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Asymptotic Evaluation of Integrals:
The Method of Steepest Descent



Basic Idea

The method of steepest descent is a powerful approach for studying
the large k asymptotics of integrals of the form

     dk z
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The basic idea of the method is to utilize the analyticity of the
integrand to justify deforming the contour C to a new contour C’ on
which (z) has a constant imaginary part.
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Although z is complex, u is real, hence the same approach used in the
Laplace method can be used.
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Steepest Descent Paths and Saddle Points

The paths on which v is constant are also paths for which either the
decrease of u is maximal (paths of steepest descent) or the increase of
u is maximal (paths of steepest ascent).

The asymptotic evaluation of I(k) will make use of the former, hence
the name Steepest Descent Method.

Usually the paths of steepest descent will go through a point z0 for
which ‘(z0) = 0. Such a point is a saddle point for the function u, hence
the method is alternatively referred to as the Saddle Point Method.
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Consequences of the Cauchy-Riemann Equations

If (z) is analytic at z0=x0+jy0:
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At any point z where it then results:  0z 
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• the direction of maximum variation of u is orthogonal to the direction
of maximum variation of v

• the curves of constant v are the steepest descent/ascent paths of u
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Consequences of the Cauchy-Riemann Equations

2 2 2 2
2

2 2 0
v v u u

v x y x yx y
   

          

Both u and v are harmonic functions:

Maximum Modulus Theorem (Harmonic Functions)

Let u(x,y) be an harmonic function in an open connected domain D.
If

     0 0, , , ,u x y u x y x y D 
then      0 0, , , ,u x y u x y x y D  

Hence the stationary points of u and v are saddle points.



Saddle Points: Local Behavior
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In practice, we need to establish that the contour can be deformed onto
the steepest descent curve, which passes through the saddle point.

A point z0 is a saddle point of orderN if, letting n=N+1,
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Then, by letting , we can study the local behavior of  through0
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Saddle Points: Local Behavior

Since the directions of steepest descent at z = z0 are defined by Im[(z)(z0)]
= 0, it follows that sin(α + nθ) = 0, and for u to decrease away from z0, cos(α
+ nθ) < 0.

Similarly, the directions of steepest ascent are given by sin(α + nθ) = 0, cos(α
+ nθ) > 0.
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Examples
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Laplace Method for Complex Contours

• We need to establish that the contour can be deformed onto the steepest
descent curve, which passes through the saddle point. This requires some
global understanding of the geometry.

• Usually the contribution near the saddle point gives the dominant
contribution.

• However, sometimes the contour cannot be deformed onto a curve passing
through a saddle point. In this case, endpoints or singularities of the
integrand yield the dominant contribution.

• Moreover, sometimes the deformation process introduces poles that can lead
to significant (and possibly dominant) contributions to the asymptotic
expansion.

In a nutshell: 



Contribution of a Single Path of Steepest Descent

Let us consider a portion of the dominant contribution; that is, consider a single
path of steepest descent originating from a saddle point z0 of order n ­ 1.

Dominant Asymptotic Contribution (single SDP through a SP)

Let z0 be a SP of order n ­ 1 and let f(z) be of order (z-z0)b-1 near z0, i.e.:

then
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Derivation

Since we integrate along a SDP:    0 ,z z t t     
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Since on the SDP , the result for I(k) follows by recalling the
definition of the Gamma function.
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Higher-Order Asymptotic Terms

To recover the full asymptotic expansion for I(k), one must solve for zz0 in
terms of a power series in t ( ) from
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This inversion can always be accomplished in principle, by the Implicit Function
Theorem. In practice, the necessary devices to accomplish this are often direct
and motivated by the particularities of the functions in question.



Asymptotic Nature of the Representation

The asymptotic nature of the above representations can be rigorously established
by using Watson’s Lemma (proof by exercise).
This shows the great advantage of the method of steepest descent: Because it is
based on Watson’s Lemma, it is possible both to justify it rigorously and to obtain
the asymptotic expansion to all orders using purely local information.

We could consider deforming C into a path for which u rather than v is constant
(so that v varies rapidly) and then apply an extension of the method of stationary
phase. However, we expect intuitively that the self-canceling of oscillations is a
weaker decay mechanism than the exponential decay of the exponential factor in
the integrand.

In fact, without deformations to a Laplace type integral, in general only the
leading term of the asymptotic expansion of a generalized Fourier integral can be
found from purely local considerations.

Comparison with the Stationary Phase Method



Asymptotically Equivalent Contours

A difficulty encountered in practice is the deformation of the original contour of
integration onto one or more of the paths of steepest descent.

However, the local nature of the method of steepest descent makes even this
task relatively simple. This is because quantitative information about the
deformed contours is needed only near the critical points [SPs, endpoints,
singularities of f(z) and (z)]; away from these points qualitative information is
sufficient.

A contour C1 that coincides with a steepest descent contour Cs for some finite
length near the critical point z0 but that then continues merely as a descent
contour is said to be asymptotically equivalent to Cs.

Asymptotic expansions derived from asymptotically equivalent contours differ
only by an exponentially small quantity.



1st Worked Example

Find the complete asymptotic expansion of  
1
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log d ,jktI k te t k  

• There is no stationary-phase point:    , 1 0t t t    

• Integration by parts fails because is not integrable close to t=0 d 1log
d

t
t t
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Let us then try with the SD method by replacing the real variable t by the
complex variable z=x+jy :
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Steepest paths:
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1st Worked Example (cont’d)

We note that Im f(0)  Im f(1); hence there 
is no continuous contour joining z=0 and z =1
on which Im f is constant.

By applying Cauchy Theorem to the path 
shown in figure:
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Letting R tend to infinity we have
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1st Worked Example (cont’d)

Using s=kr the first integral becomes:
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2nd Worked Example: Hankel Function

Find the complete asymptotic expansion of
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(Hankel function of order  and 1st kind)



2nd Worked Example: Hankel Function (cont’d)

Noting that we subtract the formulas
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2nd Worked Example: Hankel Function (cont’d)

SDP/SAP through the SP z=0:      Im Im 0 cos cosh 1z x y   
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The integral converges when Re=sinhy sinx < 0; i.e.,
for y→+∞,  < x < 0, and for y →∞, 0 < x < .

We conclude that we may deform the original
contour C to the SDP Cs through the SP z=0.



2nd Worked Example: Hankel Function (cont’d)

SDP transformation :    0 , 0 ( )z t t t      cos 1j z t  
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2nd Worked Example: Hankel Function (cont’d)
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Using the expansion of z(t) above and splitting the steepest descent contour into
two pieces, one each from the origin, after some algebra we have:

By inserting the appropriate coefficients cn we finally find:
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Alternative Approach

   s z 
A somewhat quicker procedure makes use of a different change of variables.

In particular, a suitable polynomial (s) is introduced:

the vicinity of zs in the complex z plane being chosen to correspond to the vicinity
of the point 0 in the complex s plane.

         d dk z k s

C P

I k f z e z G s e s 



  

     
 

d d,
d d

sz zG s f z
s s z






 



SDPoriginal path

 
p bP P P P

I k


      



Alternative Approach (cont’d)

Assuming G(s) is regular close to s=0, one may write

       d 0 dks s

P

k

P

G s e s G e s  (1st-order approximation)

   s z The transformation should be chosen so that:

• Re(s) should decrease most rapidly from s=0, hence the SP(s) of (s) should
be at (or close to) s=0

• The mapping derivative dz/ds should be finite near s=0, to ensure regularity
of G(s)

Therefore, the derivative  ‘(s) should have the same order of zero at the SP(s) in
the s plane as the original ‘(z) at the SP(s) zs in the z plane.

The simplest (s) satisfying these requirements will yield the simplest
comparison integral.

comparison integral



Hankel Function (Alternative Approach)

Find the complete asymptotic expansion of

   1 2cos1 d ,
j z

jk z

C

H k e e z k


 

       
(Hankel function of order  and 1st kind)

   
 

SPcos , sin 0( 2 )
0

z j z z j z z m
j

  

      
  

Simple SPs

   2cosz j z j s s    

   SP 0 0z j s    
so that

   2 , 0 2 0 simple zeros s s       



Hankel Function (Alternative Approach)

 
 

 
 
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ˆ(de L'Hopital)
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n even: SDP



Hankel Function (Alternative Approach)

       

     


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(Gauss integral)
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(dominant asymptotics, as already obtained)



Hankel Function (Alternative Approach)
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Comparison Integrals: Various Forms

As already said, the derivative  ‘(s) should have the same order of zero at the
SP(s) in the s plane as the original ‘(z) at the SP(s) zs in the z plane.

If f(z) has singularities near zs, G(s) has singularities near s=0; these must be
isolated in the simplest form and require consideration of a new class of
comparison integrals.

     
 

d d,
d d

sz zG s f z
s s z






 





Comparison Integrals: Various Forms

      1
s

mz s z s     

CASE 1
single SP z=zs of order m, f(z) regular close to zs

s 0z z s  
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       



 

canonical integral, evaluated analytically 
(algebraic dependence on k)

(dominant
asymptotics)

integral along a SD path starting 
at the SP and ending in an 

appropriate ‘valley’ at infinity



Comparison Integrals: Various Forms

   
3

0 3
sz s a s     

CASE 2
double SPs z=z1 and z=z2 of order 1, arbitrarily close to each other; f(z) regular
close to z1,2

1,2 1,2z z s s     
( (s) has two simple zeros at s1,2 )
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





 

 

new canonical integral expressible in terms of the Airy function

(dominant
asymptotics)

the 'rainbow integral'



Comparison Integrals: Various Forms

     22
0z s a a s    

CASE 3
Triple collinear SPs z=z1 , z=z2, and z=z3 of order 1, arbitrarily close to each
other; f(z) regular in the vicinity of z1,2,3

1,2,3 1,2,3 , 0,z z s s j a j a      ( (s) has three simple zeros at s1,2,3 )
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new canonical integral expressible in terms of the parabolic cylinder function  1/2 2D a k

(dominant
asymptotics)



Comparison Integrals: Various Forms

CASE 4
Single SPs z=z1 of order 1, f(z) has a simple or multiple pole at zp arbitrarily close
to the SP

      2
sz s z s        aG s T s

s b
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
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same canonical integral
as before

new canonical integral
expressible in terms of the error function 

or Fresnel integrals

regular close to s=0
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