correct estimation of α. To compare with previous

results, we used three sets of scales s to fit all fluctuation functions, thus finding three scaling

exponents (Eq (2)):

• α0 for scales 5� s� 10 (very high frequency exponent) [34]

• α1 for scales 10� s� 50 (high frequency exponent) [35]

• α2 for scales 50� s� 200 (medium frequency exponent) [35]

Note that the scale ranges used to calculate αi(i = 0, 1, 2) are somewhat different from those

used in Peng’s original article [58]. However, these differences do not imply significant

changes in the values of αi or modify the conclusions of this work. We used the scales that

were employed in the papers whose data were used for comparison. In fact, in this work we

show that the scale ranges are dependent on age and must be determined consistently in both

the time and frequency domains.

In Results the relationships of the linear indices with age are presented. Age is considered as

a continuous variable. A logarithmic transformation is then applied to both the independent

and dependent variables to reveal scale relationships between the variables, which is mani-

fested as a straight line in a log-log plot. The scale factors are determined by performing a lin-

ear regression fit using the least squares method, and the significance of the results is evaluated

by an analysis of variance (ANOVA). The size effects can be evaluated either through Cohen’s
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d index or the regression coefficient (R). We used R in this work, and the values obtained indi-

cate that the size effects are negligible in the relationships proposed in this work (Eqs 3–6).

Other adjustments previously proposed in the scientific literature were also evaluated, and the

ANOVA tables showed that the scale relationships were the most acceptable. The revelation of

the scale relationships in this work is a consequence of the widening of the age range and the

consideration of age as a continuous variable. When analysing the influence of gender, we per-

formed a covariance analysis (ANCOVA). The size effects were also negligible in these cases.

The analyses of the linear indices included data from other studies that show differences in

the methodology or in the population studied. As far as we could verify, these differences did

not significantly affect our results (see Results).

Finally, although age is considered a continuous variable, our study is cross-sectional. In

the proposed adjustments for the linear indices we then included the prediction intervals (see

Fig 1). A prediction interval is an estimate of a range of values in which a future observation

will occur with a certain probability, given what has already been observed. Thus, in a hypo-

thetical longitudinal study, the indices of a healthy individual should evolve within the predic-

tion intervals.

The dependence of the α and β scale factors on age is presented in linear-log plots. In these

cases, growth trends and the existence of critical points (maximum or minimum) are analysed,

and the application of a logarithmic transformation to age was done in order to better visualize

the behaviour at small age values. We do not propose a specific functional form for α and β

Fig 1. Age dependence of some time-domain indices: (A)<RR>, (B) SDRR, (C) rMSSDRR, (D) pNN50 Filled circles

correspond to data obtained in this work, open squares to data from [2], open circles to data from [33], and open

triangles to data from [34]. Dashed lines indicate the 95% prediction intervals.

https://doi.org/10.1371/journal.pone.0255894.g001
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dependence on age in this work. The prediction intervals could be roughly calculated by locally

approximating the function by line segments. We did this for β in Fig 2 and α2 in Fig 3 for the

reasons we discuss in Results.

Results

Time-domain indices

Fig 1 shows the dependence of time domain indices on age, including data from [2, 33, 34].

Data show good agreement among these indices, validating the general treatment of the

measurements. Our data cover a wider age range, revealing novel tendencies. While<RR>
exhibits a monotonic behaviour, SDRR, rMSSDRR, and pNN50 show an abrupt change at about

the age of 12 years. In Fig 1 log-log scales reveal the existence of scale laws, which appear as lin-

ear behaviours after a logarithmic transformation. Results have been fitted to scaling laws as

follows:

< RR >¼ ð505� 5Þxð0:122�0:004Þ ð3Þ

SDRR ¼
ð80� 1Þxð0:26�0:01Þ x < 12

ð290� 20Þxð� 0:20�0:02Þ x > 12

( )

ð4Þ

Fig 2. β dependence on age. Filled circles correspond to data obtained in this work, open circles to data from [34].

Dashed lines indicate the approximate 95% prediction interval (see Procedure).

https://doi.org/10.1371/journal.pone.0255894.g002
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rMSSDRR ¼
ð18; 6� 0:2Þxð0:34�0:02Þ x < 12

ð166� 11Þxð� 0:46�0:04Þ x > 12

( )

ð5Þ

pNN50 ¼
ð0:037� 0:001Þxð0:78�0:07Þ x < 12

ð5� 1Þxð� 1:1�0:1Þ x > 12

( )

ð6Þ

where x is the age in years, and the statistics of the adjustments are shown in Table 7.

The threshold x = 12 was determined for SDRR, and the same value was assumed valid for

rMSSDRRand pNN50. We made linear fits by changing the cut-off value, and x = 12 was chosen

because the linear fits on both sides were the best. Though the power-law adjustments for ages

above 12 years are statistically worse than those for ages below 12 years, they are still better

than or equal to other linear or quadratic fits performed on the same data sets.

Quadratic fits over the complete data set have been tested, but they were statistically less

reliable than those presented in this work. Table 8 shows the analysis of variance (ANOVA)

tables of different fits performed in this work.

We find slight differences by gender only for ages over 12. Table 9 summarizes the power-

law parameters for each case. We performed an analysis of covariance (ANCOVA) to assess

the influence of gender and the p-values of the covariate are shown in the last column.

Note that the R values do not improve when discriminating the population by gender. We

also made adjustments for x> 12 only for the population in [33, 35], and the values of R were

Fig 3. α0 (A), α1(B), and α2(C) dependence on age. Filled circles correspond to data obtained in this work, and open

squares and open circles correspond to data from [34], for α0 and α1 respectively. Note that in [34]α1 was determined

for s> 11. In (C) the dashed lines indicate the approximate 95% prediction interval (see Procedure).

https://doi.org/10.1371/journal.pone.0255894.g003
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similar. A similar result was reported in [34]. It is evident that there is great individual variabil-

ity in HRV indices in the population over 12, which we discuss in the last section.

Scale factors

Fig 2 shows the β dependence on age in a linear-log plot in order to better visualize the behav-

iour at small age values. For comparison we included data from [34]. The agreement between

Table 7. Statistics of Eqs 3, 4, 5 and 6.

Index Statistics Index Statistics

<RR> Eq 3 rMSSDRR Eq 5 x<12 x>12

N 560 N 116 268

R 0.92 R 0.81 −0.54

sd 0.045 sd 0.17 0.16

p< 10−4 p< 10−4 10−4

SDRR Eq 4 x<12 x>12 pNN50 Eq 6 x<12 x>12

N 177 435 N 129 257

R 0.86 −0.40 R 0.82 −0.56

sd 0.1 0.1 sd 0.37 0.41

p< 10−4 10−4 p< 10−4 10−4

The calculation includes data extracted from [2, 33, 34] as in Fig 1. N is the number of data, sd is the standard deviation, R is the correlation coefficient, and p is the

Student’s t-parameter.

https://doi.org/10.1371/journal.pone.0255894.t007

Table 8. ANOVA tables for different fits over the complete data set tested in this work.

Index ANOVA Table

SDRR Linear-Linear Scale Log-Log Scale

Quadratic polynomial Eq 4 Quadratic polynomial

x<12 x>12

SSE 1.08 × 106 SSE 1.8 5.8 SSE 8.5

SST 1.4 × 106 SST 6.5 6.9 SST 16.8

MSM 146515 MSM 4.7 1.1 MSM 4.15

MSE 1773 MSE 0.01 0.01 MSE 0.014

rMSSDRR Linear-Linear Scale Log-Log Scale

Quadratic polynomial Eq 5 Quadratic polynomial

x<12 x>12

SSE 107360 SSE 3.3 6.5 SSE 11.7

SST 121000 SST 9.5 9.1 SST 20.7

MSM 6820 MSM 6.2 2.6 MSM 4.5

MSE 281 MSE 0.029 0.024 MSE 0.03

pNN50 Linear-Linear Scale Log-Log Scale

Quadratic polynomial Eq 6 Quadratic polynomial

x<12 x>12

SSE 40 SSE 15.4 44.6 SSE 63.4

SST 46 SST 46.1 65.2 SST 114.2

MSM 56 MSM 30.7 20.6 MSM 25.35

MSE 2.1 MSE 0.13 0.17 MSE 0.17

SST and SSE are the sum of squares total and error, MSM, and MSE are the mean squares model and error.

https://doi.org/10.1371/journal.pone.0255894.t008
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the two data sets is reasonable, but our data cover a wider age range than that reported so far.

A novel non-monotonic behaviour is observed with an increase of β values in the extremes of

life.

Fig 3 shows the dependence of α0, α1, and α2 (m = 1) on age, including data from [34].

Again the agreement between the two data sets is reasonable. In addition, the exponents

exhibit a non-monotonous behaviour. The values of α0 are widely dispersed, and their calcula-

tion is discussed below;α1 and α2 have a minimum value at around one year of age.

Data in Ref [35] can be compared with α0 and α1. Though the general behaviour with age is

similar, these data show more dispersion and decrease more rapidly with age, reaching values

close to 0.5 for young adults. This type of deviation was observed in our data with the increase

of m. High frequency scale factors are very sensitive to the increase of m.

We also analysed the relationship between α and β. Of the three scale factors, the one that

correlates best with beta is α2. In Fig 4 we plot the quotient q as a function of age, being

q ¼
b

2a2 � 1
ð7Þ

If the scale relationship between α2 and β is fulfilled, q should be equal to 1, but the values

of q deviate as age decreases. We discuss the possible causes of this discrepancy in the next

section.

Discussion and conclusions

In this work we analyse data from 24-hour Holter records for a total of 700 healthy subjects,

154 of whom were volunteers recruited for this study. The analysis covers the largest age range

analysed so far. As we mentioned before, many other works in the literature consider HRV

dependence on age and gender, covering an age range of 1-99 years [2, 33–44]. Our work

increases the age range by slightly more than a power of ten—a significant difference for

Table 9. Power law adjustments by gender for participants over 12 years old.

Index Male Female Covariate p-value

SDRR Eq. 398(8)x−0.28(4) Eq. 229(4)x−0.17(4) p< 10−3

N 123 N 148

R −0.55 R −0.36

sd 0.1 sd 0.1

p< 10−4 p< 10−4

rMSSDRR Eq. 200(20)x−0.54(7) Eq. 160(20)x−0.45(6) p< 10−3

N 125 N 143

R −0.57 R −0.51

sd 0.14 sd 0.16

p< 10−4 p< 10−4

pNN50 Eq. 12(2)x−1.4(2) Eq. 1.7(1)x−0.8(1) p< 10−4

N 124 N 133

R −0.63 R −0.43

sd 0.36 sd 0.46

p< 10−4 p< 10−4

The calculation includes data extracted from [33, 35]. The numbers between parentheses indicate the error of the estimates, N is the number of data, R is the correlation

coefficient, sd the standard deviation, and p is the Student’s t-parameter.

https://doi.org/10.1371/journal.pone.0255894.t009
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detecting scaling behaviour. As we mentioned in the Introduction, Finley et al. [43] also

reported data for ages as early as 1 month. Of the indices calculated in their work, total power

is comparable to HRV standard deviation (see ii). It should be noted that in [43] the records

analysed have a length of 4 h during sleep and 1 h during wakefulness. According to the quality

criteria established in [47, 48], those series are too short to ensure the robustness of the calcula-

tions (that is, to produce results independent of the length of the series). Only the longest

period could then be used for a qualitative comparison with our work. Another important

methodological difference is the report of the results grouped by age ranges, that is, the consid-

eration of age as a discrete variable instead of a continuous one. Van den Berg et al. [44] also

presented a very large study that included an age range from 1 month, but it was performed on

10-second electrocardiograms, which are too short to allow calculating α and β indices. The

use of short records is undoubtedly desirable for their practical utility, but the length of the

series also affects their frequency composition, and therefore the comparison must be careful,

as discussed below.

We calculate indices in the time domain: <RR>, SDRR, rMSSDRR, and pNN50, measure-

ments in the frequency domain (β) and multifractal scale fractals (α).

Our work is limited to the analysis of the above-mentioned HRV measurements; however,

the methodological aspects presented in this work are useful to analyse any other

measurements.

Our main conclusions are the following:

(i)<RR> follows a scaling relationship with age, which is independent of gender. This power-

law behaviour reveals a self-similar growth process, which can be related to the basal meta-

bolic rate (BMR) [64–70]. Allometric relationships for<RR> with body mass (BM) or the

BMR through Kleiber’s law can be written as:

< RR >¼ bðBMÞa ð8Þ

< RR >¼ cðBMRÞd ð9Þ

Fig 4. q ¼ b

2a2 � 1
dependence on age.

https://doi.org/10.1371/journal.pone.0255894.g004
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where it has been determined that a = 1/4 for mammalians, and the value of ddepends on

the scale factor in the Kleiber’s law [65]. The d value was initially established equal to 3/4,

though it has recently been questioned based on empirical evidence that showed a wealth of

robust exponents deviating from 3/4 [69, 70]. In Eq (3) the scale relationship is established

with age with a scale factor of *1/8.

An additional important aspect is that this scaling relationship remains unchanged

throughout life. One should expect deviations at an even earlier age, and it would therefore be

interesting to analyse the validity of this relationship from conception and not from birth.

(ii) Statistical measures such as SDRR, rMSSDRR, and pNN50 show an abrupt change at the age

of 12 years. For simplicity we assume the same cut-off (independent of gender) for all mea-

sures, but this assumption should be further studied. The threshold x = 12 was then deter-

mined for SDRR looking for the best the linear fits on both sides of the threshold. Note in

Fig 1 that data reported in [34] already indicated the existence of a maximum. But to attri-

bute this maximum to a change in a scale behaviour requires analysing wide age ranges and

using age as a continuous variable, as was done in this work. Quadratic fits over the com-

plete data have been tested, but they were statistically less reliable than those presented in

this work. Regarding data reported for HRV during sleep in [43], Finley et al. distinguish

between quiet and active states. The maximum is clearly observed in quiet sleep between

the ages of 6 and 11, while in the active state there is a continuous decrease. To compare

with our work, it is appropriate to consider the two states together, and the maximum then

occurs near the age of 11 years. However, a closer comparison is not possible due to the

methodological differences mentioned above.

Changes of SDRR, rMSSDRR, and pNN50 at the age of 12 years are related to HRV changes

at high frequencies, i.e. to alterations in the frequency composition of HRV. We note that the

scale law of<RR> does not change, while those of the other measures do, i.e. over time there

is a redistribution at lower frequencies, without altering the mean value of the series.

An increase in individual variation is also observed above 12 years of age, which continues

even when discriminating by gender. As we mentioned in the results, this large individual vari-

ation, which is manifested in low R values, cannot be attributed to the differences between the

studies used in this work because they were also observed in each of these studies. On the

other hand, a large interindividual variation of autonomic function has also been described in

healthy subjects [71–74]. If a process of redistribution does indeed occur in the frequency

composition of HRV with age, then individual changes in the onset and progression of this

process may explain the observed variability. In [6, 7] the authors studied the influence of both

the ANS and the SAN receptors on HRV. They found that the deterioration of mechanisms

intrinsic to the SAN leads to an increased <RR> and HRV. The extrinsic mechanisms (ANS

input) compensate for deteriorated intrinsic mechanisms to preserve <RR>, but this compen-

sation is associated with a reduction in the HRV.

Below the age of 12, results are gender-independent, while above that age, there seems to be

a slight dependence on gender. The results suggest that the frequency composition of HRV is

also altered. In fact, this alteration seems to occur at high frequencies because β values, which

are determined at low frequencies, do not depend on gender (see below). Studies in [16]

reported sex- differences in the HRV under stress. The authors suggested that men and

women have different autonomic “strategies” for dealing with stress, such that men rely more

on the hypothalamic-pituitary-adrenal (HPA) axis activation, and women on parasympathetic

withdrawal. The researchers did not report differences in the baseline state (without stress),

but these differences could not be detected due to the age range (18-60 years) and the length of
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the records used. We believe that we are measuring a baseline state, the one that was not

detected in [16].

There are studies that support a potential protective role of estradiol in the parasympathetic

cardiac tone [17, 18]. The effect of progesterone and its potent metabolite allopregnanolone on

ANS is uncertain. Our study was not controlled for menstrual cycle phase. We think that the

differences found in this work are beyond those that can be attributed to the cycle by the age

range and the magnitude of the population analysed, and by the diversity of the origins of the

information. In other words, the effects of the cycle phases should be averaged.

Finally, if the length of the electrocardiographic records limits the frequency range that can

be analysed, and this range is also influenced by gender, it is clear that long and short records

will differ in the information they provide and also in their clinical utility. Even though short

records may not necessarily replace long ones in all applications, additional understanding of

the information provided by each type would be necessary.

(iii) We performed a unified analysis of the scale factors (α and β) derived from both the multi-

fractal and the spectral power analyses. Because of the mathematical relationship between

these factors, the calculation was done by two independent methods. Whereas for the calcu-

lation of α we respected the scale ranges used in the literature, the method developed to cal-

culate β used the optimal range for each participant. Of the three scale factors derived from

the multifractal analysis, the one that correlates best with β is α2. Although the relationship

between α and β can be then verified reasonably well, at least for people older than 5, there

is a systematic deviation at an earlier age because the scale ranges are age-dependent. But

more importantly, as a methodological change, the scaling hypothesis must be tested in the

same range in both the time and the frequency domains. Therefore the determination of

the scale factors must be based on simultaneous and independent calculations of α and β.

The scale factors α and β exhibit a non-monotonic relationship with age, increasing in the

extremes of life and reaching a minimum at around one year of age. This behaviour, evident

in α1 and α2, has not been reported before. The values of α0 are widely dispersed due to the

narrow scale range (5 < s< 10) used in the calculation. In this scale range, a certain depen-

dence on gender should be evidenced, but the dispersion of the results prevents noticing it.

We attribute the changes in α2 and β to the neuronal control on the HRV. As they are calcu-

lated at low frequencies (long-range scale), hormonal effects are negligible, and results are

gender-independent. In [47, 48] we showed that an increase in β values can be attributed to

a predominance of the sympathetic system over the parasympathetic one. At early ages, this

predominance is due to the lack of maturation of the parasympathetic modulation, while at

older ages it is explained by a decrease in the parasympathetic modulations.

Our knowledge of the population characteristics is limited, we do not have information on

the menstrual status of all women, the socioeconomic status of the population, the BMI, etc.

All studies met minimum requirements, patients were examined by clinicians and minimum

quality requirements were established on Holter records and time series. However, the clinical

normality criteria were left to the intervening physicians and our study was based solely on the

analysis of Holter records. Our results do not allow us to distinguish the contributions of ANS

and SAN [6, 7]. In this context, the sympathetic and parasympathetic modulations mentioned

above are those detected at the output of the SAN.

In summary, we can establish basic scale relationships in different HRV measurements per-

formed on long records. Above the age of 12, there is a gender dependence that mainly alters

the high frequency region. Changes attributable to neuronal activity (including SAN) are

observed at low frequencies. These differences must be considered when interpreting measure-

ments based on recordings of a few seconds.
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The scale factors should be calculated individually in age-dependent scale ranges and

equally in both time and frequency domains.

In [75] we presented the basis for the development of implantable devices that mimic RR

variability of the healthy heart. The present work has direct implications for that project that is

now in progress, because that development requires a comprehensive characterization of

HRV, such as the one this study presents.

Author Contributions

Conceptualization: Isabel M. Irurzun.

Data curation: Magdalena M. Defeo, Julieta Thomas Mailland.

Formal analysis: Leopoldo Garavaglia, Damián Gulich, Magdalena M. Defeo, Isabel M.

Irurzun.

Funding acquisition: Isabel M. Irurzun.

Investigation: Damián Gulich, Magdalena M. Defeo, Julieta Thomas Mailland.

Methodology: Damián Gulich, Magdalena M. Defeo, Julieta Thomas Mailland.

Project administration: Isabel M. Irurzun.

Resources: Magdalena M. Defeo, Isabel M. Irurzun.

Software: Damián Gulich, Isabel M. Irurzun.

Supervision: Isabel M. Irurzun.

Validation: Magdalena M. Defeo.

Writing – original draft: Damián Gulich, Magdalena M. Defeo, Isabel M. Irurzun.

Writing – review & editing: Leopoldo Garavaglia, Damián Gulich, Magdalena M. Defeo, Isa-

bel M. Irurzun.

References

1. Voss A, Schroeder R, Heitmann A, Peters A, Perz S. Short-Term Heart Rate Variability-Influence of

Gender and Age in Healthy Subjects. PLoS ONE 2015; 10(3): e0118308. https://doi.org/10.1371/

journal.pone.0118308 PMID: 25822720

2. Bobkowski W, Stefaniak ME, Krauze T, Gendera K, Wykretowicz A, Piskorski J, et al. Measures of

heart rate variability in 24-h ECGs depend on age but not gender of healthy children. Front. Physiol

2017; 8:311. https://doi.org/10.3389/fphys.2017.00311 PMID: 28572771

3. McCraty R, Shaffer F Heart rate variability: new perspectives on physiological mechanisms, assess-

ment of self-regulatory capacity, and health risk. Global Advances in Health and Medicine 2015; 4

(1):46–61. https://doi.org/10.7453/gahmj.2014.073 PMID: 25694852

4. Task Force. Heart rate variability: standards of measurement, physiological interpretation and clinical

use. Task Force of the European Society of Cardiology and the North American Society of Pacing and

Electrophysiology. Circulation. 1996; 93(5): 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043

5. Schwab JO, Eichner G, Schmitt H, Weber S, Coch M, Waldecker B The relative contribution of the

sinus and AV node to heart rate variability. Heart. 2003; 89(3): 337–338. https://doi.org/10.1136/heart.

89.3.337 PMID: 12591853

6. Rosenberg AA, Weiser-Bitoun I, Billman GE, Yaniv Y Signatures of the autonomic nervous system and

the heart-’s pacemaker cells in canine electrocardiograms and their applications to humans. Scientific

Reports 2020; 10:9971. https://doi.org/10.1038/s41598-020-66709-z PMID: 32561798

7. Yaniv Y, Ahmet I, Tsutsui K, Behar J, Moen JM, Okamoto Y, et al. Deterioration of autonomic neuronal

receptor signaling and mechanisms intrinsic to heart pacemaker cells contribute to age-associated

alterations in heart rate variability in vivo. Aging Cell 2016; 15: 716–724. https://doi.org/10.1111/acel.

12483 PMID: 27168363

PLOS ONE The effect of age on the heart rate variability of healthy subjects

PLOS ONE | https://doi.org/10.1371/journal.pone.0255894 October 8, 2021 16 / 20

https://doi.org/10.1371/journal.pone.0118308
https://doi.org/10.1371/journal.pone.0118308
http://www.ncbi.nlm.nih.gov/pubmed/25822720
https://doi.org/10.3389/fphys.2017.00311
http://www.ncbi.nlm.nih.gov/pubmed/28572771
https://doi.org/10.7453/gahmj.2014.073
http://www.ncbi.nlm.nih.gov/pubmed/25694852
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1136/heart.89.3.337
https://doi.org/10.1136/heart.89.3.337
http://www.ncbi.nlm.nih.gov/pubmed/12591853
https://doi.org/10.1038/s41598-020-66709-z
http://www.ncbi.nlm.nih.gov/pubmed/32561798
https://doi.org/10.1111/acel.12483
https://doi.org/10.1111/acel.12483
http://www.ncbi.nlm.nih.gov/pubmed/27168363
https://doi.org/10.1371/journal.pone.0255894


8. Jensen-Urstad K, Storck N, Bouvier F, Ericson M, Lindblad LE, Jensen-Urstad M Heart rate variability

in healthy subjects is related to age and gender. Acta Physiol Scand. 1997; 160(3): 235–241. https://

doi.org/10.1046/j.1365-201X.1997.00142.x PMID: 9246386

9. Pikkujamsa SM, Makikallio TH, Sourander LB, Raiha IJ, Puukka P, Skytta J, et al. Cardiac Interbeat

Interval Dynamics From Childhood to Senescence. Circulation 1999; 100(4):393–399. https://doi.org/

10.1161/01.CIR.100.4.393 PMID: 10421600

10. Goldberger ALNon-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside.

Lancet. 1996; 347(9011): 1312–1314. https://doi.org/10.1016/S0140-6736(96)90948-4 PMID:

8622511

11. Gribbin B, Pickering TG, Sleight P, Peto R Effect of age and high blood pressure on baroreflex

sensitivity in man. Circ Res. 1971; 29(4): 424–431. https://doi.org/10.1161/01.RES.29.4.424 PMID:

5110922

12. Voss A, Schulz S, Schroeder R, Baumert M, Caminal P Methods derived from nonlinear dynamics for

analysing heart rate variability. Philos Transact A Math Phys Eng Sci. 2009; 367: 277–296. PMID:

18977726

13. Kleiger RE, Stein PK, Bigger JT Jr. Heart rate variability: measurement and clinical utility. Ann Noninva-

sive Electrocardiol. 2005; 10(1): 88–101. https://doi.org/10.1111/j.1542-474X.2005.10101.x PMID:

15649244

14. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, et al. Entropy, entropy rate, and pattern

classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed

Eng. 2001; 48(11): 1282–1291. https://doi.org/10.1109/10.959324 PMID: 11686627

15. Koifman R, Dayan L, Ablin JN, Jacob G Cardiovascular Autonomic Profile in Women With Premenstrual

Syndrome, Frontiers in Physiology 2018; 9:1384. https://doi.org/10.3389/fphys.2018.01384 PMID:

30327616

16. Hamidovica A, Van Hedgerb K, Choia SH, Flowersa S, Wardlec M, Childs E Quantitative meta-analysis

of heart rate variability finds reduced parasympathetic cardiac tone in women compared to men during

laboratory-based social stress, Neuroscience and Biobehavioral Reviews 2020; 114: 194–200. https://

doi.org/10.1016/j.neubiorev.2020.04.005

17. Bai X, Li J, Zhou L, Li X Influence of the menstrual cycle on nonlinear properties of heart rate variability

in young women. Am. J. Physiol.-Heart Circul. Physiol. 2009; 297: H765–H774. https://doi.org/10.

1152/ajpheart.01283.2008 PMID: 19465541

18. McKinley P, King A, Shapiro P, Slavov I, Fang Y, Chen I, Jamner L, et al. The impact of menstrual cycle

phase on cardiac autonomic regulation. Psychophysiology 2009; 46: 904–911. https://doi.org/10.1111/

j.1469-8986.2009.00811.x PMID: 19386049

19. Tenan MS, Brothers RM, Tweedell AJ, Hackney AC, Griffin L. Changes in resting heart rate variability

across the menstrual cycle. Psychophysiology 2014; 51:996–1004. https://doi.org/10.1111/psyp.

12250 PMID: 24942292

20. von Holzen JJ, Capaldo G, Wilhelm M, Stute P. Impact of endo- and exogenous estrogens on heart rate

variability in women: a review. Climacteric 2016; 19: 222–228. https://doi.org/10.3109/13697137.2016.

1145206 PMID: 26872538

21. Bigger JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain mea-

sures of heart period variability and mortality after myocardial infarction. Circulation 1992; 85(1): 164–

171. https://doi.org/10.1161/01.CIR.85.1.164 PMID: 1728446

22. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart rate

variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone

and Reflex After Myocardial Infarction) Investigators. Lancet 1998; 351(9101):478–484. https://doi.org/

10.1016/S0140-6736(97)11144-8 PMID: 9482439

23. Stein PK, Reddy A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Ind.

Pacing Electrophysiol. J. 2005; 5(3): 210–220. PMID: 16943869

24. Guzik P, Piskorski J, Barthel P, Bauer A, Muller A, Junk N, et al. Heart rate deceleration runs for postin-

farction risk prediction. J. Electrocardiol. 2012; 45(1): 70–76. https://doi.org/10.1016/j.jelectrocard.

2011.08.006 PMID: 21924431

25. Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, et al. Correlations between
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