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ESERCIZIO 1. Sia s : �n ×�n −→� definita come segue

s(x,y) := x · [My] x,y ∈�n

dove M ∈Mn,n(�) è una matrice simmetrica e definita positiva. Si provi che

∥x∥s :=
√

s(x,x) x ∈�n

è una norma sullo spazio vettoriale �n. Tale norma si dice indotta dal prodotto scalare s.

ESERCIZIO 2. Posto

∥x∥1 := |x1| + |x2| ∥x∥∞ := max{|x1|, |x2|}

per x = (x1, x2) ∈�2, si provi che entrambe le funzioni ∥ · ∥1 e ∥ · ∥∞ sono delle norme su �
2.

ESERCIZIO 3. Si provi che la norma

∥x∥ :=
[
|x1|2 + |x2|2

]1/2 =
√

x · x

è invariante per rotazioni del piano �
2.

ESERCIZIO 4. Si provi che non esiste un prodotto scalare su �
2 che induce la norma ∥ · ∥1.

ESERCIZIO 5. Si mostri che i seguenti sottoinsiemi del piano sono aperti:

�
2 B(O,1) = {x2

1 + x2
2 < 1} {x2 > 0}

ESERCIZIO 6. Seguendo le definizioni introdotte a lezione, si verifichi che valgono le seguenti affermazioni

(a,b) ⊆� è aperto e convesso per ogni −∞ ≤ a < b ≤ +∞
[a,b] ⊆� è chiuso e compatto per ogni −∞ < a < b < +∞

ESERCIZIO 7. Si provi che i seguenti sottoinsiemi di �n sono aperti

A =
{
x ∈�2 : x1, x2 > 0

}
B =

{
x ∈�3 : x2

1 + x2
2 + x2

3 < 1
}

C =
{
x ∈�3 : x2

1 > 0
}

Poi si dica quali sono i rispettivi complementari chiusi e si determini se sono insiemi convessi o meno.
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ESERCIZIO 8. Si disegnino nel piano i seguenti insiemi e si determini se sono aperti o chiusi e se sono limitati o meno.

E1 =
{
x ∈�2 : 4x2

1 + x2
2 −4x2 < 0

}
E2 =

{
x ∈�2 : 0 ≤ x1 + x2 ≤ 4

}
E3 = [0, 1]2 =

{
x ∈�2 : 0 ≤ x1, x2 ≤ 1

}
ESERCIZIO 9. Sia A ⊆ �

3 un insieme aperto, w ∈ �3, Ý ∈ � (con Ý , 0) e R una rotazione nello spazio, allora si
mostri che gli insiemi

A + w := {x + w : x ∈ A} ÝA := {Ýx : x ∈ A} AR := {Rx : x ∈ A}
sono aperti.
Si ripeta l’esercizio sostituendo all’aggettivo aperto gli aggettivi chiuso, convesso, compatto, se possibile.

ESERCIZIO 10. Siano A1 e A2 due sottoinsiemi aperti di (�n,∥ · ∥2), si mostri che gli insiemi A1 ∩ A2 e A1 ∪ A2 sono
aperti.
Si concluda l’esercizio provando quali tra gli aggettivi chiuso, convesso e compatto possono sostituire l’aggettivo
aperto nell’affermazione della prima parte del quesito.

ESERCIZIO 11. È vero che se K ⊆ (�3,∥ · ∥2) è compatto, allora ogni sottoinsieme E ⊆ K è compatto? Si argomenti
esaustivamente ogni affermazione.

ESERCIZIO 12. Si provi che E = {p} ⊆�
n è chiuso e compatto.

ESERCIZIO 13. Si provi che E = {x ∈�3 : ∥x∥2 ≤ 1} è chiuso.

SVOLGIMENTI

ESERCIZIO 1. Sia s : �n ×�n −→� definita come segue
sM(x,y) := x · [My] x,y ∈�n

dove M ∈Mn,n(�) è una matrice simmetrica e definita positiva. Si provi che

∥x∥s :=
√

s(x,x) x ∈�n

è una norma sullo spazio vettoriale �n. Tale norma si dice indotta dal prodotto scalare s.

DISCUSSIONE. Iniziamo provando che l’appplicazione sM è un prodotto scalare, da questo seguirà ”automa-
ticamente” che ∥ · ∥s è una norma. Mostriamo che sM è un’applicazione bilineare, infatti vale

sM(Óx + Ôw,y) = (Óx + Ôw) ·My = Óx ·My + Ôw ·My = ÓsM(x,y) + ÔsM(w,y)
sM(x,Óy + Ôz) = x ·M(Óy + Ôz) = Óx ·My + Ôx ·Mz = ÓsM(x,y) + ÔsM(x,z)

per ogni Ó,Ô ∈ � e x,y,w,z ∈ �n. Nei precedenti calcoli abbiamo utilizzato esclusivamente la commutatività
della moltiplicazione per uno scalare e la bilinearità del prodotto scalare euclideo.
Relativamente alla simmetria abbiamo che

sM(x,y) := x ·My = Mtx · y = y ·Mtx = sMt (y,x)

quindi l’applicazione è simmetrica se e solo se M = MT, cioè se la matrice è simmetrica.
Per provare che la funzione sM è positiva dobbiamo provare che, per ogni x ∈�n vettore non nullo, vale

sM(x,x) = x ·Mx > 0
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poiché sappiamo che una matrice simmetrica definita positiva possiede autovalori reali e positivi, detto Ý > 0
il più piccolo autovalore abbiamo che

sM(x,x) = x ·Mx ≥ x ·Ýx = Ý∥x∥2 > 0

Concludiamo ricordando che un prodotto scalare induce sempre una norma come provato neglle note del
corso, questo termina l’esercizio.

ESERCIZIO 2. Posto

∥x∥1 := |x1| + |x2| ∥x∥∞ := max{|x1|, |x2|}

per x = (x1, x2) ∈�2, si provi che entrambe le funzioni ∥ · ∥1 e ∥ · ∥∞ sono delle norme su �
2.

DISCUSSIONE. Verifichiamo che ∥ · ∥1 soddisfa i tre assiomi di norma, infatti vale

∥x∥1 = |x1| + |x2| ≥ 0 per ogni x ∈�2

inoltre

0 = ∥x∥1 = |x1| + |x2| ≥ |x1| ≥ 0 da cui x1 = 0
0 = ∥x∥1 = |x1| + |x2| ≥ |x2| ≥ 0 da cui x2 = 0

per cui abbiamo che l’unico vettore avente norma nulla è il vettore x = O.
Notiamo anche che

∥Ýx∥1 = |Ýx1| + |Ýx2| = |Ý||x1| + |Ý||x2| = |Ý| [|x1| + |x2|] = |Ý|∥x∥1 per ogni x ∈�2

e infine che possiamo scrivere

∥x + y∥1 = |x1 + y1| + |x2 + y2| ≤ |x1| + |y1| + |x2| + |y2| = |x1| + |x2| + |y1| + |y2| = ∥x∥1 + ∥y∥1
per ogni x,y ∈�2. I ragionamenti per provare che ∥ · ∥∞ sono analoghi.

ESERCIZIO 3. Si provi che la norma

∥x∥ :=
[
|x1|2 + |x2|2

]1/2 =
√

x · x

è invariante per rotazioni del piano �
2.

DISCUSSIONE. È noto (dai corsi di geometria?) che le rotazioni sono delle isometrie euclidee, quindi non c’è
molto da dimostrare... proviamo a verificare l’affermazione svolgendo il calcolo per punti del piano e ricordan-
do che una rotazione (di angolo Ú in senso antiorario) si rappresenta con una matrice RÚ avente la seguente
espressione

RÚ =
(

cos(Ú) −sin(Ú)
sin(Ú) cos(Ú)

)
con Ú ∈ [0,2á)

A questo punto possiamo scrivere che

∥RÚx∥2 =
[
|cos(Ú)x1 − sin(Ú)x2|2 + |sin(Ú)x1 + cos(Ú)x2|2

]
=
[
cos2(Ú)x2

1 + sin2(Ú)x2
2 − 2sin(Ú)cos(Ú)x1x2 + sin2(Ú)x2

1 + cos2(Ú)x2
2 − 2sin(Ú)cos(Ú)x1x2

]
= x2

1 + x2
2 = ∥x∥2 per ogni x ∈�2

il che mostra che a rotazione non influisce sulle distanze.

ESERCIZIO 4. Si provi che non esiste un prodotto scalare su �
2 che induca la norma ∥ · ∥1.

DISCUSSIONE. Se la norma ∥·∥1 fosse indotta da un prodotto scalare la norma al quadrato dovrebbe verificare
la seguente identità, detta identità del parallelogrammo

∥x + y∥21 + ∥x− y∥21 = 2
[
∥x∥21 + ∥y∥21

]
per ogni x,y ∈�2
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Scegliendo x = e1 = (1,0) e y = e2 = (0, 1) è possibile verificare che la precedente relazione non è soddisfatta,
visto che

8 = ∥e1 + e2∥21 + ∥e1 − e2∥21 , 2
[
∥e1∥21 + ∥e2∥21

]
= 4

Il fatto che l’identità del parallelogrammo fallisce implica che la norma non discende da un prodotto scalare.

ESERCIZIO 5. Si mostri che i seguenti sottoinsiemi del piano sono aperti:

�
2 B(O,1) = {x2

1 + x2
2 < 1} {x2 > 0}

DISCUSSIONE. Per verificare la definizione di aperto in per uno specifico insieme A dobbiamo, fissato un punto
p qualsiasi del nostro insieme, mostrare che esiste un raggio r = r(p) > 0, eventualmente dipendente dal punto
p, tale che B(p, r) ⊆ A.
Nel primo caso A = �

2, quindi la scelta r = 1 ci permette di concludere in ogni caso, questo perché è sempre
vero che B(p, 1) ⊆�

2.
Quando A = B(0, 1), possiamo notare che, siccome p appartiene all’aperto A, vale che ∥p∥ = Ö ∈ [0, 1), allora
proviamo con r = r(p) = (1− Ö)/2. Infatti, dato q ∈ B(p, r) possiamo scrivere che

∥q∥ = ∥q−p∥ + ∥p∥ ≤ 1
2 (1− Ö) + Ö = 1 + Ö

2 < 1

per cui abbiamo provato che q ∈ A, cioè che B(p, r) ⊆ B(O,1).
Nel terzo caso abbiamo che A = {x2 > 0}, se consideriamo p ∈ A allora sappiamo che p2 = Ö > 0, scegliendo
r = r(p) = Ö/7 otteniamo che, preso q ∈ B(p, r) qualsiasi, segue che

q2 = q2 ±p2 ≥ −|q2 −p2| + p2 ≥ −r + Ö ≥ 6
7Ö > 0

quindi anche il semipiano {x2 > 0} è un aperto del piano.

ESERCIZIO 6. Seguendo le definizioni introdotte a lezione, si verifichi che valgono le seguenti affermazioni
(a,b) ⊆� è aperto e convesso per ogni −∞ ≤ a < b ≤ +∞
[a,b] ⊆� è chiuso e compatto per ogni −∞ < a < b < +∞

DISCUSSIONE. procediamo con ordine dimostrando le affermazioni proposte.
(a,b) è aperto: sia p ∈ (a,b) e poniamo Ö := min{|a − p|, |b − p|}, intuitivamente Ö è la distanza del punto p dal
più vicino dei due estremi dell’intervallo (si noti che se a = −∞ e b = +∞ allora è sufficiente scegliere Ö > 0
qualsiasi). Per mostrare che (a,b) è aperto è necessario e sufficiente mostrare che esiste r > 0 tale che B(p, r) =
(p − r,p + r) ⊆ (a,b), quindi scegliamo r = Ö/2 e mostriamo chel’inclusione precedente è vera, infatti vale che
a = (a−p) + p ≤ −Ö + p < p− r < p + r < p + Ö ≤ p + (b−p) = b, quindi (a,b) è aperto.
(a,b) è convesso: sia p = tx + (1− t)y, con a < x < y < b e t ∈ [0, 1], allora vale che p = tx + (1− t)y > ta + (1− t)a = a e
anche p = tx+(1−t)y < tb+(1−t)b = b visto che t ∈ [0, 1], quindi (a,b è convesso (si noti che la stessa dimostrazione
prova che qualunque intervallo è convesso).
[a,b] è chiuso: poiché un insieme è chiuso se il suo complementare è aperto dobbiamo ragionare sul com-
plemenatare dell’intervallo, poiché [a,b]c = (−∞, a) ∪ (b,+∞) il complementare dell’intervallo contenente gli
estremi è l’unione di due semirette aperte. La prima dimostrazione fatta mostra che le due semirette sono un
aperto, quindi [a,b] è chiuso.
[a,b] è compatto: provare che un insieme è compatto significa provare che da ogni successione contenuta in
esso è possibile estrarre una sottosuccessioe convergente ad un putno dell’insieme. In generale una dimostra-
zione di questo tipo è molto impegnativa, infatti che gli intervalli chiusi e limitati di � sono compatti segue dal
teorema di Bolzano & Weierstrass, studiato ad Analisi Matematica I...

ESERCIZIO 7. Si provi che i seguenti sottoinsiemi di �n sono aperti

A =
{
x ∈�2 : x1, x2 > 0

}
B =

{
x ∈�3 : x2

1 + x2
2 + x2

3 < 1
}

C =
{
x ∈�3 : x2

1 > 0
}

Poi si dica quali sono i rispettivi complementari chiusi e si determini se sono insiemi convessi o meno.
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DISCUSSIONE. Iniziamo osservando che Hj = {xj > 0} ⊆ �
n è un insieme aperto per ogni n ∈ � e per ogni

j = 1, ...,n. Dato p ∈ Hj poniamo r = |pj|/2 > 0 e mostriamo che B(p, r) ⊆�
n, infatti abbiamo che per ogni x ∈ B(p, r)

vale xj ≥ pj − r = pj/2 > 0, quindi x ∈ Hj, cioè B(p, r) ⊆ Hj e quindi Hj è aperto.
A questo punto possiamo affermare che A è aperto: in quanto vale che A = H1∩H2 e l’intersezione di due aperti
è un aperto. Poiché A = {x = (x1, x2) : x1 > 0 e x2 > 0} allora segue che Ac è un insieme chiuso (complementare
di un aperto) e vale Ac = {(x1, x2) : x1 ≤ 0 o x2 ≤ 0} = {x1 ≤ 0} ∪ {x2 ≤ 0}, in questo caso Ac non è convesso
perché e1 = (1,0) ∈ Ac, e2 = (0, 1) ∈ Ac, però te1 + (1− t)e2 = (t, (1− t)) ∈ A per ogni t ∈ (0, 1).
Anche C è un aperto, infatti vale che C = H1 ∪H∗1 , dove H−1 = {x1 < 0} è un aperto ripetendo la dimostrazione di
Hj, e l’unione di aperti è un insieme aperto. L’insieme complementare chiuso Cc = {x = (x1, x2, x3) : x1 = 0} è un
iperpiano (geometricamente parlando) ed è un insieme convesso, infatti se p = (0,p2,p3) ∈ Cc e q = (0,q2,q3) ∈
Cc otteniamo che tp + (1− t)q = (0, tp2 + (1− t)q2, tp3 + (1− t)q3) ∈ Cc

L’insieme B è un aperto perché B = B(O, 1) ⊆�
3 e tutte le palle in spazi normati sono degli aperti: dimostriamo

quest’ultima affermazione. Siano x ∈ B(p,R) e Ö = ∥x − p∥2 < R, consideriamo la palla B(x, r) con raggio r =
(R − Ö)/3 > 0, e mostriamo che B(x, r) ⊆ B(p,R). Consideriamo un punto y ∈ B(p, r) e osserviamo che, dalla
disuguaglianza triangolare, segue

∥y−p∥2 = ∥y− x + x−p∥2 ≤ ∥y− x∥2 + ∥x−p∥2 < r + Ö = R + 2Ö
3 < R

quindi B(x, r) ⊆ B(p,R), come affermato. Ragionando come sopra Bc = {x ∈ �
3 : ∥x∥2 ≥ 1} non è un insieme

convesso, per esempio i punti p1 = (0,0,2) e p2 = (0,0,−2) appartengono entrambi a Bc, però il segmento che
li unisce contiene il punto O ∈ B.

ESERCIZIO 8. Disegnare nel piano gli insiemi seguenti e riconoscere se sono aperti o chiusi e se sono limitati o meno.

E1 =
{
x ∈�2 : 4x2

1 + x2
2 −4x2 < 0

}
E2 =

{
x ∈�2 : 0 ≤ x1 + x2 ≤ 4

}
E3 = [0, 1]2 =

{
x ∈�2 : 0 ≤ x1, x2 ≤ 1

}
DISCUSSIONE. premettiamo alle dimostrazioni formali alcune schizzi degli insiemi che ci interessano, nella
speranza che aiutino il ragionamento astratto

E1

P E2

Q
E3

R

dove i punti indicati nei tre grafici hanno le seguenti coordinate P = (0, 1) = e2, Q = (4,0) e R = (1, 1).
E1: iniziamo osservando che l’insieme è un’ellisse aperta nel piano, infatti vale che

E1 =
{
x ∈�2 : 4x2

1 + (x2 − 2)2 < 4
}

=
{

(x1 −0)2 +
(x2

2 − 1
)2

< 1
}

=
{∥∥∥∥∥(x1,

x2
2

)
− (0, 1)

∥∥∥∥∥2
< 1

}
per verificare che l’insieme è aperto dobbiamo mostrare che, per ogni p ∈ E1, esiste una palla B(p, r) ⊆ E1, cioè
che se r è sufficientemente piccolo le informazioni p ∈ E1 cioè

∥∥∥∥∥(p1,
p2
2

)
− e2

∥∥∥∥∥2
= Ö < 1

x ∈ B(p, r) cioè ∥x−p∥2 < r

 implicano x ∈ E1 cioè
∥∥∥∥∥(x1,

x2
2

)
− e2

∥∥∥∥∥2
< 1
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Dunque, grazie alla disuguaglianza triangolare, possiamo svolgere le seguenti maggiorazioni∥∥∥∥∥(x1,
x2
2

)
− e2

∥∥∥∥∥2
=
∥∥∥∥∥(x1,

x2
2

)
±
(
p1,

p2
2

)
− e2

∥∥∥∥∥2
≤

∥∥∥∥∥(x1,
x2
2

)
−
(
p1,

p2
2

)∥∥∥∥∥2
+
∥∥∥∥∥(p1,

p2
2

)
− e2

∥∥∥∥∥2

=
∥∥∥∥∥(x1,

x2
2

)
−
(
p1,

p2
2

)∥∥∥∥∥2
+ Ö ≤

∥∥∥(x1, x2)− (p1,p2)
∥∥∥2 + Ö < r + Ö < 1

dove l’ultima disuguaglianza è vera a patto di scegliere r < (1− Ö). E1 è anche limitato infatti possiamo scrivere
che ∥∥∥∥∥(x1,

x2
2

)
− e2

∥∥∥∥∥2
< 1 equivale a x2

1 +
(x2

2 − 1
)2

< 1

da cui ricaviamo le seguenti stime
|x1| < 1 cioè− 1 < x < 1 e |x2 − 2| < 2 da cui 0 < x2 < 4

e questo significa che E1 ⊆ [−1, 1]× [0,4] ⊆ B(O,
√

17).
E2: questo insieme è un chiuso di �2, visto che Ec

2 = A1∪A2 = {x1 +x2 < 0}∪{x1 +x2 > 4} e che i due insiemi sono
entrambi aperti. Proviamo che {x1 + x2 < 0} ragionando come nella prima parte dell’esercizio, quindi vogliamo
mostrare che, per r sufficientemente piccolo, vale{

p ∈ A1 cioè p1 + p2 = Ö < 0
x ∈ B(p, r) cioè ∥x−p∥2 < r

}
implicano x ∈ A1 cioè x1 + x2 < 0

a questo punto possiamo scrivere che
x1 + x2 = p1 + (x1 −p1) + p2 + (x2 −p2) ≤ p1 + |x1 −p1| + p2 + |x2 −p2|

≤ p1 + ∥x−p∥2 + p2 + ∥x−p∥2 < Ö + 2r < 0
scegliendo r = |Ö|/4 > 0, i calcoli fatti e l’arbitrarietà di x significano che B(p, r) ⊆ A1, quindi A1 è aperto visto
che anche p è arbitrario. Ripetendo l’argomento per A2 e ricordando che l’unione di aperti è sempre un aperto,
otteniamo che Ec

2 è aperto, cioè che E2 è chiuso. E2 non è limitato, perché i vettori del tipo pk = (k,−k) ∈ E2, con
k ∈�, hanno norma non limitata, infatti vale ∥pk∥2 =

√
2k.

E3: nell’esercizio precedente abbiamo dimostrato che gli insiemi del tipo {xj > c} o {xi < c} sono aperti in �
n per

ogni c ∈ � e per ogni j = 1,2, ...,n, dunque gli insiemi che hanno una rappresentazione come {xj ≤ c} o {xi ≥ c}
sono chiusi, in quanto complementari di insiemi aperti. A questo punto possiamo notare che

E3 = {x1 ≤ 1} ∩ {x1 ≥ 0} ∩ {x2 ≤ 1} ∩ {x2 ≥ 0} ⊆�
2

quindi è chiuso, perché intersezione di chiusi. Inoltre possiamo osservare che

|x1|, |x2| ≤ 1 quindi x2
1 + x2

2 ≤ 2
per cui E3 ⊆ B(O,2), quindi è un insieme limitato.

ESERCIZIO 9. Sia A ⊆ �
3 un insieme aperto, w ∈ �3, Ý ∈ � (con Ý , 0) e R una rotazione nello spazio, allora si

mostri che gli insiemi

A + w := {x + w : x ∈ A} ÝA := {Ýx : x ∈ A} AR := {Rx : x ∈ A}
sono aperti.
Si ripeta l’esercizio sostituendo all’aggettivo aperto gli aggettivi chiuso, convesso, compatto, se possibile.

DISCUSSIONE. A+w: la prima affermazione può essere riletta dicendo che ”la traslazione di un aperto è ancora
un aperto”. Sia q ∈ (A + w) per definizione abbiamo p = (q −w) ∈ A e, essendo A aperto, esiste R > 0 tale che
B(p, r) ⊆ A, traslando entrambi gli insiemi ricaviamo che (B(p, r) + w) ⊆ (A + w), la tesi è raggiunta mostrando che
B(p, r) + w = B(q, r). Ricordiamo che q = (p + w) e sia x ∈ B(p, r) allora segue che y = (x + w) ∈ (B(p, r) + w) e vale

∥y−q∥2 = ∥(x + w)− (p + w)∥2 = ∥x−p∥2 < r
quindi (B(p, r) + w) ⊆ B(q, r), viceversa se y ∈ B(q, r), posto x = y−w abbiamo che

∥x−p∥2 = ∥y−w− (q−w)∥2 = ∥y−q∥2 < r
il che implica B(q, r) ⊆ (B(p, r) + w). La traslazione è sempre una isometria dello spazio, in generale tutte le
isometrie conservano l’essere aperto di un insieme.
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AR: la dimostrazione appena conclusa si può ripetere per le rotazioni, che sono delle isometrie, infatti detti
y = Rx e q = Rp, abbiamo che

∥y−q∥2 = ∥Rx−Rp∥2 = ∥R(x−p)∥2 = ∥x−p∥2 < r
questo perché le matrici che rappresentano le rotazioni godono della seguente proprietà

∥Rx∥22 = Rx ·Rx = (Rt)Rx · x = (R−1)Rx · x = x · x = ∥x∥22 per ogni x ∈�3

Quindi questa affermazione può essere riformulata dicendo che ”la rotazione di un aperto è ancora un aperto”
e la chiave della dimostrazione, parlando in termini approssimativi, è che la rotazione di una palla è una palla.

ESERCIZIO 10. Siano A1 e A2 due sottoinsiemi aperti di (�n,∥ · ∥2), si mostri che gli insiemi A1 ∩ A2 e A1 ∪ A2 sono
aperti.
Si concluda l’esercizio provando quali tra gli aggettivi chiuso, convesso e compatto possono sostituire l’aggettivo
aperto nell’affermazione della prima parte del quesito.

DISCUSSIONE. Per ipotesi A1 e A2 sono aperti, interessiamoci dell’insieme A = A1 ∪ A2. Per mostrare che A
è aperto è necessario (e sufficiente) provare che per ogni punto p ∈ A esiste una palla, eventualmente molto
piccola, B(p, r) = {x : ∥x−p∥2 < r} contenuta interamente in A. Sia p ∈ A, allora p ∈ Ai per almeno un indice
(l’unione di due insiemi contiene i punti che appartengono almeno ad uno dei due insiemi), siccome Ai è aperto
allora esiste r0 > 0 tale che B(p, r0) ⊆ Ai ⊆ A, quindi A = A1 ∪A2 è aperto.
Adesso concentriamoci su B = A1 ∪ A2. Poiché tutti i punti dell’intersezione sono punti che appartengono ad
entrambi gli insiemi Ai che sono aperti, possiamo dire che esistono due raggi r1, r2 > 0 tali che B(p, ri) ⊆ Ai per
i = 1,2. È facile verificare che se r1 ≤ r2 allora B(p, r1) ⊆ B(p, r2) e se r2 ≤ r1 allora B(p, r2) ⊆ B(p, r1), quindi la palla
di raggio più piccolo è contenuta in entrambi gli aperti Ai e quindi nella loro intersezione, il che prova che B è
aperto.
Se A1 e A2 sono chiusi allora Ac

1 e Ac
2 sono aperti e siccome (A1 ∪ A2)c = Ac

1 ∩ Ac
2 segue, dalla prima parte

dell’esercizio, che (A1∪A2)c è aperto, cio che A1∪A2 è chiuso. Analogamente l’osservazione (A1∩A2)c = Ac
1 ∪Ac

2
permette di provare che l’intersezione di due chiusi è un chiuso.
Se A1 e A2 sono convessi non è possibile concludere nulla per la loro unione, infatti è sufficiente considerare i
seguenti esempi: se A1∩A2 = ∅ l’unione dei due convessi non può produrre un insieme convesso, scegliendo un
punto in un insieme e un altro punto nel secondo insieme il segmento che li congiunge non può essere conte-
nuto nell’unione, altrimenti dovrebbero esistere punti comuni ai due convessi. In �

2 è sufficiente considerare
due rettangoli R, avente due vertici opposti nei punti O(0,0), p(4,2), e S (con vertici in q(2,3) e w(5,−2)). Dopo
aver notato che i rettangoli sono degli insiemi convessi del piano si consideri il segmento di estremi (1/2, 1/2)
e 5/2,−3/2: per esempio il suo punto medio non appartiene all’unione dei due rettangoli come suggerisce il
seguente disegno

O

p

q

w

S

R

Al contrario l’intersezione di due insiemi convessi è ancora un insieme convesso, infatti presi due punti p,q ∈
A1∩A2 osserviamo che p,q ∈ A1 e, siccome A1 è convesso, abbiamo che pq ⊆ A1, ma è vero anche che p,q ∈ A2
e, siccome A2 è convesso, abbiamo che pq ⊆ A1, e questo significa che pq ⊆ A1 ∩A2.
Se A1 e A2 sono compatti entrambe le affermazioni sono vere, infatti se {xk} ⊆ A1 ∩A2 allora è vero che {xk} ⊆
A1 e, poiché A1 è compatto, esiste {xk(j)} ⊆ {xk}} tale che xk(j) −→ p ∈ A1, però è anche vero che {xk} ⊆ A2,
quindi {xk(j) ⊆ A2 e xk(j) −→ p ∈ A2, visto che la sottosuccessione è convergente e la compattezza di A2 ci
permette di dire che il punto limite appartiene all’insieme. Se {xk} ⊆ A1∪A2 deve esistere una sottosuccessione
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{xk(j)} ⊆ A1 o {xk(j)} ⊆ A2 (altrimenti la successione avrebbe solo un numero finito di elementi), la tesi segue dalla
compattezza di A1 o A2.

ESERCIZIO 11. È vero che se K ⊆ (�3,∥ · ∥2) è compatto, allora E ⊆ K è compatto? Si argomenti esaustivamente ogni
affermazione.

DISCUSSIONE. È noto (dalle lezioni) che nello spazio di Banach (�3,∥·∥2) gli insiemi compatti sono gli insiemi
chiusi e limitati, quindi (per ipotesi) K è chiuso e limitato. Poiché K è limitato abbiamo che K ⊆ B(O,R), per un
opportuno R > 0, quindi E ⊆ B(O,R), cioè E è limitato. Dunque la compattezza di E dipende esclusivamente
dal fatto che E sia chiuso o meno, naturalmente non tutti gli insiemi contenuti in K sono chiusi, quindi non è
detto che E sia compatto! Per fissare le idee facciamo un esempio ”concreto”: prendiamo in esame l’insieme
K = [−2,2]3 = {x = (x1, x2, x3) ∈ �n : −2 ≤ x1, x2, x3 ≤ 2} = {x ∈ �n : −2 ≤ x1 ≤ 2;−2 ≤ x2 ≤ 2;−2 ≤ x3 ≤ 2} che è
un cubo nello spazio tridimensionale ed è compatto per quanto detto precedentemente, B(O, 1) pur essendo
contenuta in K non è compatta perché è un aperto di �3.

ESERCIZIO 12. Si provi che E = {p} ⊆�
n è chiuso e compatto.

DISCUSSIONE. Cominciamo osservando che E è limitato, in quanto posto r = ∥p∥2 vale che p ∈ B(O;2r), dun-
que se E è chiuso risulta automaticamente anche compatto. Per mostrare che E è chiuso dobbiamo provare
che il suo complementare Ec = {x ∈ �3 : ∥x − p∥2 > 0} è aperto. Sia x ∈ Ec e poniamo â = ∥x − p∥2 > 0, allora
mostriamo che la palla B(x, r), con r = â/2, è contenuta in Ec: infatti dato y ∈ B(x, r) abbiamo che

∥y−p∥2 = ∥y− x + x−p∥2 ≥ ∥x−p∥2 − ∥y− x∥2 > â− r = 1
2â > 0

visto che, per la disuguaglianza triangolare, vale
∥x−p∥2 = ∥x− y + y−p∥2 ≤ ∥x− y∥2 + ∥y−p∥2 da cui segue ∥x−p∥2 − ∥x− y∥2 ≤ ∥y−p∥2

quindi Ec è aperto, per cui ogni insieme costituito da un solo punto dello spazio è chiuso.

ESERCIZIO 13. Si provi che E = {x ∈�3 : ∥x∥ ≤ 1} è chiuso.

DISCUSSIONE. L’insieme E =
{
x ∈�3 : x2

1 + x2
2 + x2

3 ≤ 1
}

è, intuitivamente, la palla di raggio 1 unita alla sfera
unitario dello spazio, ragioniamo come nell’esercizio precedente considerando p ∈ Ec, r = (∥p∥2 − 1)/4 > 0 e
mostriamo che B(p, r) ⊆ Ec. Infatti, per y ∈ B(p, r) possiamo scrivere

∥y∥2 = ∥y−p + p∥2 ≥ ∥p∥2 − ∥y−p∥2 = ∥p∥2 −
1
4 (∥p∥2 − 1) = 3∥p∥2 + 1

4 > 1

il che conclude l’esercizio.


