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Lateral Waves



Introduction: Plane-Wave Reflection and Refraction

When a plane wave strikes a plane interface between two different
homogeneous, lossless, isotropic dielectrics, there arise reflected and refracted
plane waves in addition to the incident wave.

If the field impinges from the denser medium (having the lower wave speed), the
refracted wave emerges at a steeper angle w.r.t. the normal to the interface:

For still steeper directions of incidence, total reflection obtains and no
propagating field is transmitted:
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Introduction: The Ray Tube Dilemma

While the processes of reflection and refraction may generally be interpreted in
simple ray-optical terms involving the concepts of wavefronts, rays, and ray
tubes, this mechanism fails when the incidence is at the critical angle:
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It appears plausible that the critically refracted ray may react back in the denser
medium…
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The Lateral Wave in the Sommerfeld Problem

In the Sommerfeld problem (source in air above a lossy dielectric half space), we
defined the lateral wave as the SDP integral around the complex wavenumber k2
in the dielectric:

If the dielectric is enough lossy (i.e., Imk2 is
not negligible), the SDP2 contribution is
exponentially smaller and hence negligible
with respect to the SDP1 contribution.
But if the dielectric is low-loss or lossless and the source is inside it the lateral wave 
may not be negligible…



Reference Configuration

Let us consider again a plane interface between two half spaces, now
comprising a lossless dielectric ( ) and a source inside it:
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Total Potential (Axial Transmission Representation)

The Axial Transmission Representation of the total potential is:
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where now TM is the reflection coefficient for incidence from the dielectric:
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Singularities in the  kr-Plane
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Since the branch points k1 and k2 are real, the relevant Sommerfeld branch
cuts both run along the real and imaginary axes:
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The Sommerfeld pole is now real
and located to the left of k1 on the
lower rim of the k1-BC:
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The associated Zenneck wave is
now an improper surface wave, i.e.,
it does not belong to the modal
spectrum of the structure.



Nonspectral Representation, q<qc
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For observation angles smaller
than the critical angle c:
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Nonspectral Representation, q>qc

For observation angles larger
than the critical angle c:
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Asymptotic Evaluation of the Lateral Wave
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The analytical expression of the lateral wave is:

By letting this integral along the folded SDP1 path becomes1k k js  
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Asymptotic Evaluation of the Lateral Wave
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Asymptotic Evaluation of the Lateral Wave

We will use Watson's lemma to evaluate the SDP1 integral, so we need to
determine the local behavior of the integrand in the neighborhood of the BP
kr=k1, i.e., of s=0.

We thus approximate
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Asymptotic Evaluation of the Lateral Wave

i.e., with    
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Coming back to the integral, in the asymptotic limit we have
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Analysis of the Phase Term

The phase in the exponential term can be rewritten as
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Physical Interpretation

Therefore, the phase of the lateral wave can be cast in the form
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to in the introductory slides.
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Phase Matching at the Shadow Boundaries

Note that on the boundaries of the region of existence of the lateral wave (i.e.,
its shadow boundaries, in ray-optical terms) there is phase matching between
the lateral wave and the (spherical) GO waves propagating in both media:
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Amplitude Term: the Asymptotic Order

Note that the order of decay of the lateral wave (1/2) is larger than that of a
spherical wave (1/), hence the lateral wave is a diffraction effect generally
weaker than the direct and reflected GO fields.

For observation points at the interface, the direct and reflected GO terms tend
to cancel for large radial distances. In this case the SDP2 integral gives rise to a
wave decaying as 1/3/2, still dominant over the lateral wave.

An exception occurs when the direct and reflected GO fields are excluded from
certain domains which are nevertheless accessible to the lateral wave. This
situation may arise if the denser medium is inhomogeneous:



Lateral Waves in the Time Domain

Whereas the lateral wave may be difficult to detect in the time-harmonic
regime, the situation is completely different in the transient regime.

In fact, in transient conditions the different wave constituents at an
observation point may be distinguished by their different arrival times.

The lateral wave may furnish the first response in certain regions of the
medium containing the source (and for this reason it is also known as the
head wave):

Wavefronts

Direct-Reflected Lateral Refracted Composite



Fermat Principle: Feynman Revisited

In a famous passage of the Feynman Lectures on Physics, Snell's law for light
refraction is derived from Fermat's Principle of minimum time in a colorful
way:

R. P. Feynman, The Feynman Lectures on Physics. New York, NY: Basic Books, the New Millennial Edition, 2011, vol. I, sec. 26-3.



Fermat Principle: Feynman Revisited

Let us find the value of x for which the travel time from A to B is minimum:
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Fermat Principle: Feynman Revisited

But what if A is exactly on the shoreline? Now we have two competing paths:
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and it is simple to show that, if (as in the above figure), then the
shortest time from A to B is achieved choosing path C2 (i.e., the lateral wave).
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Surface and Leaky Waves



Surface Waves: Definition
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Surface waves (SWs) are wave constituents that arise in a spectral representation
of the field as residue contributions of poles located on the proper sheet.

The Zenneck wave is an example of surface wave; in that case, due to the
losses in the dielectric medium, the wavenumber is complex.

In a lossless multilayer structure the pole and
hence the SW wavenumber would be real:

Remark: the BPs are located at the wavenumbers of
the outer media k1 and kN.
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Surface Waves: Behavior at Infinity
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For a real SW pole it results kSW>k1,N, hence the field attenuates exponentially
at infinity in the outer media:

As we know, this is in fact the behavior of the Zenneck or SPP waves.
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Surface Waves on Grounded Multilayers

If a PEC ground plane is present at the bottom of the multilayer, a single pair of
BPs at is present, and the SWs attenuate exponentially only for .1k z  



Leaky Waves: Definition

When the integration path is deformed to the SDP in the nonspectral
representation, further complex poles (usually) located on improper sheet(s) may
give their residue contribution; the relevant wave constituent is called a leaky
wave (LW).
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Leaky Waves: Phase and Attenuation Constants

The wavenumber of a leaky wave is always complex:

LWk j   

phase
constant

attenuation (or leakage)
constant

The imaginary part is present also if all the media are lossless.

If it is not too large it accounts for power leakage via radiation (hence the name
leaky or radiation modes) concomitant to the propagation of the wave (in
addition to power dissipation in lossy media, if present).

If it is large, it mostly represents reactive effects (much as in metal waveguide
modes being below cutoff).



Leaky Waves: Angular Region of Definition

A leaky pole is captured only if the observation angle is larger than a threshold
value th:
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Leaky Waves: Angular Region of Definition

A leaky wave thus exists only inside the bounded angular region th <  < p/2:
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Leaky Waves: Plane-Wave Constituents

The plane-wave constituents of a leaky wave inside the air region are
nonuniform: PW j k 

th




The component of the phase vector along the direction th is equal to k1 (exercise:
prove this!), so we have phase matching between the LW and the spherical wave
arising from the saddle point (GO field) along the cone =th (i.e., on the LW
shadow boundary).
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Leaky Waves: Improper Nature

In uniform structures with common materials, leaky poles lie on improper
Riemann sheets, therefore the amplitude of the associated LW increases
exponentially at infinity. This unphysical feature of the LW puzzled the first who
studied them in the 40s and 50s of the last century…

th

However, the exponential increase actually occurs only inside their angular
region of existence, where it can be justified with a simple ray model:
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Leaky Waves and Far-Field Patterns

Since a LW is exponentially attenuated in the radial direction within its angular
region of validity, is is always asymptotically negligible in the far field w.r.t. the
GO field (also termed the space wave), whose radial decay is algebraic (1/).

However, if:

1- the LW pole is captured for some angles, i.e., (hence it is radially fast)
2- it is close to the real axis, i.e., (the LW is weakly attenuated)
3- its residue is not negligible (i.e., the LW is well excited by the source)

then the LW pole may provide the dominant contribution to the integrand
between k=0 and k= k1 .

Since such an integrand, evaluated at k= k1sin, is the far-field pattern of the
source, this means that the presence of a LW pole may determine the main
features of such a pattern.

 
1k 



Near-Field Dominance and Far-Field Patterns

Alternatively, one may say that, under the above-listed conditions, the residue
contribution of the LW pole dominates the field at the air-dielectric interface
(i.e., the aperture field in the antenna jargon).

Since the far-field pattern is (proportional to) the Fourier transform of the
aperture field, again we come to the conclusion that the pattern is essentially
established by the excitation of the LW along the structure.

This is the operating principle of a wide class of radiators known as Leaky-Wave
Antennas (LWAs)...
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Near-Field Dominance and Far-Field Patterns

This can clearly be appreciated by representing the absolute value of the pattern
function P(), considering  as a complex variable f = fR + jfJ :

Radiation pattern
dB

The main beam of the pattern is clearly due to the presence of a complex leaky
pole in the vicinity of the real interval 0 ≤ fR ≤ p/2 (visible range).

[image courtesy of
W. Fuscaldo]
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