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Computational models in science 

Introduction

In ordinary conversation and even in some scientific discourses, there often seems to 
be no difference between a formal model and a computational model. Unfortunately, 
conflating these notions or concepts is not without epistemological consequences. It 
is true that all computational models rest upon formal models. But the reverse is not 
to be taken for granted. It is not because one has a formal model that a computational 
model will be readily available.1 

The following explanations may appear technical for semioticians, but they 
are essential for understanding the specific definitions and roles of computation in 
scientific enquiries. This is required for semiotics to adequately integrate computation 
into its practice. Semiotics cannot enter the digital world without understanding more 
precisely the notion of computation. 

As we shall see, computational models represent a heavy burden in the encounter 
of semiotics with the digital. This means that if one applies computer technologies 
to the analysis of semiotic artefacts that cannot be modelled by formally calculable 
functions, then the results obtained will not be trustworthy. Therefore, if semiotics is 
to enter the digital world, it is essential to better understand what is computable per se 
and what is not computable. Otherwise, the adventure into the digital will rapidly 
meet a dead end. 

Computational models in science: Definitions

Computational models are deeply related to formal models. They are a particular sort 
of formal model. Still, symbols and formulas used in computational models present 
some specific properties that give them their own signature. 

Briefly defined, a computational model is one that constructs a special type of formal 
symbolic system. Its syntax restricts the type of admissible symbols, and it defines 
a particular type of rules for the manipulation of formulas. Its semantics refers to a 
particular type of mathematical structure: functional relations that can be ‘calculated’. 
And its associated pragmatics allows for effective procedures that a computer can 
implement. 
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A computational model is therefore highly related to a formal model and 
ultimately to a computer model. With regard to the formal model, a computational 
model is a set of formal statements or rules that express how the functions of the 
formal models can be effectively calculated. And with regard to a computer model, 
the computational rules must be concretely implementable in a physical machine or 
computer. 

These characteristics of computational models have an important and decisive 
epistemic effect on scientific enquiries. They restrict the choice of possible formal 
models that can be used if the enquiry is to use a computer. And finally, it is only if the 
formal model itself contains some computable functions that these may, in turn, be 
included in the computational model – it is only then that a computer model can offer 
a technology that can effectively compute them. Thus, even if computational models 
are ontologically deeply entangled with formal and computer models, both models are 
not identical. And they have specific properties and operations. 

What mainly characterizes a computational type of model is that its core concept, 
computation, is about a formal property, not a technology. It appeared as an answer 
to questions raised by Hilbert: Is there a procedure by which it can be decided, just 
by manipulating the symbols, whether a specific mathematical formula or equation 
belongs or not to a formal system? In other words: what is the calculability or 
computationality of a mathematical formula or equation? 

Among the many solutions offered, two became very important. One of the first 
propositions was the Church Thesis (Church 1936). For Church, calculability was to 
be understood through a type of formal language2 that manipulates recursiveness: the 
λ-definable calculus. Even though Gödel himself had also worked on recursiveness, 
he regarded it as ‘thoroughly unsatisfactory’ (Sieg 2006). Practically at the same time, 
another solution was offered by Turing (1937): calculability would be equivalent (not 
synonymous) to ‘computation’ if there existed an effective procedure for systematically 
and productively generating output symbols from some initial input symbols. 

To demonstrate this thesis, he built two 
‘machines’ (Figure 9.1). A first one (called 
an abstract machine or Machine A) was 
defined by a list of symbols qi (0 & 1) and 
a transition state Si. Machine A formally 
represents a function through a sequence 
of instructions expressed in formulas 
containing symbols of type qi (0 & 1) and Si.

The second machine (called a physical 
automaton or Machine B) was a physical 
machine made of mechanisms containing 
elements such as a paper roll, some wheels 
and reading and printing devices, and it 
was subsequently called a ‘Turing machine’ 
by Church (1937).

Technically, this meant that if a formal function was calculable (Machine A), then it 
was computable by a physical automaton (Machine B). This claim was later called the 

Figure 9.1 Turing Machines A & B.
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‘Turing thesis’. It states that ‘every intuitively computable function is computable by an 
abstract automaton’ (Turing 1936). 

Turing’s proposition, often called the ‘Strong Turing Thesis’, establishes a relation 
between two structures: an abstract one and a physical one. The first structure can be 
called a calculable function if and only if it can be processed or ‘computed’ by an effective 
procedure, that is, a physical machine. Soare formulated the notion of computation in 
more contemporary terms: 

A computation is a process whereby we proceed from initially given objects, called 
inputs, according to a fixed set of rules, called a program, procedure, or algorithm, 
through a series of steps and arrive at the end of these steps with a final result, 
called the output. . . . The concept of computability concerns those objects which 
may be specified in principle by computations and includes relative computability. 
(Soare 1996: 286, emphasis removed)

This thesis will be very important for understanding the relationship between the 
formal expression of a calculable function given in a formal model and its translation 
into a computable model. It ultimately means that even if formal models can create 
formulas that represent complex functional relations for some phenomenon under 
study, nothing guarantees that they are computable and therefore accessible to computer 
processing. In other words, integrating computer processing in research requires that 
the formal models called upon must propose only formulas that contain computable 
functions if they are to be processed. 

Both theses were later brought together to form an important integrated thesis called 
the ‘Church-Turing’ thesis by Kleene (1952: 300) who gave it its first formulations. 

Gandy, a student of Turing, formulated it in the following manner: ‘whatever can be 
calculated by a machine can be calculated by a Turing machine’ (Gandy 1980). Rogers3 
(1987) showed that the same class of partial functions (and of total functions) could be 
obtained in each case. 

This Church–Turing thesis4 has been extended to many other types of formal systems 
and languages. Briefly summarized, it says that calculable functions are ‘equivalent’ if 
they can be computable by a Turing machine. This has been shown for Post’s (1936) 
production rule, Curry and Feys’s (1958) combinatorial logic, von Neumann’s (1966) 
automata, the Gandy (1980) machine, Chomsky’s (1957) automata grammar and many 
other types of formal symbolic systems. 

One of the important translations that the notion of computation has received is that of 
algorithm. This notion is one by which the computer operations are indeed mostly defined. 
It has become the keyword for naming the set of rules or instructions that a computer 
follows to accomplish a task. But it was Markov5 ([1954] 1960) who demonstrated the 
equivalence between algorithmic formalization, Church’s recursive functions and Turing’s 
machines. And in fact, the instruction part of a Turing machine is algorithmic. 

Briefly defined, algorithms are effective procedures to achieve the computation of 
a function. They are presented and expressed in a language through a sequence of 
instructions applied to input so as to systematically produce some output. Many other 
formulations of the notion of algorithm exist. 
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For our research purposes here, there are three implicit distinctions in the 
definition of algorithms that must be emphasized, for they are often either ignored or 
conflated. They remain important in understanding the epistemic role of algorithms in 
computational models. 

The first one is that a procedure is said to be an algorithm only if it is applied to 
a computable function. Algorithms are therefore finite and effective procedures. This 
means that if a problem presents high complexity (N.B.: not complication), its formal 
model may introduce some undecidable functions. This also means that the effective 
procedures involved may never stop and hence render algorithms useless. 

The second one is that one must not confuse a computable function with an 
algorithm. This is because the same computable function can be expressed by several 
algorithms. For example, there are several different algorithms for calculating the 
arithmetic mean of a set of numbers, as it is a calculable function. 

And a third distinction is that there exist many different types of programming 
languages to express the same computable function and its algorithms. Preferred 
ones have been von Neumann’s ‘flow chart’ or Miller, Galanter and Pribam’s TOTE. 
But there are other ones such as McCarthy’s LISP machine, Anderson’s production 
rules and Chomsky’s automata rules. And today, there is a proliferation of high-level 
languages that can express algorithmic procedures. 

This means that even if a programming language is elegant and well-formed, it does 
not follow that the algorithm and the computable function underlying it is transparent, 
known, understood and ultimately easily implemented in a computer. 

To rapidly illustrate the notion of algorithm, let’s take a simple example. Suppose 
that in our conceptual model, we assert in a natural language the following proposition: 
it is possible to find the sum of the first one hundred numbers, that is, ‘the sum of 1 + 
2 + 3 + 4 . . . 100’. 

A formal model can be offered as the algebraic equation solution: 
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One other interesting formal expression was given by mathematician F. Gauss: 
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where n = 100.
These reformulations show that these mathematical functions can be expressed 

using different formulas or equations. Each one would give the same results. 
But each one, in turn, can be translated into an algorithmic programming language 

such as the following pseudocode for the first equation: 
Program to calculate the sum of n digits (Figure 9.2).
One must notice that each instruction given in a programming language and 

translated into another one requires creative intuitions and expert conceptualization. 
And it can sometimes require time and energy.6
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This last algorithmic expression could have been presented in other more detailed 
programming languages. Each language would have to add more symbols and 
formulas, some of which pertain to instructions referring to the input data, others 
to many other types of entities such as variables, identifiers, control flows or external 
devices (printer, discs, memory, etc.). 

Formally speaking, then: ‘an algorithm is an intensional definition of a special kind 
of function – namely a computable function. The intensional definition contrasts with 
the extensional definition of a computable function, which is just the set of the function’s 
inputs and outputs’ (Dietrich 1999: 11, emphasis modified). 

Finally, let’s recall that functions are not always defined intensionally by some 
formula or algorithm; they can also be defined extensionally. This means that a 
functional relation can be defined through a data list or, more specifically, through its 
data structures. These are the arguments and values of the function. And, in fact, some 
see data structures as an extensional definition of computable functions and therefore 
as an extensional presentation of an algorithm and program.7 This interpretation of 
data as possible arguments and values of computable functions, as we will see later, will 
be applied to ‘big data’. It will give them a very important epistemic role in machine-
learning algorithms, for they will be seen as implicitly being the expression of possible 
computable functions. 

Fodor and Pylyshyn (1988) proposed a reformulation facilitating the comprehension 
of computability by cognitive science and by the digital humanities. According to this 
reformulation, a function will be recognized as computable if it has at least one of 
the following properties: atomicity, systematicity and productivity. For the particular 

Figure 9.2 Pseudocode and flow chart.
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field of cognition to which they applied such a computable function, they added the 
property of interpretability. 

The first property involves the admissibility of inputs (called arguments) with 
respect to a computable function. These inputs must be discrete or ‘atomic’ – that is, 
non-continuous. Usually, the digital encoding into 0s and 1s symbolically encodes 
this property. The second and third properties are the most important ones for our 
discussion. They specify the nature of the procedure or of the operations which will 
be applied to these inputs. Indeed, these must be systematic and productive, that is, the 
procedures must enable us to systematically produce increasingly complex sequences 
of symbols or to reduce them to simpler ones. These two properties of systematicity 
and productivity are simpler means of talking about recursiveness, algorithms and 
combinatoriality. If a system solely possesses these three properties, it is de facto a 
formal system in the sense of Hilbert. And as several researchers will emphasize, and 
as Searle (1980) and Harnad (1990a, 2017) will regularly reiterate, in the cognitive 
field, such a system is essentially ‘syntactic’. It is indeed interpretable, but its semantics 
are external – hence the importance of cognitive science to add the property of 
interpretability. 

Still, the reformulation by Fodor and Pylyshyn allows us to briefly present here 
two classical critiques that have been regularly addressed to computational models. 
Because it requires atomicity, systematicity and productivity, computationality 
cannot adequately model phenomena that are continuous and that present complex 
dynamicity. It was claimed that many dynamic systems may not be approached by 
classical atomic combinatorial sequential formal systems and Turing machines. 

The length of this book does not allow us to enter such debates here. Let us 
simply recall that atomicity, systematicity and productivity are properties of models 
– and not realities as such. And these models are mediators for describing and 
explaining. On the basis of this, the question then arises as to whether Turing-type 
computation models can compute functions that contain Cantorian continuity and 
parallelism, as is the case for instance with formal dynamic systems. A negative 
answer to this question would forbid the application of computational models to 
dynamic and parallel systems. 

It so happens that many mathematicians, such as Rice (1953), Lacombe (1955) 
and Grzegorczyk (1957), to name but a few, have proven that analogue machines 
could also compute functions applied to continuity and that their computation is 
equivalent to a Turing computation. A similar type of argument concerns the 
sequentiality of Turing computation. On this topic, Gandy (1988: 33) has shown that 
computation can be parallel – that is, that there are machines whose computation 
processes involve parallel changes in many overlapping parts.8 Siegelman (1995) has 
claimed that the class of Turing’s original physical machine ‘TM’ is just a subclass 
of the many other computing machines. In other words, formal symbolic systems 
that model complex dynamic and parallel systems can be computed and therefore 
presented in algorithms. 

But it is the problems underlying the notion of productivity that raise the most 
serious problems for computational models. They raise the question of non-computable 
functions. 
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Non-computability 

In mathematics, the notion of productivity once more encounters the problem of the 
decidability of theorems for formal systems: are theorems always provable in a formal 
system? Or, in terms of computation: are all functions calculable? Could it be the case 
that a formal model contains functions that would not be computable? 

Here are two examples of such non-computable functions. Our first problem is one 
that was described by Penrose (1989). It is not presented in formal terms or using 
an equation. It is more of an illustration of a situation in which we would intuitively 
expect there to be some functional relations underlying the question asked and where 
there could exist a calculable equation or algorithm for finding the solution. Here is 
the problem: imagine that to cover the surface of a rectangle, we have to use atypically 
shaped tiles such as those shown in Figure 9.3. What is the effective formal procedure 
for ensuring a perfect fit of the tiles in the rectangle? (Figure 9.3).

Penrose proved that no recursive function or algorithm exists to show if these shapes 
could cover an entire surface. In other words, it is not possible to find a calculable 
function of the type f (x, y) = (x*y) that would enable us to compute the necessary 
number of tiles for covering such a surface. 

The second example is a typical mathematical one. It presents itself in the form of a 
system of several equations all having the following form: Ax + By = C where A, B and 
C are constants. 

3x + 7y = 1
x2 − y2 = z3, and x, y and z are integers 
This type of system of equations is called ‘diophantine’. Intuitively, just looking 

superficially at these algebraic equations, it appears to be easy to find a general 
algorithmic solution for them. But, on the contrary, Matiyasevich ([1970] 1993) and 
Davis, Matiyasevich and Robinson (1976) demonstrated that no such algorithm exists. 
In other words, although the values given to the function’s variables may be atomic 
numerical values, such a type of system of equations is non-computable. 

In mathematics, the existence of these types of non-computable functions is not a 
rare occurrence. ‘Everyday mathematics leads us unavoidably to incomputable objects’ 

Figure 9.3 Penrose’s Polyomino Tilings.
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(Cooper 2004: 1). Many mathematicians and computer scientists have demonstrated 
that computable functions form only a very narrow subset of all mathematical 
functions. There is an infinite number of computable functions (ℵ), whereas non-
computable functions are infinitely more numerous (2ℵ). In other words, they are not 
countable. 

In short, these two examples chosen among an infinity of other possible ones show 
that infinity of mathematical functions, though they may be well-formed as functions, 
are not calculable/computable. 

Oracles 

This problem of non-computability is one which Turing confronted in his doctoral thesis. 
He proposed an original solution for making non-computable arithmetic functions into 
computable ones. He appealed to ‘oracles’: ‘With the help of the oracle we could form 
a new kind of machine (he called them o-machine), having as one of its fundamental 
processes that of solving a given number-theoretic problem’ (Turing 1939: 161). 

This specific solution, of the oracles, is highly interesting and important, for it allows the 
creation of programs that find answers to non-computable problems. Many such oracles 
or heuristics can be added and appended to form a complete computable program. And 
because of these oracles, the computation may proceed and eventually end. However, by 
the same token, the problem of non-computability becomes even more problematic than 
one would think. By appending oracles, more complexity is brought into the solution. As 
Chaitin, Doria and da Costa (2012: 36) put it: ‘just add[ing] new axioms . . . increase[s] 
the complexity H(A) of your theory A!.’ In other words, because oracles may entail 
redundancy, there is an increased risk of generating greater randomness which, in turn, 
may steer the systems towards an absolute probability called Omega, which, according 
to a theorem by Chaitin (1998), renders the system non-computable. Hence, although a 
complex static or dynamic system with discrete or continuous input may at first appear to 
be computable, it may paradoxically turn into a non-computable system. Consequently, 
the greater the complexity of that which needs to be functionally modelled, the higher 
the probability that it will be non-computable. 

This non-computability problem is not rare in science. On the contrary, it is 
omnipresent. It is everywhere. ‘Undecidability and incompleteness are everywhere, from 
mathematics to computer science, to physics, to mathematically-formulated portions of 
chemistry, biology, ecology, and economics’ (Chaitin, Doria and da Costa 2012: xiii). 

And for some contemporary computer scientists, non-computable functions are 
far more interesting from a theoretical standpoint than computable functions. ‘The 
subject [of computation] is primarily about incomputable objects, not computable 
ones’ (Soare 2009: 395). 

Epistemic roles of computational models in science

Historically speaking, formal models have always been at the heart of scientific inquiries, 
but accompanying them with computational models is quite recent. Today, however, they 
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have become an important component of scientific theories. They have radically changed 
the way science is done. Some see their contributions by the huge number of data they 
are given and the speed at which they can be processed. But these features belong more 
to the computer technology that implements them than to the computational models 
themselves. But as more and more epistemologists have stressed, computational models 
have their specific role in science, be it epistemic, expressive or communicative. 

The first role of a computational model is an epistemic one. As computational 
models are a particular sort of formal model, their epistemic status resembles the latter. 
Indeed, they have some similar cognitive surrogate role. Like formal models, they 
represent something in the sense that they are projected or mapped onto the objects 
to which they are applied. So, if, as computation theories have shown, algorithms are 
equivalent to effective procedures for calculable functions, then computational models 
contain algorithms for computing functions projected onto the objects studied by the 
sciences. 

For example, in modelling a pendulum, there will be a mapping from a formal 
model FM that is equivalent to a computable model or algorithm AL, onto some 
object structure OS itself represented by some specific data. In other words, it is one 
of the epistemic roles of a computational model to offer a means for algorithmically 
expressing this functional mapping (Figure 9.4). 

And as computational models use symbols and formula, they also construct their 
specific type of epistemic categorization and reasoning operations. We will explore 
these epistemic roles in view of their eventual application in semiotic enquiries that 
aim at integrating computation in the analysis of some semiotic artefacts. 

Categorization role of a computational model

The epistemic categorization role of a computational model has a specific signature. 
It has its own way of constructing and expressing in a computational language (a) the 
object or entities that are to be submitted to and produced by a computable function, 
and (b) the calculable functions that underlie the algorithmic statements. That is its 
main purpose. In more concrete terms, it offers a model of the object and functional 

Figure 9.4 Functional mapping of a pendulum.
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relation in terms of algorithmic statements or ‘programs’. A typical example would be 
that of a computational model which included an algorithm (of the Monte-Carlo type) 
that uses randomness for computing some function or algorithm to estimate variance 
or to decide the shortest path between many points, for instance. 

But what is more interesting is that the categorization of its objects and algorithms 
can take two main forms. Just as a formal model may express its calculable functions in 
two ways, a computational model can express them intensionally or extensionally. Take 
the classical and simple mathematical function of squaring a number. This functional 
relation in a formal model is expressed intensionally by the following formula: 

x x x y x F x x! " !, , ( ) :2 2or

or extensionally by the list:
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Because this function is a computable one, by virtue of the extended Church-Turing 
thesis, a computational model can express it, under certain conditions, by means of 
different algorithmic statements or instruction. The first and most usual one is through 
classical intensional algorithmic formulas or through a program. The second one 
can express the inputs and outputs of the function through an extensional list in a 
database. Hence, there are two ways of expressing an identical computable function in 
a computational model. 

But they each have a specific epistemic role. The intensional categorizing 
formulation of an algorithm expresses a function using abstract generalization 
formulas. It presents the instructions to be followed if the function is to be effectively 
computed by computers. 

But for most humans, such formulas often appear only as sets of formal symbolic 
statements that are cognitively unreadable. More profoundly, it is often not sufficient 
for explaining or for understanding the object and the processes to which it is 
applied. In other words, it is not because a computational model correctly expresses 
computable functions that the expressed procedures are traceable (Gotel et al. 2012) 
and hence readable and understandable by humans. A simple proof of this is often 
seen in laboratories or industries, which, over the years, have developed algorithms 
but without providing the documentation that should have accompanied them. These 
programs may still be effective, but they may become opaque for later programmers 
and users. In such cases, the algorithms cannot easily be understood. Not every 
scientist or programmer is like von Neumann, who was said to have had the capacity 
to directly read algorithms written in a binary code.9 

One reason for this is that intensional algorithmic expressions are expressed 
in a language that encodes its instructions using a vocabulary and formulas that 
are either close to machine coding or to some higher-level programming language. 
This latter language can be simple or complex in its expressive means. For instance, 
the same computable function can be expressed using various equivalent low-level 
assembly languages or in higher-level languages (Python, C++, etc.). But this does 
not guarantee that they will all have the same cognitive content and hence the same 
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level of understandability for humans. Depending on the language chosen, algorithms 
can either be understandable or completely opaque. And in effective and concrete 
processing, the instructions activated may be tractable or non-tractable. In other 
words, it is not because algorithms are well-formed syntactically or semantically that 
they are automatically cognitively accessible to humans. 

It follows then that in a computational model, this type of intensional categorization 
may become a black box for many users. One may know what the inputs to give to an 
algorithm and what its expected outputs are; however, because one does not always 
have access to what it does or to what the computable function underlying it is, the 
understanding of it will be limited, if not absent. 

A computational model may also categorize a computable function through some 
extensional presentation. This is achieved by listing the inputs and their corresponding 
outputs. But scientists and epistemologists do not tend to see a list as a mode by which 
a computable function is expressed. But as demonstrated by many computational 
theories, under certain strict conditions,10 a list can indeed be an acceptable means for 
presenting a computable function. 

Take again our squaring function y=x2 or F(x): x2 where the inputs are the value 
of the argument x, with f(x) or y representing the value of the function. It is the list 
of these paired values in a domain that can form an extensional presentation of the 
function (1, 1) (2, 4) (3, 9). . . (n, n). And in computer science, this list of ‘inputs’ and 
‘outputs’ can be included in a database and called a ‘data set’. And hence, the list opens 
up a new way of understanding the categorization role of a computational model. 

It follows then that computation models can express a calculable functional relation 
extensionally. The data are its input and outputs. In more concrete terms, it is possible 
to think of data sets as an extensional definition of an algorithm. In Table 9.1, our 
preceding example of the squaring function is expressed using a simple data frame. 
The following data set could be seen as hiding an underlying computable function.

In science, the notion of data is not often seen through such a perspective. Data 
receive a variety of definitions. For instance, in computer science, the term ‘data’ may 
refer to the inputs and outputs given to or produced by a computer and inscribed in a 
database. In mathematics, the term refers more specifically to a set of numerical values 
of functions over mathematical entities. In statistics, it may refer to the dependent 
or independent values of a formal model applied to experiments. In philosophy, data 
are interpreted as being the result of some knowledge processes such as perception, 
observation and experimentation. In the theoretical literature, all three meanings are 

Table 9.1 Extensional Definition of a Function in a Frame-like Presentation

Squaring function 1 2 3
1 1 - -
2 - 4
3 - - 9
… - - -
10 - - 100
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often conflated. The data found in a database are often only seen as a set of ‘numerical 
values’ collected through some observation or situation. And they do not seem to 
be functionally related. What is important is that they are well stored, searchable, 
visualizable and managed through some relational database management system 
(RDBMS). It was the intuition of Codd (1983),11 creator of the relational database, that 
data sets could be organized as relational sets. Hence, a data set could be an extensional 
definition of relations between objects and their attributes or properties. But which 
relations are to be implemented is determined by the creator of the database. 

Some other researchers, mainly from the fields of machine learning and data 
mining, saw these data sets in a very heuristic way. For instance, T. M. Mitchell 
(1997) and many others saw data sets as possible instantiations of functional relations 
to be discovered. A data set would therefore be the result of underlying functional 
regularities that could be submitted to ‘algorithms that can learn regularities in rich, 
mixed-media data’ (Mitchell 1999: 35). 

To illustrate this intuition, we may consider a simple experiment: the movement 
of various sorts of pendulums producing numerous data related to a multiplicity of 
different features. Some are important, other less so. For instance, the data set could 
be: the numerical value associated to the length of the rod, the oscillation period, the 
location, the weight of the ball, its gravity, its price, its level of noise, the temperature, 
the surrounding atmospheric pressure and so forth. All these data represent features 
of the pendulum. All may be put into relation, but only a few of them are related by a 
computable functional dependency. In a computational model, it could be the role of 
a machine-learning algorithm to discover or approximate which of these features bear 
computable functional relations. For example, the algorithm could discover that the 
length L, the gravity g and the time T are data that could be intensionally expressed by 
means of a classical algebraic equation: 

T L
g

! 2"

In this example, we can see that in a computational model, data pertaining to some 
object can be presented either extensionally or intensionally. Extensionally, the data are 
presented through some ordered list. Intensionally, the data are implicitly embedded in 
some algorithm which is equivalent to a calculable function. This dual way of presenting 
data directly regulates the type of reasoning processes that can be applied to them. They 
could be either deductive or inductive, but abductive reasoning may also be called upon. 

Reasoning role of computational models

Just as with the conceptual and formal models, reasoning also has an important 
epistemic role in computational models. But here, the reasoning process is deeply 
related to the form of the data on which it will be applied – that is, to their intensional 
form or extensional form. In both cases, reasoning is a rule-governed inferential 
process that is applied to the data. 
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From a cognitive standpoint, computational modelling will apply all three of the 
main types of reasoning processes we have seen in the conceptual and formal model: 
inductive, deductive and abductive. These three types of reasoning have become 
the core of reasoning strategies in various computer sciences that came to deal with 
artefacts that were carriers of meaning. 

Top-down deductive reasoning 
In early artificial intelligence, the preferred type of model was the computational 
deductive model. It was often said to represent a top-down manner of reasoning. Its 
general architecture was usually applied to some general knowledge data statements 
from which, by an inference based on existential and instantiation rules, it will deduce 
some particular knowledge. 

In the knowledge-representation (KR) paradigms of AI systems, this top-down 
approach has been presented through various semi-formal or formal means, schemas 
and frames, which became knowledge levels, knowledge spaces, knowledge bases, 
folksonomies, ontologies, knowledge graphs, etc. These KRs are not conceptual models as 
such, but rather computational expressions of part of the conceptualization of the domain 
under study. In other words, in a computational knowledge-representation paradigm, 
knowledge is expressed through an abstract and formal but specific conceptualization of a 
domain. This is well expressed by Gruber’s classical definition of ontologies: ‘An ontology 
is an explicit specification of a conceptualization’ (Gruber 1993b: 199, emphasis added). 

Let’s consider some classic examples of these computational models called ‘frames’. 
These types of models are usually grounded in some natural language sentences of a 
conceptual model: for instance, All the cities of England have a mayor. The proposition 
underlying this English sentence could also have been expressed in another natural 
language, for instance, French: Toutes les villes d’Angleterre ont un maire. The formal 
model in turn translates not the sentences itself but the general propositions underlying 
them. So, it will be expressed directly through a logical formula that dissimulates the 
general quantification hidden in the English sentence while explicit such as ∀x City 
(x) ⇒ HAS MAYOR (x). In a Minsky frame type KR, the computational model will 
embed these statements in a sort of database and it can express extensionally some of 
the knowledge pertaining to the mayorship of England’s cities (Figure 9.5). 

Mayored ci!es of 

England 

Mayor name Mayor employee number

London Johnny Walker WalkJ8594

Oxford Elizabeth Arden ArdenW3928

Cambridge Granny Smith SmithB3401

….

City n Name x Number x 

Figure 9.5 Examples of Minsky type frames.
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The general statement of this frame does not take the form of a propositional logical 
formula but it implicitly asserts that each city in England has the feature ‘has a mayor’ 
who, in turn, ‘has a name’ and ‘has an employee number’. Naturally, many other features 
and sub-features could be added. 

And onto this knowledge-representation format, some inferential types of 
algorithms can be applied (e.g. ‘if, then’). So, when a new input is entered, such as 
London is a city, then the system will ‘deduce’ that if this city is in England then it has a 
mayor and also that it has a mayor whose name is ‘Johnny Walker’. 

This type of top-down algorithmic reasoning process is at the core of knowledge-
based systems12 or rule-based systems.13 The main architecture of these systems 
includes (a) a database where general or individual knowledge is stored and retrieved; 
and (b) a variety of inferential engines applied to the database. 

In the earlier years of AI, many variants of these frames were wrapped up into computer 
applications. The prototypes of these systems took the form of expert systems. Their 
architecture included a knowledge base and an inference engine containing a set of top-
down inference rules that implemented a forward-chaining process where the general 
antecedent allowed the deduction of the instantiated consequent. These systems often also 
included some other types of backward-reasoning processes that went from the consequent 
to the antecedent. But these belonged more to the inductive and abductive modes of 
reasoning. Later on, these frames were transformed into more sophisticated types of 
knowledge representation, with important types being ontologies and knowledge graphs.14 

Today, the semantic web paradigm can be seen as a knowledge base system where 
the internet serves as a knowledge source. The difference in the processing is that the 
knowledge data (textual or iconic) must be transformed into a predicative general 
form called the Resource Description Framework (RDF) so that it may be used by 
inferential rules. 

Bottom-up inductive reasoning processes
The top-down reasoning process has always been seen as the essential feature of 
an artificially intelligent process. The problem with this type of reasoning, as has 
repeatedly been stressed, lies in the acquisition of this knowledge. Where does it come 
from? Should it always be given by some external agent or could it not be learned by 
the system? This is where inductive and abductive reasoning steps in. 

In computational models, this second type of reasoning process is often called a 
bottom-up algorithmic process. Its architecture is opposite to that of the top-down 
approach. It usually contains a set of data which can be extracted or discovered by 
some algorithmic procedures over some type or another of general knowledge. 

Strictly speaking, such generalization reasoning is inductive if and only if the data 
are exhaustively given or asserted. For instance, only if there is an exhaustive data list 
in which each and every city of England is associated with an individual mayor may 
we conclude that ‘All the cities of England have a mayor’. This inductive example can 
be expressed using the following logical formula: (CITY (London) & has MAYOR 
(London)) & (CITY (Birmingham) & has MAYOR (Birmingham)) . . . (CITY (xi) & 
MAYOR (xi)) then if ∀x (CITY (x) ⇒ HAS MAYOR (x)). 
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The general knowledge that ‘All the cities of England have a mayor’ has been 
produced by a generalization inference rule called universal instantiation. It allows a 
conclusion to be considered true until a counter example is given. 

In computer science, these inductive reasoning procedures or bottom-up procedures 
are now often called data-driven algorithms or data mining analytics. This algorithmic 
architecture is one where the inputs are a set of structured data to which are applied 
various types of algorithms that transform, aggregate and classify these data to produce 
an output that is a sort of general formula, if not the best approximation of a universal 
formula. 

In a conceptual model, this reasoning process is seen as identifying regularities, 
patterns, prototypes and even ‘laws’ governing the data that describe the features and 
relations of the state of affairs under study. 

In a formal model, these general formulas are expressed using intensional synthetic 
formulas. Recall here the list of values of our squaring function. An inductive reasoning 
process would aim at synthesizing the following extensional list of functional relations: 
(1, 1), (2, 4), (3, 9), . . . (n, n) by the formula F(x) = x2. 

This inductive process is usually easy to achieve if the data are finite, not too sparse 
and do not contain too many different types of variables. But often, the object under 
study will be complex and present a myriad of micro-features and numerous types of 
static and dynamic relational structures. Finding the patterns that characterize data 
and expressing them through some sort of general formula is quite a challenge. It is one 
of the most important problems that contemporary computational science has to deal 
with. Still, most actual practices continue to use inductive reasoning processes, but as 
the object they study is often presented to them through a huge amount of data they 
are increasingly pressed to explore efficient inductive reasoning procedures supported 
by data-driven algorithms. 

Many computational models have proposed algorithms to process these big data in 
this inductive way. The algorithms they offer are often metaphorically called ‘machine 
learning’,15 ‘deep learning’16 or, prosaically, ‘pattern recognition’17 or ‘inductive 
programming logic’.18 These types of algorithms have become the contemporary stars 
of artificial intelligence research, where ‘intelligence’ is mainly understood in terms of 
inductive learning procedures. 

These data are not processed in the form in which they come. They do not jump into 
algorithms for the simple reason that they are data. Whatever their source or their type, 
they have to be submitted to many complex operations, sometimes manual, sometimes 
algorithmic, in order to (a) become inputs for these machine-learning algorithms, (b) 
be effectively processed by these algorithms, and, finally, (c) be evaluated when applied 
to concrete cases. 

In the first moment of this complex procedure, the data must be acquired – a task that 
is not without complex problems, for their sources are often numerous, anonymous, 
noisy, non-controlled and of various types. Afterwards, they must be prepared to be 
made into admissible arguments or inputs for these algorithms. They must hence be 
cleaned, selected, categorized, annotated, refined, standardized, validated, verified, 
updated and so on. Afterwards still, they have to be machine-encoded, formatted and 
normalized. In other words, data are not ‘given’; they are worked on. Despite all these 
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heavy preprocesses and processes, machine-learning type of computational models 
have the wind in their sails. Some even believe that theory-driven research has been 
killed! As Anderson puts it, ‘The data deluge makes the scientific method obsolete’ 
(2008).19 

In the second stage of these inductive reasoning procedures, the data have to be 
processed by some effective algorithms. But these algorithms come in many shades. 
They are not a ‘one fit for all’. A relevance analysis must be made. Many are rooted 
in different mathematical models and expressed in different languages. So, we find 
underlying them various formal mathematical models belonging, for instance, to 
inductive probabilistic statistics, mathematical classification, statistical optimization, 
inductive logic, dynamic combinatorics, dissipative dynamics or formal systems. 
We also see that these use many formal languages such as predicate logic, directed 
graphs, differential geometry, linear and non-linear algebra, topology and so on. All 
these formal models and languages possess their particular conditions of use and 
parameters. They are not easily interchangeable. Choosing one or another is often quite 
a challenge in itself. 

Finally, these algorithms have been inspired by various but specific scientific 
theories: cybernetics,20 vision and behaviour psychology,21 neurobiology,22 insect 
or swarm intelligence (ants, termites), stigmergy,23 genetics and evolution,24 
immunology,25 artificial neural nets, connectionism,26 neurophenomenology,27 
situated philosophy of mind,28 catastrophe semiotics,29 radical material epistemology30 
and so on. Rapidly summarized, these various inductive reasoning algorithms are 
understood as types of computable classification and optimization functions that 
have for arguments some data values and deliver as outputs some patterns in the data. 
They are often interpreted in cognitive terms and are said to recognize, learn, adapt, 
discover and evolve. 

Many sub-procedures have been explored to create flexible but robust learning. 
Two important ones among these are the ‘supervised’ and ‘non-supervised’ ones. The 
supervised learning procedure is one that is helped by some training. It uses a subset 
of well-structured data that serves as a prototype. What is learned in this subset is 
then applied to the whole set in view of discovering the most similar patterns. The 
second procedure is called ‘unsupervised’ learning. Without the help of prototypes, 
the procedure clusters with the help of complex parameters the data that share some 
common features. These two strategies are often seen as ‘superficial’ learning processes. 
So, some deeper and more complex learning procedures were proposed. These deep 
learning procedures usually start by building some interrelated classes of elements 
that share either some common data features or some interrelated classes of features. 
Afterwards, these classes are themselves reclassified by means of multi-level strategies 
so as to build new levels of interrelated classes. And after some iterations and more 
detailed readjustments, they come to ‘recognize’ more distinguished, solid, optimized 
or most probable patterns in the data. 

During the last stage in the application of these inductive algorithmic procedures, 
some evaluations and interpretations must be performed. Big data are not simple and 
unproblematic artefacts. They are not without their own epistemological problems. One 
typical problem is the adequacy of the algorithms with respect to the specific objects 
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applied. In laboratories, these algorithms will be tested against accepted benchmarks. 
But in many concrete applications, no such benchmarks exist, so great confidence must 
be placed in the algorithms themselves. Finally, as theories, data are often biased, noisy, 
situated and institutionalized, the results may also be oriented in different directions. 
This entails quite a challenge for their interpretation and validity. As Gould eloquently 
said: ‘inanimate data can never speak for themselves, and we always bring to bear 
some conceptual framework, either intuitive and ill-formed, or tightly and formally 
structured, to the task of investigation, analysis, and interpretation’ (Gould 1981: 166). 

The third type of reasoning processes is, as expected, the abductive one. In 
computational models, this reasoning process will be most useful. For example, 
recalling our cookie example, it may happen that an AI system is given in its knowledge 
base that

All cookies in the box are chocolate cookies.

But it may also receive the data: 

There are chocolate cookies.

If the system is to reason correctly, it should not infer from the first general statement 
that

These cookies are from the box.

Rather, correct reasoning should only produce the hypothesis that

Possibly these cookies are from the box. 

This is because it could be the case that these cookies come from somewhere else.
Because of the heuristic role of this type of reasoning, computational models have 

been increasingly exploring it as it seems quite natural. It has become an important 
dimension of many computational models, mainly in artificial intelligence with 
regard to algorithmic learning. It may be used for problem-solving (Kakas et al.), 
discourse interpretation (Hobbs et al. 1993), knowledge discovery (Zhou 2019) and 
programming languages (Console and Saitta 2000). It is currently becoming more and 
more important in machine learning (Levesque 1989; Crowder, Carbone and Friess 
2020; Zhou 2019; Dai et al. 2019). 

Although abductive reasoning is rich in promise, its transformation into algorithms 
must still undergo more research. The challenge is in either making probabilistic 
adjustments, building adaptation strategies or calling upon structures of a priori 
knowledge bases for validating the hypothetical conclusions. There is an increasing 
number of such algorithms. Some are ‘one-shot’,31 ‘few shots’,32 ‘prototypical’,33 ‘hybrid 
neural’ and ‘symbolic’ learning machines.34

We hope to have shown some of the complex epistemic roles of computation 
models. They are a subtle but sophisticated play between different types of algorithms 
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that categorize the object under study and algorithms that allow reasoning on what has 
been categorized. The three types of reasoning processes we have presented define the 
epistemic role of computational models. And they always activate a dialectic relation 
between general formula, rules or laws and individual data. In certain cases, if the pattern 
is known and well expressed, then the deductive process will search some data for a 
proof or disproof. In some circumscribed situations, if all the data are available, then an 
inductive or at least a best approximation of an inductive process will search namely for a 
generalization or for rules. Finally, in cases where just a few data are known, an abductive 
reasoning process will be called upon. It will be the most complex one. 

The expressive and communicative 
role of computational models

Expressing and communicating the data, the algorithms and their results is achieved 
through specific notational forms in computational models. 

First, as we know, computers do not manipulate the data directly in the form in 
which they are presented to humans (natural language expressions, scripts, databases, 
digits, etc.). They process encoded data.35 So, whatever their source, they have to 
be digitized so that they may serve as inputs to algorithms. Second, the algorithms 
themselves are expressed in some formal computer language. These languages have 
specific syntaxes and semantics, and each programming language is specialized in 
generating instructions for the manipulation of specific types of data and operations 
in some domain. This gives them their expressive power. Some are very close to a 
basic, low-level computer language (assembler). Some others are geared towards 
databases (Cobol, Perl), towards the manipulation of mathematical functions (C++, 
LISP, MATLAB) and others towards natural language (Python, etc.). 

All these types of languages and the programmes they express may be so well 
mastered by the researchers that they become the ‘natural’ way by which the various 
components and operations of a computational model are communicated. It is 
common among computer scientists to talk about an algorithm in terms of a ‘formal 
model’ whose packages of algorithms are named according to the actions they carry 
out. Here, one ‘googlelizes’. There, one ‘topic modelizes’. Others perform ‘data mining’ 
or ‘deep learning’. Some even have a proper name: the Monte Carlo algorithm. They 
become the ‘specialized communication languages’. A new modern lingua franca 
characteristica is being born!

For our research purposes here, one important point to emphasize is the expressive 
and communicative role that pertains to the presentation of the results of the algorithms. 
This is quite different from what may be encountered in conceptual and formal models 
where natural and formal languages dominate. Here, another type of language will 
often be called upon and is used as a bridge towards the conceptual model. 

When various complex algorithms are applied to huge data, the presentation of 
the processing and of the results obtained receive special attention in computational 
models. Because they are not so transparent and evident and often require a heavy 
cognitive investment in order to be understood, some sophisticated visualization 
techniques offer more effective means for expressing and communicating their 
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processes and, most importantly, their results. These visualization techniques became 
rapidly welcomed adjuvants and mediators for understanding algorithmic data 
categorization reasoning processes and their results. 

Here is a simple example of such a visualization technique. During the Covid-19 
epidemic, various experts used many formal equations for describing and analysing 
several of its dynamics. The equations underlying the algorithm express some 
functional dependency relations between several variables such as time, infected 
population, recovered population, death, age, co-morbidity, geographical location and 
so on. Some of these equations and big data may be cognitively easy to understand 
for a trained mathematician. But even then, for many expert communities and the 
general public, due to the complexity of the functions, they are not immediately or 
intuitively understandable. And as more and more variables and parameters are added, 
the understanding of what is computed and of what the result is becomes increasingly 
difficult. So, visualization provides some assistance, leading to the generation of insight. 

The simple visualization in Figure 9.6 – a classical Cartesian graph – presents the 
dynamic results which may be produced by the application of computational models 
to three equations presenting the variance over time of the percentage of recovered 
population r(t), infected population i(t) and of susceptible individuals who could get 
Covid-19 s(t) (Figure 9.6). 

Without knowing the exact equations and data that correspond to the visualization 
of the curves, it is possible to achieve some inductive, deductive and abductive 
reasoning from this graph. For instance, in this formal model (the SIR model), it can 
be seen by the r(t) curves compared to the other ones that ‘a low peak level can lead to 
more than half the population getting sick’ (Smith & Moore 2004). The conclusion is 
reached by the reader without a knowledge of the mathematical models that underlie 
the Cartesian graph and its curves. 

Figure 9.6 Visualization of three equations describing three dimensions of Covid-19.
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At first sight, this iconic language seems simple. But technically, it is a translation of a 
specific set of results of computed equations into an iconic form. It is a sort of extensional 
presentation of the functions expressed through some equations and algorithms. The 
drawing corresponds to specific symbols of these equations. But one important point 
must be noted. The drawing is in juxtaposition to the curves representing the dynamics 
of three equations. So for the visualization to be understood by someone (an expert or 
a layperson), some parallel information processing is required. And that which is iconic 
becomes analogical. It is no longer digital. And it is the specific parallelism allowed by 
this iconic analogical language that gives the visualization its apparent simplicity and 
epistemic robustness, a rich cognitive value and a heuristic function. This is quite difficult 
to achieve with the traditional sequential reading of the equations. 

Depending on the nature of the domain studied, on the formal models used and on 
the computational format taken, the visualization techniques may be static or dynamic, 
and they may take various forms: interactive tables, charts, graphs, maps and so on. 
They can use various metaphoric forms, such as buildings, games, roads, spaces, spots, 
pies, mountains and textures (see Chen 2013 for a rich set of examples; and Dondero 
and Fontanille 2014 for a detailed semiotic analysis). 

The visualization techniques36 enhance the epistemic role of both formal and 
computational models. They transform underlying formal and algorithmic models into 
various iconic forms (annotated with natural language). This is evident in Figure 9.7.

Figure 9.7 How Coronavirus is Devastating the Restaurant Business. Table cited in Chart: 
How coronavirus is devastating the restaurant business, by Rani Molla@ranimolla Mar 16, 
2020, 12:20 p.m. EDT https://www .vox .com /recode /2020 /3 /16 /21181556 /coronavirus 
-chart -restaurant -business -local (open source).
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Visualization techniques of the kind used in Figure 9.7 manipulate data not only to 
provide descriptive knowledge but also to create explanatory knowledge. In science, 
data visualization has become a full subdomain of computer science in itself. However, 
the challenge it entails is great, for it requires complex interpretative strategies which 
are often theory-laden or culturally grounded. And to be valid, it must be related to 
its underlying formal models; otherwise, they will be used as black boxes about which 
anything may be said. 

Conclusion

Because computational models have a specific structure, they play a particular 
epistemic role in science. Indeed, they allow many sciences to transform the numerous 
complex calculations required by their formal models into effective procedures. And 
it is only if these effective procedures are formally formulated in an algorithm and 
eventually in a programming language that computer technology can effectively and 
concretely compute them. It then follows from these definitions that computation is 
per se different from computer technology. A computer is but a physical electronic 
means by which computation can be realized or implemented, and a computer can 
only compute electronically if it is given a set of effective procedures, one of which is 
algorithms or, in a more common manner of speech, programs. 

The distinctions will become important in the encounter of semiotics with the 
digital: the real challenge of semiotics is not the digital (which is only a useful encoding 
procedure), but its embeddedness in computationality. This raises an important 
question: Can semiotics be computational? Or, can computational semiotics exist?


