Molecular Pathology

The enzyme defects and Their consequences

Exclusively for education

DEFECTS OF ENZYMATIC PROTEINS

Catalysts that increase (accelerate) the rate of chemical reactions

A specific substrate

Small quantities

Active Site

Diseases by disturbance of Phenylalanine and Tyrosine metabolism

Biochemical mechanisms in inborn errors of metabolism

A single gene defect can have several impact on metabolic pathways that can lead to four main biochemical consequences:

- 1. Failure to complete a metabolic pathway→ metabolic block: the end-product is not formed because the required enzyme to complete the metabolic sequence is missing.
- 2. Accumulation of unmetabolized substrate: the enzyme that converts the initial substrate into the first matabolic intermediates may be missing, inthat case the initial substrate accumulates in excess.
- **3. Storage of an intermediary metabolite:** a metabolic intermediates, which is normally quickly processed into the final product and so is usually present only in minute amounts, accumulates in large quantities if the enzyme for its metabolism is lacking. (vonGierke)
- 4. Failure to inactivate a tissue-damaging substrate. (α 1-antitrypsin)

Glycogem metabolism

Glycogenoses

Autosomal recessive

Two main causes of damage

- •Cell damage by accumulation of glycogen
- •Energy deficiency for nearly absent glycolisis

Hepatic forms - Types I,III,VI,VIII -Hepatomegaly by accumulation of glycogen in liver (and other organs) -Hypoglicemia by low glucose
Muscle Forms – Types (II), V, VII - low glicolysis in muscles→lack of energy→ Muscle weakness, cramps

Others:

- Type II Pompe – Lysomial acid maltase, accumulation of glycogen in lysosomes, prevalent heart damage

- Type IV (Anderson) – branching enzyme, ubiquitous deposition of abnormal glycogen, damages in nervous system, heart, muscles, hepatocytes.

	Gene sequencing	Prenatal diagnosis available
Туре 0		No
Liver isoform	GYS2	
Muscle isoform	GYS1	
Type I b, c, d	SLC37A4	Yes
Туре I а	G6PC	Yes
Type II	GAA	Yes
Type III	AGL	Yes
Type IV	GBE1	Yes
Type V	PYGM	Yes
Type VI	PYGL	Yes
Type VII	PFKM	Yes
Type IX a	PHKA2	Yes
Type IX b	РНКВ	Yes
Type IX c	PHKG2	Yes
Type IX d	PHKA1	Yes
Туре Х	PGAM2	Yes

TABLE 2 Diagnosis of glycogen storage disease by molecular sequencing.

Glycogenoses Type I vonGierke disease

Thickened plant-like membrane

Hepatocytes

Glucose-6-posphatase

Glucose-6- phosphatase is a complex enzymatic system in liver, kidney and present in small amount in platelets.

Located in Reticulum endoplasmic membrane (active site in lumen)

- Normal enzymatic activity: catalytic activity of G-6-Pasi and regulatory protein (SP)
 - 3 proteins to trasnport G-6P, Pi and glucose

Glucose-6-posphatase

- Deficienza della G-6-Pase
- Deficienza di SP
- Deficienza di T1
- Deficienza di T2
- Deficienza di GLUT7

Sindrome di tipo 1a Sindrome di tipo 1a SP Sindrome di tipo 1b Sindrome di tipo 1c Sindrome di tipo 1d

Glycogenoses type 1a

Important hypoglicemic crisis in the first year Later low of glycemia are tolerated Brain start using Keton bodies

HYPOGLICEMIA:

-Block insulin secretion

-Stimulates glucagone result in Hepatocytes proliferation

- -Acelerates lipolysis in adipose tissue
- -Stimulates β -oxydation of Fatty Acids and neoglucogenesis in liver

(Hyperlipidemia, hepatic steatosis, Ketosis)

-Accumulation of glucose –6-phosphate increases glicolisis Hyperpiruvicemia, Hyperlactacidemia

Glycogenoses : myopathic forms

Glycogenoses causing constant weakness

•Weakness related to the amount of glycogen storage in muscle cells

•Dependent on specific enzyme defects

Glycogenoses that cause a reduced exercise tolerance, cramps and myoglobinuria

•Generally after intense exercise

•Dependent on specific enzyme defects

example: Phosphorylase deficiency (11q13)

McArdle Disease (Type V)

Regulation of glycogen phosphorylase

Active forms of glycogen phosphorylase

- Deficiency of muslce glycogen phosphorilase: GSD V
- Deficiency hepatic glycogen phosphorilase: GSD VI
- Deficiency phosphorilase kinase: GSD IX

Glycogenoses type V McArdle Disease

- Deficiency of Muscle Phosphorylase
- Accumulation of normal Glycogen in muscles

Clinical features:

- Myalgia
- Cramps
- Muscle hardening after intense exercise
- Myoglobinuria causing Renal failure
- No increase in lactacidemia after muscle exercises (altered glycogenolisis)
- Normal Glicemia

McArdle Disease

muscle fibers

Large peripheral vacuoles

Normal

McArdle

Glycogenoses type V

Molecular basis

Gene of muscle phosphorylase Chr. 11 14 Kb 20 exons 5' region multiple promoters Region –592 CTCCAAAAGG necessary fo effcient transcription Non sense: Exon 1 CGA TGA Stop codon (frequent) Missense: Exon 1 frameshift: rapidly degraded peptide

Esone 5 G 204 S GGC AGC altered protein Esone 8 L291P CGT CCG less active Esone 14 K452 T AAG ACG no stabilized **Deletions**: Exon 14 1844 deletion di 67 basi Exone 17 D TTC Deletione of AA: altered protein folding

Lysosomal storage disorders

Disease	Affected protein	Storage material	Mechanism	Affected organs	Pathology
Niemann-Pick disease type C	NPC1, NPC2	Cholesterol, Sphingolipids	Lysosomal cholesterol and lipid export, Foam cells in visceral organs and neuronal storage	Liver, CNS	Ataxia, Dysarthria, Dysphagia, Dystonia, Dementia, Seizures, Hepatosplenomegaly, Thrombocytopenia
Fabry disease	α-Galactosidase A	Globotriaosylceramide, Galabiosylceramide, Globotriaosylsphingosine, blood-group-B glycolipids	Lipid storage in endothelial and smooth muscle cells of blood vessels	Kidney, Heart	Acroparesthesias, Angiokeratoma, Renal failure, Cardiomyopathy, Stroke, Gastrointestinal symptoms
Gaucher disease	β-Glucosidase/ Glucocerebrosidase	Glucosylceramide, GM1, GM2, GM3, GD3, Glucosylsphingosine	Lipid storing macrophages	Spleen, Liver, Bone marrow, CNS (not type 1)	Hepatosplenomegaly, Thrombocytopenia, Anemia, Skeletal deformations, Bone fractures
Pompe disease	α-Glucosidase	Glycogen	(Autophagic) accumulation in type II muscle fibers	Skeletal muscle, Cardiac muscle	Cardiomegaly, Hypotonia, Cardiorespiratory failure, Hepatomegaly, Muscle weakness

Summarised from Ballabio et al. [4], Parkinson-Lawrence et al. [5], Platt et al. [6].

Protein trafficking as a basis of lysosmal storage disorders

Mutations in:

- 1. lysosomal protein (inactive)
- 2. integral lysosomal proteins, NPC1for export of lysosomal products
- 3. Defective folding
- 4. Inability to exit the ER
- 5. Lysosomal uptake (Mannose-6phosphate receptor)

Glycogenoses type II Pompe Disease

- Deficinency of lysosomial *acid Maltase*
- Accumulation of normal glycogen in all organs, in vacuoles.
- *Infantile Phenotype*: in the first trimester

Lead quickly to die (failure c.c., pulmonitis, etc) Imporatnt muscle hypotonia, Cardiomegaly, normal Glicemia

- *Juvenile phenotype* : onset in the first decade of life Muscle hypotonia, pulmonary infections, respiratory failure Glycogen mainly increased in skeletal muscles
- *Adult Phenotype*: reduced morbidity

Onset in the second decade of life respiratory failure (diaphragm muscles)

Glycogenoses Type II Pompe disease

Storage of glycogen in autophagic vacuoles, where other molecules are digested

In autophagic vacuoles glycogen is not metabolized by cytoplasmic glicogenolytic

enzymes

Lysosomial degradation of lysosomial glycogen is necessary to mobilize glycogen in neonatal liver

Glycogenoses Type II Pompe disease

Glycogenoses type II

Infantile phenotype

- **Missense** Exon 5: Met 318 Thr
 - Exon 11: Glu 521 Lys catalytic site catalytic activityExon 14: Cys 647 Trp also in adult phenotypeExon 5: Leu 299 Arg
- **Delezioni** Exon 10 Δ 13 nt (1456-1468) Stop codon truncated protein Exon 18 Δ 18 lacking catalytic domain

Adult Phenotype

- MissenseExon 14: Asp 645 Glu
Exon 14: Gly 643 Arg
Exon 15: Arg 725 Trpresidual catalytic activity
- Non sense: Exon 18 Arg 854 Stop codon truncated protein
- Delezioni Exon 10 $\Delta 10$ important mutation Exon 18 $\Delta 18$ loss of proteolitic cleavage site Exon 2 $\Delta 2$ for enzyme maturation

Pompe disease

Clinical-genetic correlations:

Level of residual enzyme activity correlates with:
 Severity of disease - Age of disease onset - Location of mutations

General strategies for the treatment of lysosomal storage disorders

Enzyme replacement therapy (ERT)

Molecular Genetics and Metabolism 122 (2017) 80-85

Effect of enzyme replacement therapy with alglucosidase alfa (Myozyme®) in 12 patients with advanced late-onset Pompe disease

- ✓ Recombinant human GAA
- ✓Long term effect
- ✓ Increased time of autonomous ventilation
- ✓ Enlarged distance in assisted walk

Genetically determined adverse reactions to drugs

GLUCOSE-6-PHOSPATE DEHYDROGENASE (G-6-PD)

G-6-PD deficency reduces the ability of red blood cells to protect themselves against oxydative injuries and lead to hemolysis

defective erytrocytes

normal erytrocytes

Two variants cause clinically significant Hemolytic Anemias:

Misfolding of the protein more susceptible to proteolytic degradation

G6PD⁻ 10% American black Half-life moderately reduced G6PD mediterranean Middle East markedly abnormal

inadequate protection from oxidants

Infections and drugs and certain foods can trigger hemolysis The oxidant denatures Hb→Heinz precipitates

Macrophages pluck out the Heinz bodies → membrane damage

Clinical manifestations:

After exposure to the oxidant \rightarrow Acute intravascular hemolysis

(2-3 days later)

Marked Anemia Hemoglobinemia Hemoglobinuria Hematocrit Self-limited

Multidrug Resistance Proteins

A family of ATP-dependent efflux pump 12 members of of the MRP/CTFR subfamily belonging to the 48 human ATP-binding cassette (ABC) transporters

Expression of Multidrug Resistance – Associated Proteins Predicts Prognosis in Childhood and Adult Acute Lymphoblastic Leukemia

Sabine L.A. Plasschaert,¹ Eveline S.J.M. de Bont,¹ Marike Boezen,² Dorina M. vander Kolk,³ Simon M.J.G. Daenen,³ Klaas Nico Faber,⁴ Willem A. Kamps,¹ Elisabeth G.E. de Vries,⁵ and Edo Vellenga³

Conclusions: The present study shows that a subset of ALL patients with high MRP expression has an unfavorable prognosis independently of age.

Exclusively for education